
version August 2003

Trace forms of G-Galois algebras in virtual

cohomological dimension 1 and 2

E. Bayer-Fluckiger, M. Monsurrò, R. Parimala and R. Schoof

Abstract. Let G be a finite group and let k be a field of char(k) 6= 2. We explicitly describe the set
of trace forms of G-Galois algebras over k when the virtual 2-cohomological dimension vcd2(k) of k is at
most 1. For fields with vcd2(k) ≤ 2 we give a cohomological criterion for the orthogonal sum of a trace
form of a G-Galois algebra with itself to be isomorphic to another such form.

Introduction.
Let k be a field of characteristic different from 2 and let G be a finite group. A G-form
over k is a G-invariant quadratic form defined over k. An important class of G-forms
consists of the trace forms qL associated to G-Galois algebras L. Here a G-Galois algebra
is a finite étale k-algebra that is Galois over k with group G. See section 1 and [8, 1.3] for
the precise definitions. This paper is devoted to the study of these trace forms.

Our first main result is a classification of the trace forms of G-Galois algebras when
the virtual 2-cohomological dimension vcd2k of k or rather of its absolute Galois group
Gk = Gal(ksep/k), is at most 1. This complements an earlier result by E. Bayer-Fluckiger
and J.-P. Serre [8, Th. 2.2.3]. Since it is similar but somewhat simpler to state, we formulate
our result here only for fields of 2-cohomological dimension cd2k at most 1. For fields of
virtual 2-cohomological dimension vcd2k at most 1, see Theorem 2.2.

Theorem. Let G be a finite group and let k be a field with char(k) 6= 2 and cd2k ≤ 1.
Then the map{

isomorphism classes of trace

forms of G-Galois algebras

}
−→ Homcont(Gk, G/G

2),

that sends the trace form qL of a G-Galois algebra L to the homomorphism given by
σ 7→ ϕL(σ) (mod G2), is a well defined bijection.

Here G2 denotes the subgroup of G generated by the squares and the homomorphism
ϕL : Gk −→ G is the one introduced in [8, 1.3.1]. Its definition is recalled in section 1.

When vcd2k > 1, it seems difficult to obtain any results without imposing strong
restrictions on the group G (see [4, 8]). Therefore, rather than study trace forms di-
rectly, we consider double trace forms, i.e. orthogonal sums of trace forms with themselves.
Our second main result is concerned with fields of virtual 2-cohomological dimension at
most 2. It extends [4, Thm 3.1] in the sense that we do not assume that k has the strong
approximation property [4, section 3].
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Theorem. Let G be a finite group and let k be a field with char(k) 6= 2 and vcd2k ≤ 2.
Let qL and qL′ be trace forms of G-Galois algebras L,L′ over k. Then the orthogonal sums
qL ⊕ qL and qL′ ⊕ qL′ are isomorphic G-forms if and only if the following hold.

– the G-forms qL and qL′ are isomorphic over all real closures of k;

– the cup products ϕL ∪ (−1) and ϕL′ ∪ (−1) are equal in H2(Gk, G/G
2).

Here (−1) denotes the cohomology class in H1(Gk, µ2) ∼= k∗/k∗2 corresponding to the
element −1 ∈ k∗/k∗2.

We prove the first theorem in section 1 and its adaptation to fields of virtual 2-
cohomological dimension at most 1 in section 2. We prove the second theorem in section 3.

1. 2-Cohomological dimension at most 1.

In this section we prove the first theorem of the introduction. We briefly recall some
definitions and introduce the cohomology sets that we use in the proof.

LetG be a finite group and let k be a field of char(k) 6= 2. AG-form is a pair (V, q) with
V a finite dimensional k-vector space V equipped with linear G-action and q : V ⊗V −→ k
a quadratic form on V for which q(gx, gy) = q(x, y) for all x, y ∈ V and g ∈ G. Two G-
forms (V, q) and (V ′, q′) are isomorphic when there exists a G-equivariant invertible linear
map f : V −→ V ′ for which q(x, y) = q′(f(x), f(y)) for all x, y ∈ V .

A G-Galois algebra over k is a finite étale k-algebra L equipped with a right action
by G that is simply transitive on the ksep-points of L. The trace form associated to a
G-Galois algebra L is the quadratic form qL : L × L −→ k given by qL(x, y) = Tr(xy)
for x, y ∈ L. It is a G-form. Important examples of G-Galois algebras are fields L that
are Galois over k with Galois group G. Another example is provided by the group ring
L = k[G] with its natural (left) G-action. This algebra admits the k-linear involution
given by [g]∗ = [g−1] for g ∈ G. It gives rise to the unit G-form q0 which for x, y ∈ k[G]
is given by q0(x, y) = a1 where a1 is the coefficient of x∗y =

∑
g∈G ag[g] corresponding to

the neutral element 1 ∈ G. Any G-Galois algebra whose trace form is isomorphic to the
unit form is said to have a self-dual normal basis [3].

