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2a Università di Roma “Tor Vergata”
I-00133 Roma ITALY
Email: schoof@mat.uniroma2.it

Abstract. We show that there are no non-zero semi-stable abelian varieties over Q(
√

5) with good re-
duction outside 3 and we show that the only semi-stable abelian varieties over Q with good reduction
outside 15 are, up to isogeny over Q, powers of the Jacobian of the modular curve X0(15).

1. Introduction.

In his paper [6], Luis Dieulefait gives a proof of Serre’s modularity conjecture for the case
of odd level and arbitrary weight. By means of an intricate inductive procedure he reduces
the issue to the case of Galois representations of level 3 and weight 2, 4 or 6. As explained
in [6], these cases are taken care of by the following three theorems respectively.

Theorem 1.1. There are no non-zero semi-stable abelian varieties over Q with good
reduction outside 3.

Theorem 1.2. There are no non-zero semi-stable abelian varieties over Q(
√

5) with good
reduction outside 3.

Theorem 1.3. Every semi-stable abelian variety over Q with good reduction outside 15
is isogenous, over Q, to a power of the Jacobian of the modular curve X0(15).

Theorem 1.1 is due to Brumer and Kramer [5]. In this paper we prove Theorems 1.2
and 1.3, each of which directly imply Theorem 1.1.

1



In section 2 we discuss extensions of µp and Z/pZ by one another. These play an
important role in this paper. In section 3 we prove Theorem 1.2 and in section 4 we prove
Theorem 1.3. I thank Hendrik Verhoek for catching several inaccuracies in earlier drafts
of the paper.

2. Extensions of µp and Z/pZ by one another.

This section contains preliminary material used in the proofs of Theorems 1.2 and 1.3
given in the next two sections. Let F be a number field and set Γ = Gal(F/F ). Let S be
a finite set of primes of F and let R denote the ring of S-integers.

Lemma 2.1. Let p be a prime and let G, H be finite flat commutative group schemes
over R that are killed by p. Let Ext1

R,[p](G,H) denote the subgroup of Ext1
R(G,H) con-

sisting of the extensions of G by H that are killed by p. Then there is a natural exact
sequence

0 −→ Ext1
R,[p](G,H) −→ Ext1

R(G,H) −→
(
Homab(H(F ), G(F ))Γ

)∨
.

Proof. First we consider extensions of G by H over the quotient field F . Clearly
Ext1

F,[p](G,H) is the kernel of the natural map Ext1
F (G,H) −→ Ext1

ab(G(F ), H(F )). More-

over, Γ acts on Ext1
ab(G(F ), H(F )) and the image of the map is contained in the subgroup

of the Γ-invariant extensions. Since Ext1
ab(G(F ), H(F )) is naturally isomorphic to the

Fp-dual of Homab(H(F ), G(F )), the lemma follows, but with the ring R replaced by its
quotient field F .

To get the sequence over R, we observe that the following diagram is Cartesian

Ext1
R,[p](G,H)

⊂−→ Ext1
R(G,H)y y

Ext1
F,[p](G,H)

⊂−→ Ext1
F (G,H)

Indeed, if the generic fiber of a finite flat group scheme over R is killed by p, then so
is the group scheme itself. Therefore the induced map between the cokernels of the two
horizontal homomorphisms is injective. This implies the lemma.

We first discuss extensions of Z/pZ by µp. We begin by constructing one such ex-
tension over the ring Z[ζp]. Applying the functor Hom(Z/pZ,−) to the exact sequence
0 → µp → µp2 → µp → 0, we obtain an injective homomorphism Hom(Z/pZ, µp) −→
Ext1(Z/pZ, µp). The group Hom(Z/pZ, µp) has order p and the image of any non-zero
morphism Z/pZ→ µp is a non-split extension

0 −→ µp −→ V −→ Z/pZ −→ 0

with group of points V (F ) cyclic of order p2.
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Definition. For every S-unit ε ∈ R∗ we let Gε denote the R-group scheme defined
in [11, p.418]. It is an extension of Z/pZ by µp. Its group of points is killed by p and the
Galois group Γ = Gal(F/F ) acts through matrices of the form(

ω ψ
0 1

)
,

where ω is the cyclotomic character and, for a suitable choice of a p-th root of unity ζp in

F , the cocycle ψ is given by the formula ζ
ψ(σ)
p = σ( p

√
ε)/ p
√
ε for every σ ∈ Γ. Two group

schemes Gε and Gε′ are isomorphic if and only if ε and ε′ generate the same subgroup
of R∗/R∗p.

Proposition 2.2. Let p be a prime and let wp denote the number of p-th roots of unity
in R. Then

(i) The index of Ext1
R,[p](Z/pZ, µp) inside Ext1

R(Z/pZ, µp) is equal to wp;

(ii) If the class number of R is not divisible by p, then Ext1
R,[p](Z/pZ, µp) consists of

the extensions provided by the group schemes Gε with ε ∈ R∗ and the map ε 7→
Gε induces an isomorphism between the groups R∗/R∗p and Ext1

R,[p](Z/pZ, µp).

