Integral points of a modular curve of level 11

by René Schoof and Nikos Tzanakis

Abstract. Using lower bounds for linear forms in elliptic logarithms we determine the integral points of the modular curve associated to the normalizer of a non-split Cartan group of level 11. As an application we obtain a new solution of the class number one problem for complex quadratic fields.

1. Introduction.

Let E be the elliptic curve given by the Weierstrass equation

$$Y^2 + 11Y = X^3 + 11X^2 + 33X.$$

This is the curve 121B1 in Cremona's table [4, p.121]. By [4, p.256] the group of rational points of E is the infinite cyclic group generated by the point (0,0). The main result of this paper is the following.

Theorem 1.1. There are precisely seven rational points (x, y) on E for which

$$\frac{x}{xy - 11}$$

is integral. They are (0,0), (0,-11), (-2,-5), (-2,-6), (-6,-2), (-11/4,-33/8) and the point at infinity.

Let $X_{ns}(11)$ denote the modular curve associated to the normalizer of a non-split Cartan subgroup of level 11; see [10, Appendix]. This curve has genus 1, is defined over \mathbf{Q} and parametrizes elliptic curves with a certain level 11 structure. The interest of Theorem 1.1 lies in the fact that $X_{ns}(11)$ is isomorphic over \mathbf{Q} to the curve E and that rational points (x,y) on E for which x/(xy-11) is integral, correspond precisely to integral points on $X_{ns}(11)$, i.e., to rational points for which the parametrized elliptic curve has its j-invariant in \mathbf{Z} . We prove this in section 4 and hence obtain the following corollary of Theorem 1.1.

²⁰⁰⁰ Mathematics Subject Classification 11DXX, 11F03, 11G05, 11J86, 11R29

Theorem 1.2. There are precisely seven integral points on the modular curve $X_{ns}(11)$.

As explained by J-P. Serre in the Appendix of [10], every imaginary quadratic order R of class number 1 in which the prime 11 is inert, gives rise to an integral point on $X_{ns}(11)$. The elliptic curve that is parametrized by this point admits complex multiplication (CM) by R. Since 11 is inert in the quadratic orders of discriminant -3, -4, -12, -16, -27, -67 and -163, all of which have class number 1, the seven integral points of Theorem 1.1 are accounted for by these CM curves. See section 4 for the precise correspondence.

If the class number of the imaginary quadratic order of discriminant Δ is 1, then the prime 11 is inert in it whenever $|\Delta| > 44$. Therefore the fact that there are no other integral points on $X_{ns}(11)$ gives an independent proof of the Baker-Heegner-Stark theorem [1, 7, 13]: the only imaginary quadratic orders with class number 1 are the ones with discriminant equal to one of -3, -4, -7, -8, -11, -12, -16, -19, -27, -28, -43, -67 and -163.

Our proof exploits effective lower bounds for linear forms in elliptic logarithms [5]. In this respect it differs from earlier work by M. Kenku [8] and B. Baran [2], who exploit modular curves of level 7 and 9 respectively. In both cases the curves involved have genus 0 and the problem is reduced to a cubic Thue equation, which is solved by Skolem's method.

The paper is organized as follows. In section 2 we prove two inequalities. These are used in section 3, where we apply the method of linear forms in elliptic logarithms and prove Theorem 1.1. In section 4 we explain the relation with the modular curve of level 11 and prove Theorem 1.2. All calculations can be checked easily and quickly by means of the PARI software package.

2. Two inequalities.

In this section we prove two inequalities concerning the elliptic curve E given by the Weierstrass equation $Y^2 + 11Y = X^3 + 11X^2 + 33X$. The first inequality regards a property of the group $E(\mathbf{R})$ of real points of E, while the second is concerned with heights of points in the group $E(\mathbf{Q})$ of rational points.

Let t be the function on E given by

$$t = Y - \frac{11}{X}.$$

It has simple poles at the points (0,0) and (0,-11) and a pole of order 3 at infinity. Its zero locus consists of five distinct points, which we call the *cusps* of E because under the isomorphism of section 4 they correspond to the cusps of the modular curve $X_{ns}(11)$. The x-coordinates of the cusps are the zeroes of the polynomial $X^5+11X^4+33X^3-121X-121$. In particular, they are all real. It follows that the cusps are contained in the group $E(\mathbf{R})$. The curve E has only one connected component over \mathbf{R} , so that $E(\mathbf{R})$ is homeomorphic to a circle.