For any k-algebra R we consider the algebra R[G] equipped with the R-linear involu-
tion given by [g]∗ = [g−1] for g ∈ G. The algebraic group UG is given by

UG(R) = {x ∈ R[G] : x∗x = 1}.

Since char(k) 6= 2, it is smooth. We view G itself as a finite constant (i.e. étale with
trivial Galois action) algebraic group and consider the closed immersion G −→ UG given
by g 7→ [g]. We do the same for G/G2. Since G/G2 has exponent 2, the group UG/G2

is constant and finite of exponent 2. This implies first of all that the closed immersion
G/G2 −→ UG/G2 admits a left inverse. In addition, the natural morphism UG −→ UG/G2

factors through the component group UG/U
0
G. Here U0

G denotes the connected component
of identity of the algebraic group UG. By [8, Prop. 2.3.2], the group UG/U

0
G is of exponent 2.

Therefore, the morphism G −→ UG −→ UG/U
0
G factors through G/G2. This leads to

the following commutative diagram of algebraic groups, together with the commutative
diagram obtained by taking their ksep-points and then their Galois cohomology. Here
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we write H1(k,H) for the Galois cohomology set H1(Gal(ksep/k),H(k)) associated to an
algebraic group H over k.

G −→ UGy y s

G/G2 −→ UG/U
0
G

t ↘
y

UG/G2

H1(k,G) −→ H1(k, UG)y y s′

H1(k,G/G2) −→ H1(k, UG/U
0
G)

t′ ↘
y

H1(k, UG/G2)

The homomorphism ϕL : Gk −→ G associated to a G-Galois algebra L was introduced
in [8, 1.3.1]. It is defined as follows. Choose a point, i.e. a k-algebra homomorphism
P : L −→ ksep. Then for each σ ∈ Gk there is a unique gσ ∈ G so that σ−1P = Pgσ.
We put ϕL(σ) = gσ. It is natural to view ϕL as a 1-cocycle Gk −→ G. Its class in
H1(k,G) is independent of the choice of the point P . By Galois theory, H1(k,G) classifies
in this way G-Galois algebras up to isomorphism. Since UG is the group of G-equivariant
automorphisms of the unit form q0 and since every G-form becomes isomorphic to the unit
form over ksep, the set H1(k, UG) classifies in a similar way G-forms up to isomorphism.
The map H1(k,G) −→ H1(k, UG) sends a G-algebra L or, equivalently, the 1-cocycle ϕL

to its trace form qL. Therefore the image of the pointed set H1(k,G) inside H1(k, UG)
classifies isomorphism classes of trace forms of G-Galois algebras.

The following lemma plays a role in the proof of the theorem.

Lemma 1.1. Let k be a field with cd2(k) ≤ 1. Suppose P →→ Q is a surjective homo-
morphism between finite 2-groups. Then the induced map H1(k, P ) −→ H1(k,Q) is also
surjective.

Proof. Since the homomorphism P →→ Q is the composition of a number of surjective
homomorphisms between 2-groups having kernels of order 2, it suffices to consider the case
where Z = ker(P −→ Q) has order 2. Then Z is contained in the center of G and we have
an exact sequence of pointed sets [14, I.5.7]

H1(k, P ) −→ H1(k,Q) −→ H2(k, Z).

Since cd2k ≤ 1, we have that H2(k, Z) = 0 and the lemma follows.

Theorem 1.2. Let G be a finite group and let k be a field with char(k) 6= 2 and cd2k ≤ 1.
Then the map{

isomorphism classes of trace

forms of G-Galois algebras

}
h−→ Homcont(Gk, G/G

2),

that sends the trace form qL of a G-Galois algebra L to the homomorphism given by
σ 7→ ϕL(σ) (mod G2), is a well defined bijection.

Proof. The cohomology pointed set H1(k,G/G2) is naturally isomorphic to the group
Homcont(Gk, G/G

2). Consider the diagrams above. Since the map t admits a left inverse,
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the same is true for the induced map t′ : H1(k,G/G2) −→ H1(k, UG/G2). It follows that t′

is injective. Identifying the set of isomorphism classes of trace forms of G-Galois algebras
with the image of H1(k,G) in H1(k, UG), it follows that the map h is well defined. Since
cd2k ≤ 1, we have that H1(k, U0

G) = 0, a result due to R. Steinberg. This implies that
the map s′ is injective [8, 2.3.2]. Since the top square of the diagram above commutes, the
map h is injective and we recover [8, Thm. 2.2.3].

It remains to prove the surjectivity of h. Let P ⊂ G be a 2-Sylow subgroup of G. Since
G2P = G, the natural map P ↪→ G −→ G/G2 is surjective. It follows from Lemma 1.1
that H1(k, P ) maps surjectively onto H1(k,G/G2). Therefore the map H1(k,G) −→
H1(k,G/G2) is also surjective. This implies that h is surjective, as required.

