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1. Introduction.

Lagrange’s Theorem implies that every finite group G of order m has the property that
gm = 1 for every g ∈ G. One could ask whether a similar result is true for a finite locally
free group scheme G of order m over a base scheme X. Let [m] : G −→ G be the composite
of the diagonal and multiplication morphisms G−→Gm and Gm−→G.

Question. Is G annihilated by m? In other words, does the morphism [m] factor as

G −→ X
e−→G where e : X −→ G is the unit section of G?

Grothendieck wrote in SGA 3 [1, Exp. VIII Remarque 7.3.1]: “Il serait intéressant de trou-
ver une démonstration dans ce cas général”. The question has been answered affirmatively
in two important cases.

In SGA 3 itself one finds a proof of the fact that over a field, any finite group scheme,
commutative or not, is annihilated by its order [1, Exp. VIIA Prop.8.5]. This easily implies
that the same is true for finite locally free group schemes over a reduced base scheme X.
See also [5, (3.8)] and [4, Cor. 2.2]. Pierre Deligne showed in 1969 that the answer to the
question is affirmative whenever the group scheme G is commutative [3, p.4] or [5, (3.8)].
His result holds for an arbitrary base X.

The question remains unanswered in general. See [3, Remark p.5] or [5, (3.8)]. An
affirmative answer would follow from an affirmative answer in the following special case.

Question’. Let R be a local Artin ring with residue field of characteristic p > 0. Is every
finite free local group scheme G over R killed by its order?
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Indeed, in order to answer the first question affirmatively, it suffices to do so for base
schemes X that are the spectra of a local rings R. Then G = Spec(A) where A is a finite
free R-algebra. The rank of A is the order of G. The group scheme G is determined
by the structure of the R-Hopf algebra A. The Hopf algebra structure of A is given by
the multiplication, comultiplication, inverse, unit, coinverse and counit homomorphisms.
These are R-linear maps between R, A and A⊗RA. Choosing an R-basis for A, the group
scheme G is determined by the entries of the matrices that correspond to these maps.
Replacing R by the subring generated by the entries of the matrices and localizing once
again, we may assume that G is a finite free or, equivalently, finite flat group scheme over a
local Noetherian ring R. By Krull’s Theorem we may even assume that R is a local Artin
ring.

Then there is for any finite group scheme G an exact sequence of group schemes

0 −→ G0 −→ G −→ Gét −→ 0,

where G0 denotes the connected component of G and Gét its largest étale quotient. By
ordinary group theory, Gét is annihilated by its order.

Since finite group schemes in characteristic zero are étale, we may assume that the
characteristic of the residue field of R is p > 0, and that G is a local group scheme, as
required.

If the maximal ideal m of the Artin ring R in the second question is zero, R is a field
and the answer is affirmative by the SGA 3 result mentioned above. In [4] it is shown that
if

mp = pm = 0,

then every finite free group scheme G over R is also killed by its order. This happens in
particular when the maximal ideal m satisfies m2 = 0.

In this note we give proofs of the two main results mentioned above. In section 2 we
prove that finite group schemes over fields are killed by their orders and in section 3 we
present Deligne’s proof of the fact that finite commutative locally free group schemes are
killed by their orders. Finally, in section 4, we outline the proof of the result in [4].
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2. Finite group schemes over fields.

In this section we show that finite group schemes over a field are killed by their orders.
See [6] for basic facts concerning group schemes. The first proposition was explained to
me by Bas Edixhoven several years ago.

Proposition 2.1. Let G = Spec(A) be a finite flat group scheme over a ring R. Let I ⊂ A
denote the augmentation ideal of A. Let p be a prime and let [p] : A −→ A denote the
R-algebra morphism corresponding to the morphism [p] : G −→ G. Then

[p](I) ⊂ pI + Ip.

Proof. Since A is a flat R-algebra, we have that pI = pA∩ I. Therefore we may replace R
by the characteristic p ring R/pR and show that [p](I) ⊂ Ip. Let n denote the rank of G.
Consider the closed immersion of G into the linear group GLn that is induced by the action
of G on its Hopf algebra A via left translations [6, 3.4]. Let ϕ denote the corresponding sur-
jective morphism from the Hopf algebra B = R[Y11, . . . , Y1n, . . . , Yn1, . . . , Ynn, 1/det(Yij)]
of GLn to the Hopf algebra A of G. The entries of the matrix σ − id, where σ is given by

σ =

 Y11 · · · Y1n
...