Writing $F(X,Y) = Y^2 + 11Y - X^3 - 11X^2 - 33X$, we define the function g by

$$g = \det \left(\frac{\frac{\partial t}{\partial X}}{\frac{\partial F}{\partial X}} - \frac{\frac{\partial t}{\partial Y}}{\frac{\partial F}{\partial Y}} \right) = 3X^2 + 22X + 33 + \frac{11(2Y+11)}{X^2}.$$

It has poles of order 2 at (0,0) and (0,-11) and a pole of order 4 at infinity. It has eight zeroes on E, four of which are real.

Lemma 2.1. Let U be the subset of $E(\mathbf{R})$ given by

$$U = \{P \in E(\mathbf{R}) : |t(P)| < \frac{1}{20}\}.$$

Then

- (a) the set U is the disjoint union of five open intervals, each containing precisely one cusp;
- (b) the function g satisfies $|g(P)| \ge 1$ for every $P \in U$.

Proof. In the proof all values of the functions g and t are given with an accuracy of two decimals only. The values of t in the four real zeroes of g on $E(\mathbf{R})$ are equal to -7.39, 0.63, -0.16 and -23.06 respectively. Since the absolute value of each of these numbers exceeds $\frac{1}{20}$, the function g has no zeroes in U and hence Lagrange's multiplier method ensures that t assumes no extremal values in U. It follows that U is a union of open intervals I, each of which contains at most one zero of t. If t were not to vanish on an interval I, then its values on the boundary points of I would either be both equal to $+\frac{1}{20}$ or to $-\frac{1}{20}$. This is impossible as t assumes no extremal values on I. This shows that t has at least one zero in I and (a) follows.

To prove (b), note that the values of g in the five cusps are 9.75, -1.78, 1.39, -3.79 and 159.43 respectively. Therefore $|g(P)| \geq 1$ for all points P in a sufficiently small neighborhood of the cusps. We need to show that U is such a neighborhood. We saw in the proof of part (a) that g has no zeroes in U. Lagrange's multiplier method shows that g assumes its extremal values in the zeroes of the function

$$\det \begin{pmatrix} \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} \end{pmatrix} = (2Y+11) \left(6X+22 - \frac{22(2Y+11)}{X^3} \right) + \frac{22(3X^2+22X+33)}{X^2}.$$

This function has five zeroes in $E(\mathbf{R})$ and the function t assumes the values -3.60, 0.34, -5.19, -0.44 and 2.57 in these zeroes. Since the absolute values of these numbers exceed $\frac{1}{20}$, the zeroes are not contained in U and hence g assumes no extremal values on U.

It follows that on each of the five intervals I of part (a) the function g is monotonous and assumes either only positive or only negative values. This implies that on each I we have $|g(P)| \ge \min(|g(z)|, |g(z')|)$ where z, z' are the boundary points of I. In our case the boundary points are given by the equation $t = Y - \frac{11}{X} = \pm \frac{1}{20}$. The values of g in these points are given by 9.30, -2.05, 1.63, -4.21, 159.23 (for the plus sign) and 10.18, -1.46, 1.14, -3.39 and 159.62 (for the minus sign) respectively. The number with the smallest absolute value is 1.14 which still exceeds 1. This proves the Lemma.

Remark. The proof of Lemma 2.1 is related to the arguments in [16, section 2] and [15, section 2.4]. In our case the situation is relatively straightforward because all zeroes of the function t are simple.

For any non-constant f in the function field of E and any point $P \in E(\mathbf{Q})$ we let

$$H_f(P) = \prod_{p \le \infty} \max(1, |f(P)|_p),$$

denote the height of P with respect to f. We let $h_f(P) = \log H_f(P)$ denote the logarithmic height of P with respect to the function f. The canonical height h(P) of P is defined as $\frac{1}{\deg f}\lim_{n\to\infty}h_f(2^nP)/4^n$. Here f can be any even non-constant function on E, for instance f = X. See [12, VIII]. The function t = Y - 11/X is not even. We consider the height function h_t and compare it to the canonical height. For our purposes the following weak estimate is sufficient.