Before stating a corollary to this theorem, we introduce some more cohomology sets.
Put n = #G. For any k-algebra R, the unit form is a non-degenerate R-bilinear form on the
group ring R[G]. Left multiplication by α ∈ UG(R) is an orthogonal map R[G] −→ R[G].
This implies that there is a natural morphism from UG to the orthogonal group On. This
morphism maps the image of the closed immersion G −→ UG to the subgroup scheme
Sn of the permutation matrices. The group scheme Sn is constant with underlying group
the symmetric group on n letters. The determinant morphism from On to the group
scheme µ2 induces the sign map Sn −→ µ2. Here µ2 denotes the group scheme given by
µ2(R) = {x ∈ R : x2 = 1} for any k-algebra R. It is constant because char(k) 6= 2.

This leads to the following commutative diagram of algebraic groups, together with
the commutative diagram obtained by first taking ksep-points and then Galois cohomology.

G −→ UG

↙
y y

G/G2 Sn −→ On

↘
y ↙ det

µ2

H1(k,G) −→ H1(k, UG)

↙
y y

H1(k,G/G2) H1(k, Sn) −→ H1(k,On)

↘
y ↙

H1(k, µ2)

The morphism G −→ Sn −→ µ2 associates to g ∈ G the sign of the permutation h 7→ gh
(for h ∈ G). It factors through G/G2. The induced map H1(k, UG) −→ H1(k, µ2) ∼=
k∗/k∗2 associates to a G-form in H1(k, UG) its determinant.

Corollary 1.3. Let G be a finite group and let k be a field with cd2k ≤ 1. Then
(i) all trace forms of G-Galois algebras are isomorphic to the unit form q0 or equivalently,

all G-Galois algebras have a self-dual normal basis, if and only if G/G2 is trivial or k
is quadratically closed.

(ii) Suppose that there exists at least one G-Galois algebra whose trace form is not iso-
morphic to q0. Then the trace forms of G-Galois algebras are characterized by their
determinants if and only if the 2-Sylow subgroup of G is cyclic.

Proof. (i) Any continuous homomorphism Gk −→ G/G2 factors through Gk/G
2
k. There-

fore the group Homcont(Gk, G/G
2) is trivial if and only if one of the groups Gk/G

2
k or

G/G2 is. This proves the first part.
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To prove the second, more interesting part, we observe that the determinant char-
acterizes trace forms of G-Galois algebras precisely when the determinant map above is
injective on the image of H1(k,G) in H1(k, UG). By the commutative diagram above and
Theorem 1.2 this happens precisely when the map H1(k,G/G2) −→ H1(k, µ2) is injective.

We first look at the map G/G2 −→ µ2 itself. The permutation induced by an el-
ement g ∈ G is a product of [G : 〈g〉] disjoint cycles of length equal to the order of g.
Therefore the morphism G/G2 −→ µ2 is non-trivial or, equivalently, surjective precisely
when there exists g ∈ G of even order for which the index [G : 〈g〉] is odd. This happens
if and only the 2-Sylow subgroup of G is a non-trivial cyclic group.

Now we finish the proof. Suppose that H1(k,G/G2) −→ H1(k, µ2) is injective. Then
it is non-constant and the same is true for G/G2 −→ µ2. By the discussion above, this
implies that the 2-Sylow subgroup P of G is cyclic. Conversely, suppose that P is cyclic.
Since P maps onto the group G/G2, which is non-trivial by (i), we see that G/G2 has
order 2 and P is non-trivial. This implies that the homomorphism G/G2 −→ µ2 is a
bijection. Therefore the induced map H1(k,G/G2) −→ H1(k, µ2) is injective, as required.

2. Virtual 2-cohomological dimension at most 1.
The virtual 2-cohomological dimension vcd2k of a field k is defined as the 2-cohomological
dimension of k(

√
−1). In the interesting case where it is strictly smaller than the cohomo-

logical 2-dimension of k we automatically have that k is formally real [14, Ch.II, Prop. 10′]
and hence that char(k) = 0. In this section we prove an analogue of Theorem 1.2 for fields
with vcd2k ≤ 1. In order to formulate the result, we let Ωk denote the real spectrum of k,
i.e. the set of orderings on k equipped with the Harrison topology. It is a boolean topologi-
cal space. In other words, Ωk is a compact totally disconnected topological space [12, III.5].
For any finite discrete set X, we let C(Ωk, X) denote the set of continuous or, equivalently,
locally constant functions from Ωk to X.

For every v ∈ Ωk we let ιv ∈ Gk denote the restriction to ksep of the non-trivial
automorphism of kv(

√
−1) over the real closure kv of k. The automorphism ιv is an

involution, well defined up to conjugation. For any finite group G we denote by G2̃ the
pointed set of conjugacy classes of g ∈ G for which g2 = 1. Note that G2̃ = G when G
has exponent 2. There is a natural map hG from H1(k,G) to the set of continuous maps
C(Ωk, G2̃). It sends χ ∈ H1(k,G) to the function that maps v ∈ Ωk to χ(ιv).