...
Yn1 · · · Ynn

 ,

generate the augmentation ideal J of B. So the entries of σp − id generate [p](J). Since
=σp − id = (σ − id)p, the usual matrix multiplication formulas show that [p](J) ⊂ Jp.
Applying ϕ, we find that [p](I) ⊂ Ip as required.

Corollary 2.2. Finite group schemes over fields are annihilated by their orders.

Proof. It suffices to show this for an algebraically closed field. By the remarks made in
the introduction concerning the connected-étale exact sequence, we may assume that k has
characteristic p > 0 and that G is local. By [6, 14.4], the order of G is equal to pm for some
m ≥ 0 and the Hopf algebra A of G is a local Artin k-algebra of dimension pm. Therefore
the augmentation ideal I of A satisfies Ip

m

= 0. Prop.2.1 then implies that [pm](I) = 0.
This means that the morphism [pm] : A −→ A factors through A/I = k, so that G is killed
by its order pm, as required.
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3. Commutative group schemes.

Let G be a finite locally free commutative group scheme of order m over a base X. In 1969
Deligne showed the following [3, p.4].

Theorem 3.1. The group scheme G is annihilated by m.

Any element x of an ordinary finite group of order m, has the property that xm is equal
to the neutral element. For commutative groups this can be proved by the following well-
known argument: let P =

∏
x x be the product of all elements of the group and let y be

an arbitrary element. Then P =
∏

x x =
∏

x xy = ym
∏

x x = ymP and hence ym is equal
to the neutral element. Deligne’s proof can be said to carry this argument over to group
schemes.

It suffices to prove Theorem 3.1 for X = Spec(R) for a ring R and G = Spec(A) a
finite free commutative group scheme over R. For any finite free R-algebra S we have

G(S) = Homalg(A,S) ⊂ HomR(A,S) ∼= A′ ⊗R S.

Here Homalg(A,S) denotes the set of R-algebra homomorphisms A −→ S and HomR(A,S)
is the R-module of R-module homomorphisms A −→ S. We write A′ for HomR(A,R).
Since G is commutative, A′ carries the structure of an R-algebra, the multiplication A′⊗R

A′ −→ A′ being given by the dual of the comultiplication map c : A −→ A⊗RA. Moreover
A′ is the Hopf algebra of the Cartier dual of G, with comultiplication map c′ : A′⊗RA

′ −→
A′ equal to the dual of the multiplication map m : A⊗RA −→ A. This easily implies that
for any R-algebra S we have

G(S) = {f ∈ (A′ ⊗R S)∗ : c′(f) = f ⊗ f}.

One easily checks that the group operation of G(S) coincides with the algebra multiplica-
tion in the multiplicative group (A′ ⊗R S)∗ of the algebra A′ ⊗R S. See [6, 2.4].

For an R-algebra S, the structure morphism R −→ S gives rise to a group homomor-
phism G(R) −→ G(S). When S is finite and free over R, Deligne constructs a Trace map
G(S) −→ G(R) in the other direction. To do this he uses the Norm map N : S −→ R,
which for s ∈ S is defined as the determinant of any representative matrix of the R-linear
multiplication-by-s-map S −→ S.

The norm is multiplicative. It induces for all R-algebras B, norm maps NB = idB⊗N
from B⊗R S to B. These are functorial in the sense that for every morphism f : B −→ C
of R-algebras the diagram

B ⊗R S
f⊗idS−→ C ⊗R SyNB

yNC

B
f−→ C

(∗)

commutes.
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Lemma 3.2. Let S be a finite free R-algebra and let G = Spec(A) as above. Then the
norm map NA′ : A′ ⊗R S −→ A′ maps G(S) to G(R) and is a group homomorphism.

G(S) ⊂ A′ ⊗R SyNA′

G(R) ⊂ A′

Proof. Suppose that a ∈ G(S) ⊂ A′ ⊗R S. So, it is invertible and satisfies c′(a) = a⊗ a.
Then we have

c′(NA′(a)) = NA′(a)⊗NA′(a).

This follows easily from the commutativity of the diagrams (∗) applied to the morphisms
A′ −→ A′ ⊗R A

′ given by the maps a 7→ a⊗ 1′, a 7→ 1′ ⊗ a and c′(a) respectively. Here 1′

denotes the unit element of the algebra A′. It is the counit map eA : A −→ R.
The formula shows that NA′(a) ∈ G(R). Since the group laws in G(R) and G(S)

agree with algebra multiplication in A′ and A′ ⊗R S respectively, and since the norm is
multiplicative, we see that N : G(S) −→ G(R) is a group homomomorphism. This proves
the lemma.