Lemma 2.2. For every point $P \in E(\mathbf{Q})$ we have

$$\hat{h}(P) \leq \frac{1}{3}h_t(P) + 4.52.$$

Proof. Let $P = (x, y) \in E(\mathbf{Q})$. We first compare $h_t(P)$ to $h_X(P)$. For every finite prime p we have

$$\max(1, |x|_p) \le \max(1, |y - \frac{11}{x}|_p)^{2/3}.$$

This is obvious when $|x|_p \leq 1$. When $|x|_p > 1$, the Weierstrass equation implies that $\operatorname{ord}_p(x) = -2k$ and $\operatorname{ord}_p(y) = -3k$ for some k > 0. It follows that $\operatorname{ord}_p(y - \frac{11}{x}) = -3k$ and the inequality follows.

At the infinite prime we have

$$\max(1,|x|) \le 7 \max(1,|y-\frac{11}{x}|)^{2/3}.$$

This is obvious when $|x| \leq 7$. If |x| > 7, we observe that E has no real points with x-coordinate less than -7, so that we actually have x > 7. Then we have $(y + \frac{11}{2})^2 \ge (x^{3/2} + \frac{11}{2})^2$ and hence $|y - \frac{11}{x}| \ge |y + \frac{11}{2}| - |\frac{11}{2} + \frac{11}{x}| \ge x^{3/2} + \frac{11}{2} - \frac{99}{14} \ge (\frac{1}{7}x)^{3/2}$. Taking the product, it follows that $H_X(P) \le 7H_t(P)^{2/3}$ and hence

$$h_X(P) \le \frac{2}{3}h_t(P) + \log 7.$$

To conclude the proof, we compare $h_X(P)$ to $\widehat{h}(P)$. Since the discriminant of E is 11³ and its j-invariant is -2^{15} , Silverman's estimate [11, Thm.1.1] implies $\widehat{h}(P) \leq \frac{1}{2}h_X(P) + 3.54$. Combining the two estimates gives

$$\hat{h}(P) \le \frac{1}{2} \left(\frac{2}{3} h_t(P) + \log 7 \right) + 3.54 < \frac{1}{3} h_t(P) + 4.52,$$

as required

3. The proof.

In this section we prove Theorem 1.1. Our proof closely follows the strategy of [14]. Let ω denote the invariant differential $\frac{dX}{2Y+11}$ of E. We define the *elliptic logarithm* of a point $P \in E(\mathbf{R})$ by

$$\lambda(P) = \int_{-\infty}^{P} \omega.$$

Since $\lambda(P)$ depends on the path of integration in $E(\mathbf{C})$, it is only well defined up to the period lattice of E. Since P is in $E(\mathbf{R})$, there is a path of integration inside the real locus $E(\mathbf{R})$. Therefore $\lambda(P)$ is equal to a real number modulo the period lattice and this real number is unique up to a multiple of the real period

$$\Omega = \int_{c}^{\infty} \frac{dx}{\sqrt{q(x)}} = 4.8024\dots$$

Here $c=-6.8026\ldots$ denotes the unique real zero of $q(x)=x^3+11x^2+33x+\frac{121}{4}$. It follows that $\lambda(P)$ is a well defined element of $\mathbf{R}/\Omega\mathbf{Z}$. The map $P\mapsto \lambda(P)$ is a continuous group isomorphism $E(\mathbf{R})\longrightarrow \mathbf{R}/\Omega\mathbf{Z}$. In order to avoid ambiguity, we assume that $\lambda(P)$ is a real number satisfying $0 \le \lambda(P) < \Omega$.

Lemma 3.1. For any cusp Q of E we have $\lambda(Q) = \frac{k}{11}\Omega$ for some integer k.

Proof. Any cusp Q = (x, y) is contained in $E(\mathbf{R})$ so that $\lambda(Q) = r\Omega$ for some $r \in \mathbf{R}$. Since we have y = 11/x, the x-coordinate of Q is a zero of the polynomial $p(X) = X^5 + 11X^4 + 33X^3 - 121X - 121$. One checks that the 11-division polynomial of E is divisible by $X^5 + 11X^4 + 33X^3 - 121X - 121$. This implies that $\lambda(Q) = \frac{k}{11}\Omega$ for some $k \in \mathbf{Z}$, as required.