Definition. For any homomorphism G −→ F of finite groups we define the set H1
G(k, F )

by insisting that the square

H1
G(k, F ) −→ H1(k, F )y y hF

C(Ωk, G2̃) −→ C(Ωk, F2̃)

be Cartesian.
In other words, the set H1

G(k, F ) consists of pairs (χ, f) where χ is in H1(k, F ) and
f : Ωk −→ G2̃ is a continuous map so that for all v ∈ Ωk we have that χ(ιv) is conjugate
to f(v) in F . Note that the set H1

G(k, F ) depends on the homomorphism G → F rather
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than the groups F and G. In the sequel it will always be clear with respect to which
homomorphism G→ F we define H1

G(k, F ). By the Cartesian property, there is a natural
map H1(k,G) −→ H1

G(k, F ), induced by hG and by the map H1(k,G) −→ H1(k, F ).
The following lemma plays a role in the proof of Theorem 2.2.

Lemma 2.1. Let k be a field with char(k) 6= 2 and vcd2(k) ≤ 1. Suppose that P →→ Q is
a surjective homomorphism between finite 2-groups. Then the natural map

H1(k, P ) −→ H1
P (k,Q)

is surjective.

Proof. We proceed by induction with respect to the order of Z = ker(P −→ Q). If Z is
trivial, it follows from the definition that the map is an isomorphism. Assume that Z has
order 2. Then Z is contained in the center of G and we have the following commutative
diagram of pointed sets

H1(k, Z) −→ H1(k, P ) −→ H1(k,Q) −→ H2(k, Z)y hZ

y hP

y hQ

y h′
Z

C(Ωk, Z2̃) −→ C(Ωk, P2̃) −→ C(Ωk, Q2̃) −→ Γ(H2(Z))

This is the diagram that occurs in the proof of C. Scheiderer’s [13, Lemma (4.6)]. For
the finite groups F = Z, P and Q, we merely replaced the pointed set of global sections
ΓH1(F ) of the Ωk-sheaf H1(F ) by the pointed set C(Ωk, F2̃) that is naturally isomorphic
to it [13, Remarks (2.4) and (2.11)]. Up to this isomorphism Scheiderer’s map hF agrees
with ours. By [13, Lemma (4.6)], the rows of the diagram are exact rows of pointed sets.
Since vcd2k ≤ 1, it follows from [13, Thm. (3.1)] that the map h′Z is a bijection while the
map hZ is surjective.

The proof that the map H1(k, P ) −→ H1
P (k,Q) is surjective, is a chase in this diagram

of pointed sets, which we perform now. Let χ ∈ H1(k,Q) and f ∈ C(Ωk, P2̃) and suppose
that their images in C(Ωk, Q2̃) are both equal to g. Then g maps to 0 in Γ(H2(Z)). Since
h′Z is a bijection, this implies that the image of χ in H2(k, Z) is zero. Since the top row
is exact, there exists therefore χ′ ∈ H1(k, P ) mapping to χ ∈ H1(k,Q). Let f ′ be the
image of χ′ in C(Ωk, P2̃). Then both f and f ′ map to g ∈ C(Ωk, Q2̃). This means that for
every v ∈ Ωk there is pv ∈ P so that f ′(w) = pvf(w)p−1

v for all w in an open neigborhood
of v. This means that the map h : v 7→ pvf(v)p−1

v f ′(v)−1 is a continuous map from Ωk

to Z = Z2̃. Since the map hZ is surjective, there is an element ψ ∈ H1(k, Z) mapping
to h. The cocycle ξ ∈ H1(k, P ) given by ξ(σ) = ψ(σ)χ′(σ) is the one we are looking for.
Its images in H1(k,Q) and C(Ωk, P2̃) are equal to χ and f respectively.

This completes the proof in the case the kernel Z of P →→ Q has order 2. When
#Z > 2, we choose a 2-group P ′ and surjections P →→ P ′ →→ Q that are not isomorphisms.
By induction we know that the maps g1 : H1(k, P ) −→ H1

P (k, P ′) and g2 : H1(k, P ′) −→
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H1
P ′(k,Q) and are surjective. Consider the following diagram

H1(k, P )y g1

H1
P (k, P ′) −→ H1(k, P ′)y g3

y g2

H1
P (k,Q)

g4−→ H1
P ′(k,Q) −→ H1(k,Q)y y y

C(Ωk, P2̃) −→ C(Ωk, P
′
2̃
) −→ C(Ωk, Q2̃)

The maps g3 and g4 exist by the Cartesian property. The top square is Cartesian. There-
fore, since g2 is surjective, so is g3. The map g3g1 : H1(k, P ) −→ H1

P (k,Q) coincides with
the natural one. It is surjective, because both g1 and g3 are. This proves the lemma.

Theorem 2.2. Let G be a finite group and let k be a field with char(k) 6= 2 and vcd2k ≤ 1.
Then the map {

isomorphism classes of trace

forms of G-Galois algebras

}
h−→ H1

G(k,G/G2)

given by h(qL) = (χL, fL) where χL(σ) = ϕL(σ) (mod G2) and fL(v) = ϕL(ιv) for all
v ∈ Ωk, is a well defined bijection.