Proof of Theorem 3.1 Let m denote the order of G. In other words, m is the R-rank
of A. We must show that for every R-algebra S and any u ∈ G(S) the m-th power of u
is equal to the neutral element in G(S). Replacing R by S, we see that it suffices to show
this for all u ∈ G(R).

Translation by u is an invertible morphism G −→ G and therefore induces an R-
automorphism σ of the R-algebra A and hence an A′-automorphism, id⊗σ of A′⊗A. On
the other hand, translation by u ∈ G(R) ⊂ G(A) agrees with multiplication by u in the
algebra A′ ⊗A. Applying this to the algebra homomorphism idA in G(A), we find that

(id⊗ σ)(idA) = u · idA.

Since applying σ to elements of A does not affect their norm to R, applying id ⊗ σ does
not affect NA′ . Therefore we have

NA′(idA) = NA′((id⊗ σ)(idA)) = NA′(u · idA) = NA′(u)NA′(idA) = umNA′(idA).

Since NA′(idA) is invertible in A′, it follows that um is equal to the unit element 1′ of A′,
as required.

Remark. In this proof, the element NA′(idA) of A′ plays the role of the product P of
all elements of a finite group. It is well known that P is not always equal to the neutral
element, but its square is. Similarly, in Deligne’s proof the norm NA′(idA) is in general
not equal to the unit element 1′ ∈ A′, but its square is.

Indeed, since the coinverse morphism iA : A −→ A is the inverse of idA in the group
G(A), the same is true in the multiplicative group (A′ ⊗R A)∗. It follows that

NA′(iA · idA) = 1′.
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On the other hand, iA is an R-automorphism of A so that idA′⊗ iA is an A′-automorphism
of A′ ⊗R A = HomR(A,A). It carries idA to iA. Since A′-automorphisms do not change
NA′ , we get

NA′(idA) = NA′(iA).

It follows that NA′(idA)2 = 1′ as required.

4. Finite group schemes over Artin rings.

In this section we outline the proof given in [4] of the following result.

Theorem 4.1. Let R be an Artin ring with maximal ideal m and residue field of charac-
teristic p > 0, with the property that

mp = pm = 0.

Then every finite free local group scheme G over R is annihilated by its order.

We first reduce to the special case that k is separably closed. Indeed, by [2, 18.8.8],
the strict Henselization of R is a local faithfully flat R-algebra whose maximal ideal is
generated by the maximal ideal of R. Therefore it is Artinian and its maximal ideal m
satisfies mp = pm = 0. It follows that we may replace R by its strict Henselization and
hence assume that its residue field k is separably closed.

Recall that G = Spec(A), where A is a local free R-Hopf algebra of rank pn for
some n ≥ 1. Theorem 4.1 says that the augmentation ideal I ⊂ A has the property that
[pn](I) = 0. If n = 1, it follows from [3, Thm. 1] that G is commutative, so that Deligne’s
theorem implies that G is killed by its order. Therefore we may assume that n ≥ 2. By the
result in SGA 3, the group scheme G considered over the residue field k, is killed by pn.
If it happens to already be killed by pn−1, then the augmentation ideal I ⊂ A has the
property that [pn−1](I) ⊂ mI. Then Proposition 2.1 easily implies [pn](I) ⊂ mp + pm = 0
and the theorem follows.

We are left with the local group schemes G over R of order pn whose reductions over
k are killed by pn, but not by pn−1. In [4] the group schemes with this property are
determined. There are only two possibilities: over k they are either isomorphic to the
multiplicative group µpn or to the non-commutative matrix group scheme Mn given by

Mn(S) = {
(

1 x
0 y

)
: x, y ∈ A satisfying xp = 0 and yp

n−1

= 1}.

for every k-algebra S.
If G is isomorphic to µpn over k, then it is a deformation of µpn . However, since

k is separably closed, [1, Exp. X, Corollaires 2.3 and 2.4] imply that G must then be
diagonalizable. Therefore we have G ∼= µpn over R. In particular, G is killed by pn.

If G is over k isomorphic to Mn for some n ≥ 2, then R must have characteristic
p and is therefore a k-algebra. Moreover, there exists a faithfully flat R-algebra R′ such
that the base change of G to R′ is isomorphic to a base change from k to R′ of the group
scheme Mn. See [4] for more details. It follows that G is killed by pn.

This completes the outline of the proof of the theorem.
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