Alternatively, one can avoid the computation of the 11-division polynomial and proceed as follows. The curve E admits complex multiplication by the ring $\mathbf{Z}[\frac{1+\sqrt{-11}}{2}]$ and the kernel of the endomorphism $\sqrt{-11}$ is precisely the order 11 group G generated by $\lambda^{-1}(\frac{1}{11}\Omega)$. Since the Galois group of $\overline{\mathbf{Q}}$ over \mathbf{Q} preserves G, there is a unique monic degree 5 polynomial $q(X) \in \mathbf{Q}[X]$ whose zeroes are precisely the x-coordinates of the points of G. By the Nagell-Lutz Theorem [12, VII.3.4], each point $(x,y) \in G$ has the property that 11x is an algebraic integer. Therefore we can compute q(X) by calculating sufficiently accurate approximations to its roots. We find that p(X) = q(X) and hence $Q \in G$. This proves the lemma.

Finally, the lemma also follows from the fact that Halberstadt's isomorphism [6, 3.3] is known to map the cusps of the modular curve $X_{ns}(11)$ to certain 11-torsion points of E. See section 4.

Proof of Theorem 1.1. First we check that the only integers k with $|k| \leq 20$ for which there are points P = (x, y) in $E(\mathbf{Q})$ with x/(xy - 11) equal to k are $k = 0, \pm 2, -6$ and -8. These values of k already account for the seven points listed in Theorem 1.1. To prove the theorem, let P = (x, y) be a point in $E(\mathbf{Q})$ for which |x/(xy - 11)| is an integer exceeding 20. Since t = Y - 11/X, we have $|t(P)| < \frac{1}{20}$. By Lemma 2.1 there is a cusp Q and an open interval $I \subset U$ containing both P and Q.

Let $\int_Q^P \omega$ denote the integral from Q to P of the invariant differential ω along a path inside the interval I. Then $\int_Q^P \omega$ is real and we estimate its absolute value. Writing $F(X,Y) = Y^2 + 11Y - X^3 - 11X^2 - 33X$, we have for every function f on E that

$$df = \det \begin{pmatrix} \frac{\partial f}{\partial X} & \frac{\partial f}{\partial Y} \\ \frac{\partial F}{\partial X} & \frac{\partial F}{\partial Y} \end{pmatrix} \omega.$$

In particular, taking f equal to t, we find that dt/ω is equal to the function $g=3X^2+22X+33+\frac{11(2Y+11)}{X^2}$ of Lemma 2.1. Therefore

$$\int_{Q}^{P} \omega = \int_{0}^{t(P)} \frac{\omega}{dt} dt = \int_{0}^{t(P)} \frac{dt}{g}.$$

By Lemma 2.1 we have $|g(x,y)| \ge 1$ for all $(x,y) \in I$. Therefore we have $|\int_Q^P \omega| \le |\int_Q^{t(P)} dt| = |t(P)|$. Since $\lambda(P) - \lambda(Q) \equiv \int_Q^P \omega$ modulo $\Omega \mathbf{Z}$, there exists $n' \in \mathbf{Z}$ such that

$$|\lambda(P) - \lambda(Q) + n'\Omega| \le |t(P)|.$$

By Lemma 3.1 we then have

$$|n\frac{\Omega}{11} - \lambda(P)| \le |t(P)|,$$
 for some $n \in \mathbf{Z}$.

Since 1/t(P) is in **Z**, we have that $h_t(P) = -\log|t(P)|$. Therefore Lemma 2.2 implies that

$$|n\frac{\Omega}{11} - \lambda(P)| < \exp(13.56 - 3\hat{h}(P)),$$
 for some $n \in \mathbf{Z}$.