Proof. As we already saw in the proof of Theorem 1.2, the natural map H1(k,G) −→
H1(k,G/G2) factors through the image of H1(k,G) in H1(k, UG). In other words, it
induces a well defined map on the set of trace forms. In a similar way, the natural map
H1(k,G) −→ C(Ωk, G2̃) factors through the image of H1(k,G) in H1(k, UG). Indeed,
if two G-Galois algebras L and L′ have isomorphic trace forms qL ∼= qL′ , then the trace
forms are in particular isomorphic over every real closure kv of k. Since for any v ∈ Ωk, the
G-Galois algebras over kv are determined by their trace forms [8, Prop. 3.1.], the cocycles
ϕL and ϕL′ are equal when restricted to 〈ιv〉. This means that ϕL(ιv) is conjugate to
ϕL′(ιv) for every v ∈ Ωk and hence that the functions fL and fL′ are equal.

It follows from the Cartesian property of H1
G(k,G/G2) that the map h is well defined.

The fact that h is injective is precisely the content of [4, Thm. 2.1]. It remains to show
the surjectivity of h.

So, suppose we are given a continuous homomorphism χ : Gk −→ G/G2 and a con-
tinuous map f : Ωk −→ G2̃ so that their natural images in C(Ωk, G/G

2) agree. In other
words, such that χ(ιv) ≡ f(v) (mod G2) for all v ∈ Ωk. Let P be a 2-Sylow subgroup of G.
Since every element of order 2 in G is conjugate to one in P , the natural map P2̃ −→ G2̃ is
surjective. Let s be a section. Then sf is in C(Ωk, P2̃) and its natural image in C(Ωk, G2̃)
is f . It follows now from Lemma 2.1 that there exists a cocycle ϕ in H1(k, P ) whose
natural images in H1(k,G/G2) and C(Ωk, P2̃) are χ and sf respectively. The image of ϕ
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in H1(k,G) has the property that its natural images in H1(k,G/G2) and C(Ωk, G2̃) are χ
and f respectively. The trace form of the corresponding G-Galois algebra maps therefore
to (χ, f) ∈ H1

G(k,G/G2) as required.

3. Virtual 2-cohomological dimension at most 2.
In this section we prove the second theorem of the introduction. It deals with double trace
forms over fields k of virtual 2-cohomological dimension vcd2k at most 2.

There are several questions and conjectures [2] and partial results [4, 5, 11] for mul-
tiples of trace forms. Most of the results obtained for fields of virtual cohomological di-
mension 2 have been proved for fields that, like number fields, together with all their finite
extensions, have the strong approximation property. Moreover, the proofs of many of the
existing results on the classification of hermitian forms over an involutorial algebra over a
field of virtual cohomological dimension 2 require this strong approximation property [11].
Our proof avoids its use.

We recall a few basic facts. Let D be a central division algebra over a field k endowed
with an orthogonal involution τ and let Ωk be as in the previous section. For v ∈ Ωk

we set Dv = D ⊗k kv. We define the rank, the discriminant and the signature (denoted
respectively rk(h), d(h) and sgn(h)) of a nondegenerate hermitian form h as in [6, 7]. In
fact, the rank of h is the dimension over D of the underlying vector space V supporting h.
The discriminant d(h) is given by

d(h) = (−1)m(m−1)/2Nrd(M(h)) ∈ k∗/k∗2,

where M(h) is a matrix representing h, Nrd is the reduced norm and m = degkEndD(V ).
We consider a refined version of the discriminant and set, as in [7],

Disc(h) = (−1)m(m−1)/2Nrd(M(h)) ∈ k∗/k∗+
2

where
k∗+ = {λ ∈ k∗ : λ >v 0 for all v ∈ Ωk such that Dv is not split}.

If the field k is of virtual 2-cohomological dimension at most 2, we have k∗+ = Nrd(D∗)
(see [7]), so that we can consider Disc(h) as an element of k∗/(Nrd(D∗))2. These invariants
are defined for hermitian forms over arbitrary central simple algebra with involution using
Morita equivalence (see [6, 7]).

Remark. Let k be of virtual 2-cohomological dimension at most 2 and h a hermitian form
over D such that m is divisible by 4 and Disc(h) = 1. Then we can choose a matrix S
representing h such that Nrd(S) = 1. Indeed, if S′ is a matrix representing h, then by the
definition of Disc(h) and the condition on m,, we have Nrd(S′) = µ2 where µ = Nrd(w)
for some w ∈ D∗. Let W denote the diagonal matrix

W =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 w

 .
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Then the matrix W−1S′(W̄ t)−1 represents h and has reduced norm 1. Here W̄ is the
matrix obtained by applying τ to the entries of W .