We write P_0 for the generator (0,0) of the group $E(\mathbf{Q})$ so that $P=mP_0$ for some integer m. Since $\hat{h}(P)=m^2\hat{h}(P_0)$ and $\hat{h}(P_0)=0.04489\ldots$ this gives

$$|n\Omega - m\lambda(11P_0)| \le 11 \cdot \exp(13.56 - 0.13 \cdot m^2), \quad \text{for some } n \in \mathbf{Z}.$$
 (1)

On the other hand, since P_0 is not a torsion point, $n\Omega - m\lambda(11P_0)$ is a non-vanishing linear form in the elliptic logarithms Ω and $\lambda(11P_0)$. We recall the explicit lower bound that Sinnou David obtained for such forms [5, Théorème 2.1]. In David's notation we have $K = \mathbf{Q}$, D = 1 and k = 2. The coefficients β_0 , β_1 , β_2 of his linear form are equal to 0, n, -m in our case. We have $u_1 = \Omega$ with γ_1 equal to the point at infinity and $u_2 = \lambda(11P_0)$ with $\gamma_2 = 11P_0$. It follows that David's constants V_1 and V_2 are given by $V_1 = 1.415... \times 10^{27}$ and $V_2 = 7.98... \times 10^{14}$.

David's estimates imply that when $B = \max(|m|, |n|)$ exceeds $V_1 = 1.415...\cdot 10^{27}$, then we have

$$|n\Omega - m\lambda(11P_0)| > \exp(-7.658 \times 10^{44} (\log B + 1)(\log\log B + 15\log(2) + 1)^3).$$
 (2)

We consider first the case $|m| \ge 12$. Then the right hand side of inequality (1) is < 0.07. Since $\Omega = 4.8024...$ and $\lambda(11P_0) = 3.5579...$, this easily implies that $|m| \ge |n|$ and hence B = |m|. We claim that

$$|m| < 1.415 \times 10^{27}. (3)$$

Indeed, if the inequality is false, we may apply David's lower bound (2). Comparing the inequalities (1) and (2) one finds $|m| < 3.62 \times 10^{25}$, contradicting our assumption.

The bound on |m| is very large. However, we can use it to obtain a better bound by observing that for $|m| \ge 12$ the right hand side of (1) is less than $0.4 \frac{\Omega}{|m|}$. This leads to the inequality

$$\left| \frac{n}{m} - \frac{\lambda(11P_0)}{\Omega} \right| < \frac{0.4}{m^2} < \frac{1}{2m^2},$$

implying that n/m is a convergent p_k/q_k of the continued fraction expansion of $\lambda(11P_0)/\Omega$. By (3) we must have that $q_k < 1.415 \times 10^{27}$. Using Zagier's algorithm [17] we compute $\lambda(11P_0)$ and Ω with an accuracy of 60 decimal digits and verify that for k > 55 the convergents p_k/q_k do not satisfy $q_k < 1.415 \times 10^{27}$. Note that replacing $\lambda(11P_0)/\Omega$ by its approximation σ to 60 decimal digits, does not affect the first 55 convergents. This follows from the inequality

$$\left|\frac{n}{m} - \sigma\right| \le \left|\frac{n}{m} - \frac{\lambda(11P_0)}{\Omega}\right| + \left|\frac{\lambda(11P_0)}{\Omega} - \sigma\right| < \frac{0.4}{m^2} + 10^{-60} < \frac{1}{2m^2}.$$

On the other hand, one checks that for $k \leq 55$ inequality (1) does not hold when $q_k \geq 12$. Indeed, one has

$$|p_k\Omega - q_k\lambda(11P_0)| > 11 \cdot \exp(13.56 - 0.13 \cdot q_k^2)$$

for all $k \leq 55$ for which $q_k \geq 12$. This contradicts our assumption that $|m| \geq 12$.

It remains to deal with the case |m| < 12. Inspection of the points mP_0 for -12 < m < 12 shows that only for m = -2, -1, 0, 1, 2, 3 and 4 the point $(x, y) = mP_0$ has the property that x/(xy-11) is integral. In fact, these are the seven points $(-2, -6), (0, -11), \infty, (0, 0), (-2, -5), (-11/4, -33/8)$ and (-6, -2) respectively. So once again we recover the seven points of Theorem 1.1. This completes the proof of Theorem 1.1.

The continued fraction argument to reduce the upper bound for |m| is particularly simple in our case because the rank of the Mordell-Weil group of E is 1. In general, one employs a lattice reduction algorithm that can handle lattices of higher rank. See [16] where the LLL algorithm is used.

Normalizations. Our definition of the canonical height agrees with the one given by Silverman [12, VIII]. The canonical height used by the PARI and MAGMA programs is twice as large, while the canonical height used by Sinnou David [5] is three times ours. In a similar way, our definition of the real period Ω agrees with the one given by Silverman [12] and the one used by PARI. The one used by Zagier [17] is twice as large.

4. The modular curve.

Let $X_{ns}(11)$ denote the modular curve associated to the normalizer of a non-split Cartan subgroup of level 11. It parametrizes elliptic curves with a certain level 11 structure [10, Appendix]. In 1977, G. Ligozat [9, Proposition 4.3.8.1] showed that $X_{ns}(11)$ is isomorphic to the genus 1 curve given by the Weierstrass equation $Y^2 + Y = X^3 - X^2 - 7X + 10$. Replacing X by X + 4 and Y by Y + 5, we see that this curve is isomorphic to the curve E given by

$$Y^2 + 11Y = X^3 + 11X^2 + 33X.$$

In this section we show that the *j*-invariant of an elliptic curve parametrized by a point $P = (x, y) \in E(\mathbf{Q})$ is in **Z** if and only if $x/(xy - 11) \in \mathbf{Z}$. This shows that Theorem 1.2 follows from Theorem 1.1.

The curve $X_{ns}(11)$ admits a natural morphism $j:X_{ns}(11)\longrightarrow \mathbf{P}^1$, mapping a point P of $X_{ns}(11)$ to the j-invariant of the elliptic curve parametrized by P. The morphism j has degree 55 and is defined over \mathbf{Q} . The formula for the natural morphism from E to the j-line depends on the choice of an isomorphism between the modular curve $X_{ns}(11)$ and the elliptic curve E. Since translation by a rational point is a \mathbf{Q} -rational automorphism of E, there are infinitely many such choices. We follow Halberstadt [6] and choose one of the two isomorphisms that map the five cusps of $X_{ns}(11)$ to the zeroes of the degree 5 function t = Y - 11/X. See [6, section 3]. For formulas that are based on a different choice see [3]. According to Halberstadt's explicit formula, we have

$$j(X,Y) = \frac{h(X,Y)}{(XY-11)^{11}},$$

where h(X,Y) is equal to

 $(X^2 + 11X + 22)^3((11X^2 + 88X + 121)Y + 2X^4 + 55X^3 + 451X^2 + 1452X + 1452)^3g(X, Y)$ and g(X, Y) is the polynomial

 $(6750X^8 + 337590X^7 + 5159935X^6 + 36807958X^5 + 145636931X^4 + 341425458X^3 \\ + 474292533X^2 + 362189058X + 117523307)Y + 51975X^9 + 1746052X^8 + 24440064X^7 \\ + 188870352X^6 + 892661770X^5 + 2692703508X^4 + 5217583888X^3 + 6299026712X^2 \\ + 4320837279X + 1288408000.$

Our formula follows from Halberstadt's formula [6, (2-1)] by dividing his polynomial $f_3^3 f_4^3$ by f_5^2 . After replacing X by X+4 and Y by Y+5, the quotient is our polynomial g(X,Y).

One checks that the seven points listed in Theorem 1.1 give rise to the j-invariants -5280^3 , 66^3 , 12^3 , $-3 \cdot 160^3$, -640320^3 , 0 and $2 \cdot 30^3$ respectively. These are precisely the j-invariants of the elliptic curves with complex multiplication by the quadratic orders of discriminant -67, -16, -4, -27, -163, -3 and -12 respectively.

Theorem 4.1. Let (x,y) be a rational point on the elliptic curve E given by the Weierstrass equation $Y^2 + 11Y = X^3 + 11X^2 + 33X$. Then j(x,y) is in \mathbb{Z} if and only if x/(xy-11) is in \mathbb{Z} .

Proof. We study integrality of j(x,y) and x/(xy-11) one prime l at a time. It follows from the Weierstrass equation that we can write $x = r/t^2$ and $y = s/t^3$ for certain $r, s, t \in \mathbf{Z}$

satisfying gcd(rs,t) = 1. The denominators of both $j(x,y) = h(x,y)/(xy-11)^{11}$ and x/(xy-11) divide a power of $rs-11t^5$. Therefore, if l is a prime not dividing $rs-11t^5$, both j(x,y) and x/(xy-11) are integral at l. Let therefore l be a prime that divides $rs-11t^5$. If l divides t, then it divides rs, which it cannot. So l does not divide t. This implies that both t and t are t-integral and t divides t and t divides t.