Let h be a nondegenerate hermitian form having even rank and trivial signature and
discriminant; in this case we can consider the Clifford invariant c(h) of h, taking values in
H2(k, µ2) modulo the subgroup generated by the class of D. Furthermore, if the Clifford
invariant is also trivial, we can define the Rost invariant R(h) taking values in the group
H3(k,Q/Z(2)) modulo its subgroup H1(k, µ2) ∪ [D]. See [9] and [7, section 3.4] for the
definition and the properties of these invariants.

We denote by Spin2n(D, τ), U2n(D, τ) and SU2n(D, τ) respectively, the spin group, the

unitary and special unitary groups of the hyperbolic form H2n =
(

0 Idn

Idn 0

)
over (D, τ).

If ndegD is even, Nrd(H2n) = 1.
The set H1(k, SU2n(D, τ)) is in one-one correspondence with the set of pairs (S, λ)

where S ∈ GL2n(D) is a 2n × 2n matrix such that S̄ = St and Nrd(H2n)λ2 = Nrd(S)
modulo the equivalence (S, λ) ∼ (S′, λ′) if and only if there exists W ∈ GL2n(D) such that
S′ = WSW̄ t and λ′ = Nrd(W ) · λ (see [9], section 29.27, p 406). The distinguished point
of this set is given by (H2n, 1).

Lemma 3.1. Let v ∈ Ωk be an ordering on the field k such that Dv is not split. We
consider a pair (S, λ) of H1(k, SU2n(D, τ)), such that the element (S) in H1(k, U2n(D, τ))
is trivial in H1(kv, U2n(D, τ)). Then, (S, λ) is trivial over kv if and only if λ >v 0.

Proof. Since Dv is not split, degree of D is even and Nrd(H2n) = 1. By hypothesis
(S) is trivial over kv and hence there exists a matrix W in GL2n(Dv) such that WSW̄ t

is equal to H2n . Thus, Nrd(W )2λ2 = 1 and hence λ = ±Nrd(W )−1. If λ >v 0, then
Nrd(W ) being also positive, we have λ = Nrd(W )−1 and (S, λ) ∼ (H2n, 1). Conversely, if
(S, λ) ∼ (H2n, 1) one may choose W such that WSW̄ t = H2n and λNrd(W ) = 1. Thus
λ >v 0.

The principal tool in proving the main result of this section is the following theorem.

Theorem 3.2. Let k be a field with char(k) 6= 2 and with vcd2k ≤ 2. Let D/k be a
central division algebra over k endowed with an orthogonal involution τ . Let (V, h) be a
hermitian space over (D, τ) and let sgn(h) and d(h) denote the total signature and the
discriminant of h respectively. Suppose that the rank of h is even, sgn(h) = 0 and that
the cup product d(h) ∪ (−1) is also 0. Then the orthogonal sum h⊕ h is hyperbolic.

Proof. First step. Let Nrd(M(h)) = [(−1)m(m−1)/2a] ∈ k∗/(Nrd(D∗))2, where M(h)
is a matrix representing h and a belongs to k∗. We have d(h) · a ∈ k∗2. By hypothesis,
d(h)∪(−1) is trivial, so that (a)∪(−1) = 0, hence a = Nk(

√
−1)/k(b) for some b ∈ k(

√
−1)∗.

Since cd2(k(
√
−1)) ≤ 2, there exists a hermitian form h1 over k(

√
−1) represented by a

matrix S = S1 +
√
−1S2, where Si’s have entries from D and Nrd(S) = b−1 (cf [15]).

By adding a suitable form represented by the identity matrix, we may assume without
loss of generality that the rank of h1 is 2m. The hermitian form h̃1 = Trk(

√
−1)/k(h1)

is represented by
(
S1 −S2

−S2 −S1

)
= M(h̃1), where the trace of a hermitian form is as

9



defined in ([3], Proof of Proposition 1.2). The rank of h̃1 is 4m and one easily verifies that
Disc(h̃1) = [Nrd(M(h̃1)] = [Nk(

√
−1)/k(Nrd(S))] = [a−1]. In fact in order to check this

equality, one may reduce to the case when D is split. In this case, for a rank one quadratic
form 〈α +

√
−1β〉 over k(

√
−1), α, β ∈ k, Trk(

√
−1)/k(h1) is represented by the matrix(

α −β
−β −α

)
= M(h̃1) with determinant −Nk(

√
−1)/k(α +

√
−1β). Let ĥ = h ⊕ h̃1. Since

h̃1 ⊕ h̃1 = trk(
√
−1)/k)(h1 ⊕ h1) is hyperbolic, the form ĥ ⊕ ĥ is Witt equivalent to h ⊕ h.

It suffices to show that ĥ ⊕ ĥ is hyperbolic. The form ĥ has even rank and Disc(ĥ) = 1.
Further since h̃1 is the trace of a form over k(

√
−1), we have that sgn(h̃1) = 0 so that

sgn(ĥ) = sgn(h)+sgn(h̃1) = 0.We replace h by ĥ and still call it h. Letm = degkEndD(V ).
Since the rank of h is even, m is not divisible by 4 only when D is split. In this case, by
adding a hyperbolic plane if necessary, we assume without loss of generality that m is
divisible by 4. Since Disc(h) = 1, by the remark, we may choose a matrix S representing
h such that Nrd(S) = 1.
Second step. Let the rank of h be 2n. Since the index of D multiplied by 2n is divisible
by 4, Nrd(H2n) = 1. Let ψ = (S, 1) ∈ H1(k, SU2n(D, τ)). Let v ∈ Ωk be an ordering of k.
We denote by ψv the image of ψ in H1(kv, SU2n(D, τ)). We claim that ψv is trivial for all
v ∈ Ωk. To prove this claim , we first consider the case Dv split. In this case, the map

H1(kv, SU2n(D, τ)) → H1(kv, U2n(D, τ))

is injective, the hermitian form hv is hyperbolic and hence ψv = 1. The case Dv non–split
follows from Lemma 3.1 applied to the pair (S, 1). This proves the claim. Consider the
exact sequence

1 → µ2 → Spin2n(D, τ) → SU2n(D, τ) → 1 (∗)

and the induced cohomology long exact sequence of pointed sets

. . .→ H1(k,Spin2n(D, τ)) → H1(k, SU2n(D, τ)) δ→H2(k, µ2) → . . . (∗∗)

(see [9, 31.41]). We denote by δ(ψ) ∈ H2(k, µ2) the image of ψ under the connecting map.
Then c(h) = [δ(ψ)] ∈ H2(k, µ2)/([D]). As δ(ψ) is locally trivial for all v ∈ Ωk, it is a
(−1)-torsion element of H2(k, µ2) (see [1, Satz 2]) and hence (−1) ∪ (δ(ψ)) is zero since
H3(k, µ2) is (−1)-torsion free. In view of the exact sequence (see for instance, [7], Section
2)

H2(k(
√
−1)) cores−→ H2(k, µ2)

∪(−1)−→ H3(k, µ2) ,

there exists an element η ∈ H2(k(
√
−1), µ2) such that coresk(

√
−1)/k(η) = δ(ψ). We can

write η =
∑

i(ai) ∪ (bi) for some elements ai ∈ k∗ and bi ∈ k(
√
−1)∗ (see [7, Prop. 2.8]).

For each i, let (Vi, hi) be a hermitian space over D⊗k k(
√
−1) such that d(hi) = bi and the

rank of Vi as a D⊗kk(
√
−1)-module is even. Let hi be represented by a matrix M(hi) with

NrdM(hi) = bi. Let h̃i be the form given by h̃i = 〈1,−ai〉 ⊗ hi. We have d(h̃i) = 1 and
Disc(Trk(

√
−1)/k(h̃i) = 1 (cf proof of Step 1). We claim that the Clifford invariant c(hi) of

hi is (ai) ∪ (bi) ∈ H2(k(
√
−1), µ2)/[D]. Since c(h̃i) is defined in H2(k(

√
−1), µ2)/[D], it
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suffices to check this equality after splitting D where it is clear. Let h̃ = Trk(
√
−1)/k(⊕ih̃i).

Then, Disc(h̃) = 1. Further, c(h̃) = cores
∑

i c(h̃i) = c(h). To check this, it is enough
to verify this equality when D is split. In this case this is a consequence of the following
commutative diagram:

I2(k(
√
−1)) c−→ H2(k(

√
−1), µ2)yTr

y cores

I2(k) c−→ H2(k, µ2)

The commutativity is easily verified on generators of I2(k(
√
−1)) of the form 〈〈a, b〉〉 where

a ∈ k∗ and b ∈ k((
√
−1)). Hence, if we replace h by the form h⊕ h̃, we get a form having

still even dimension, trivial signature and Discriminant, and having also trivial Clifford
invariant. In other words, we have that c(h ⊕ h̃) = 0 ∈ H2(k, µ2)/[D]. As in step 1, we
observe that when h⊕ h̃⊕h⊕ h̃ is hyperbolic, so is h⊕h. Therefore we can work from now
on with this new form h⊕ h̃ and, for simplicity, we still call it h. The integer m associated
to h is clearly divisible by 4.

Third step. Let h be the form obtained in step 2, let S be a matrix representing h, such
that Nrd(S) = 1, and let ψ = (S, 1) ∈ H1(k, SU2n(D, τ)) be the associated element. We
still have ψv = 1 for all v ∈ Ωk.

Again we consider the image δ(ψ) ∈ H2(k, µ2) and we remark that [δ(ψ)] = [c(h)] =
0 ∈ H2(k, µ2)/[D] so that either δ(ψ) = 0, or δ(ψ) = [D]. In the first case, when
δ(ψ) = 0, by the exact sequence (**), there exist ζ ∈ H1(k,Spin2n(D, τ)) mapping to
ψ ∈ H1(k, SU2n(D, τ)). Suppose now δ(ψ) = [D] 6= 0. We first remark that D is locally
split. In fact, for all v ∈ Ωk we have ψv = 1 and so δ(ψv) = 0 = Dv; thus Dv is split for
all v ∈ Ωk. Consider the exact sequence

1 → SU2n(D, τ) → U2n(D, τ) → µ2 → 1

and the induced long exact sequence

SU2n(D, τ)(k) → U2n(D, τ)(k) → {±1} → H1(k, SU2n(D, τ)) → H1(k, U2n(D, τ)) → . . .