Suppose $l \neq 11$. Then l does not divide x, so that x/(xy-11) is not integral at l. Substituting Y = 11/X in the Weierstrass equation we find that l divides p(x) where $p(X) = X^5 + 11X^4 + 33X^3 - 121X - 121$. Suppose now that $j(x,y) = h(x,y)/(xy-11)^{11}$ is integral at l. Then l divides h(x,y). Substituting Y = 11/X in the polynomial h(X,Y) and multiplying by X^4 , we find that l divides r(x) where r(X) is a certain degree 31 polynomial in X with integral coefficients. Therefore l divides the resultant of p(X) and r(X), which one checks to be equal to 11^{63} . This shows that l = 11. This contradicts our assumption and we conclude that j(x,y) is not integral at l.

Finally, suppose l = 11. Since l divides xy-11, it also divides xy and it follows from the Weierstrass equation that 11 actually divides both x and y. It follows that 11 divides xy-11 exactly once so that x/(xy-11) is integral at 11. To see that $j(x,y) = h(x,y)/(xy-11)^{11}$ is also integral at 11, we observe that the exact power of 11 dividing $(xy-11)^{11}$ is 11^{11} . On the other hand, one checks that when both x and y are divisible by 11, the numerator h(x,y) is divisible by 11^{14} . Therefore $h(x,y)/(xy-11)^{11}$ is divisible by 11^3 and hence j(x,y) is certainly integral at 11.

This proves the Theorem.

Bibliography

- [1] Baker, A.: A remark on the class number of quadratic fields *Bull. London Math. Soc.* **1** (1969), 98–102.
- [2] Baran, B.: A modular curve of level 9 and the class number one problem, *Journal of Number Theory* **129** (2009), 715–728.
- [3] Chen, I. and Cummins, C.: Elliptic curves with non-split mod 11 representations, *Math Comp.* **73** (2004), 869–880.
- [4] Cremona, J.: Algorithms for modular elliptic curves, 2nd ed, Cambridge University Press, Cambridge 1997.
- [5] David, S.: Minorations de formes linéaires de logarithmes elliptiques, Mémoires Soc. Math. France (N.S) 62 (1995).
- [6] Halberstadt, E.: Sur la courbe modulaire $X_{\text{ndep}}(11)$, Experimental Math., 7 (1998), 163–174.
- [7] Heegner, K.: Diophantische Analysis und Modulfunktionen, Math. Zeit. 59 (1952), 227–253.
- [8] Kenku, M.A.: A note on the integral points of a modular curve of level 7, Mathematika 32 (1985), 45–48.
- [9] Ligozat, G.: Courbes modulaires de niveau 11, in J-P. Serre and D.B. Zagier Eds, Modular Functions of one variable V, LNM **601**, 149–237, Springer-Verlag, 1977
- [10] Serre, J-P.: Lectures on the Mordell-Weil Theorem, Aspects of Mathematics 15, Vieweg, Braunschweig 1997.
- [11] Silverman, J.: The difference between the Weil height and the canonical height on elliptic curves, *Math. Comp.* **55** (1990), 723–743.

- [12] Silverman, J.: The arithmetic of elliptic curves, 2nd ed, Graduate Texts in Mathematics 106, Springer-Verlag, New York 2009.
- [13] Stark, H.M.: On complex quadratic fields with class number equal to one, Trans. Amer. Math. Soc. 122 (1966), 112–119.
- [14] Stroeker, R.J. and Tzanakis, N.: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, *Acta Arith.* **67** (1994), 177–196.
- [15] Stroeker, R.J. and Tzanakis, N.: Computing all integer solutions of a genus 1 equation, Math. Comp. 72 (2003) 1917–1933.
- [16] Tzanakis, N.: Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations, *Acta Arith.* **75** (1996), 165–190.
- [17] Zagier, D.: Large integral points on elliptic curves, Math. Comp. 48 (1987), 425–436.

René Schoof Università di Rome "Tor Vergata" Dipartimento di Matematica I-00133 Roma, Italy schoof@mat.uniroma2.it Nikos Tzanakis Department of Mathematics University of Crete Iraklion, Greece tzanakis@math.uoc.gr