In general, we have two elements ψ, ψ′ ∈ H1(k, SU2n(D, τ)) in the preimage of
[h] ∈ H1(k, U2n(D, τ)), with δ(ψ) = δ(ψ′) + [D] (see [6]). Since δ(ψ) = [D], we get
δ(ψ′) = 0 and we can replace ψ by ψ′. We note that (ψ′)v is also trivial for all v ∈ Ωk.
This is because of the fact that, for all v ∈ Ωk, Dv is split and (ψ)v and (ψ′)v are equal since
they are both preimages of [h] in H1(kv, SU2n(D, τ)) which injects into H1(kv, U2n(D, τ));
then, (ψ)v = (ψ′)v = 1. Thus we replace (ψ) by (ψ′) and call it still ψ which has the
property that (ψ)v = 0 for all v ∈ Ωk and δ(ψ) = 0. We unify the two cases calling ζ the
preimage in H1(k,Spin2n(D, τ)) of ψ.

Let now θ = R(ζ) ∈ H3(k,Z/4), be the Rost invariant of ζ (see [7]). Since ψv = 1 in
H1(kv, SU2n(D, τ)) for all v ∈ Ωk, we have R(ζv) = (uv) ∪ ([D]) with uv ∈ k∗v/k∗2v . Hence
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2θv = 0 for all v ∈ Ωk. Since the map

H3(k,Z/4) →
∏

v∈Ωk

H3(kv,Z/4)

is injective (see [7]), we have 2θ = 0. Hence R(h⊕h) = [2θ] = 0 in H3(k,Z/4)/(k∗)∪([D]).
Finally, h⊕ h has even dimension, trivial Discriminant, trivial Clifford invariant and

trivial Rost invariant, then it is hyperbolic by [7, Thm. 7.3]. That completes the proof of
the theorem.

Theorem 3.3. Let k be a field with char(k) 6= 2 and vcd2(Gk) ≤ 2. Let G be a finite
group and let L and L′ be two G-Galois algebras. Then, the G-forms [2]qL and [2]qL′ are
isomorphic if and only if the following two conditions hold.

(i) we have that ϕL ∪ (−1) = ϕL′ ∪ (−1) in H2(k,G/G2);
(ii) the G-forms qL and qL′ are isomorphic over kv for all v ∈ Ωk.

Proof. The conditions (i) and (ii) are necessary by [5]. We now prove the sufficiency of
the conditions. In view of [4] where cd2(k) ≤ 2 case has been proved, we may assume that
k admits orderings and char(k) = 0. The group algebra k[G] has a decomposition

k[G] = B1 × · · · ×Br × C1 × Cop
1 × · · · × Cs × Cop

s

where Bi and Cj are simple. The involution on k[G] preserves the factors Bi and switches
the components of Cj × Cop

j . Let Ei be the centre of Bi and Fi ⊂ Ei the fixed field
for the involution. Let uL, uL′ denote the classes representing qL and qL′ respectively in
H1(k, UG) and uL, uL′ their images under the composite map

H1(k, UG) → H1(k,RFi/k(UBi)) → H1(Fi, UBi).

Following the proof of ( [5], Theorem 2.2), it suffices to show the hermitian forms [2]uL and
[2]uL′ are isometric. In the cases when (Bi, ∗) is unitary or symplectic, this can be seen
following the proof of ( [4], Theorem 3.1) since strong approximation property hypothesis is
not used in these cases. Suppose (UBi

, ∗) is orthogonal. Then h = uL⊕−uL′ is a hermitian
form over (Bi, ∗) defined on a rank two free module over Bi. Further if a = d(h), the first
hypothesis gives (a) ∪ (−1) = 0 ∈ H2(k, µ2). Moreover, the “local” hypothesis qLv

∼= qL′
v

for all v ∈ Ωk, gives us that sgn(h) = 0.
Let Bi = Ml(Di) where Di is a central division algebra over Fi and let the involution

∗ on Bi be adjoint to a hermitian form over (Di, τi) for some orthogonal involution τi on
Di. Then under Morita equivalence, the form h corresponds to a hermitian form hi over
(Di, τi) of rank 2l with the same discriminant and signature as h. Hence by Theorem 3.2,
hi ⊕ hi is hyperbolic and hence h⊕ h is hyperbolic.
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in Math. 5, Springer-Verlag, New York 1994.
[15] Yanchevskii, V.I.: Simple algebras with involution and unitary groups, Math. Sbornik 22

(1974) 372–384.

13