Proof. (i) A non-trivial homomorphism µp(F ) −→ Z/pZ is Γ-equivariant if and only if
the field F contains the p-th roots of unity. Therefore Lemma 2.1 implies that the index is
at most wp. When wp = 1 we have equality. If wp = p we observe that the group scheme
V constructed above is not killed by p and we again have equality. This proves (i).
(ii) By the long exact sequence of cohomology groups associated to the exact sequence
0→ Z→ Z→ Z/pZ→ 0 of sheaves for the fppf topology, we get an exact sequence

0 −→ µp(R) −→ Ext1
R(Z/pZ, µp) −→ H1

flat(Spec(R), µp) −→ 0.

The classes in Ext1
R(Z/pZ, µp) that come from µp(R) are either trivial or isomorphic to the

group scheme V constructed above. By part (i), the group Ext1
R,[p](Z/pZ, µp) is therefore

isomorphic to H1
flat(Spec(R), µp). The latter group sits in the exact Kummer sequence

0 −→ R∗/R∗p −→ H1
flat(Spec(R), µp) −→ Cl(R)[p] −→ 0.

The leftmost map is induced by the usual map F ∗/F ∗p −→ H1(Γ, µp) from Kummer
theory. Since p does not divide the class number of R, part (ii) follows.

Example. For R = Z and S = ∅ there are no non-split extensions of Z/pZ by µp,
except when p = 2. In this case the F2-vector space Ext1

Z(Z/2Z, µ2) has dimension 2. It is
generated by the group scheme V constructed above and the group scheme Gε with ε = −1.
The latter is the unique extension of Z/2Z by µ2 that is killed by 2. So it is self-dual. The
Galois group acts on its points through matrices of the form(

1 ω2

0 1

)
,
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where ω2 : Gal(Q/Q) −→ F2 is the character corresponding to the field Q(i). The reader
may check that the Hopf algebra of G−1 is Z[X,Y ]/(X2 − 1 + 2Y, Y 2 − Y ). The neutral
element is (1, 0) and the addition formula is given by

(x, y) + (x′, y′) = (xx′(1− 2yy′), y + y′ − 2yy′).

The subgroup scheme µ2 is given by the equation Y = 0, while the subring Z[Y ]/(Y 2−Y )
gives rise to the morphism G−1 −→ Z/2Z. See [1, 2].

The rest of this section is devoted to extensions of the form

0 −→ Z/pZ −→ G −→ µp −→ 0

We restrict ourselves to the case p = 2. This is all we need in the applications.

Proposition 2.3. Suppose that 2 is prime in F and that 2 6∈ S. Then every extension of
µ2 by Z/2Z over the ring of S-integers R is killed by 2. If in addition the class number of
R is odd, then there is a natural isomorphism

Ext1
R(µ2,Z/2Z)

∼=−→ {ε ∈ R∗ : ε is a square in F ∗2 }/R∗
2.

Here F2 denotes the 2-adic field F ⊗Q2 and the isomorphism maps an extension G to the
unit ε ∈ R∗ that has the property that the Galois group acts on the points of G through
matrices of the form (

1 χ
0 1

)
where χ is the character given by the formula (−1)χ(σ) = σ(

√
ε)/
√
ε for every σ ∈ Γ.

Proof. Since 2 6∈ S the ring R ⊗ Z2 is not the zero ring. Since µ2 is connected and
Z/2Z is étale over R ⊗ Z2, the group HomR⊗Z2

(µ2,Z/2Z) vanishes. This implies that
HomR(µ2,Z/2Z) = 0. For the same reason, every extension of µ2 by Z/2Z over R⊗Z2 is
split. It follows that every extension of µ2 by Z/2Z over R is killed by 2. In addition the
Mayer-Vietoris sequence in [11, Cor.2.4] gives rise to the exact sequence

0 −→ Ext1
R(µ2,Z/2Z) −→ Ext1

R[ 12 ](µ2,Z/2Z) −→ Ext1
F2

(µ2,Z/2Z).

Since the group schemes µ2 and Z/2Z are isomorphic over the rings R[ 1
2 ] and F2, we may

switch their roles and compute the Ext-groups using Kummer theory. See [12, section 4]
for a similar calculation. A short computation, using the fact that 2 does not divide the
class number of R, leads to the following commutative diagram with exact rows

0 → µ2(R[ 1
2 ]) −→ Ext1

R[ 12 ](µ2,Z/2Z) −→ R[ 1
2 ]∗/R[ 1

2 ]∗
2 → 0,∥∥∥ y y

0 → µ2(F2) −→ Ext1
F2

(µ2,Z/2Z) −→ F ∗2 /F
∗
2

2 → 0.
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The Snake Lemma implies that Ext1
R(µ2,Z/2Z) is isomorphic to the kernel of the rightmost

vertical map. Since 2 is prime in R, this is equal to the kernel of R∗/R∗2 −→ F ∗2 /F
∗
2

2 as
required.

We apply Proposition 2.3 to F = Q and S = {3, 5}. We have that R = Z[ 1
15 ]. The

unit group R∗ is generated by −1, 3 and 5. The kernel of the map R∗/R∗2 −→ Q∗2/Q
∗
2

2

is the cyclic group generated by −15. Therefore Ext1
R(µ2,Z/2Z) has order 2.

Definition. Let Φ denote the unique non-split extension of µ2 by Z/2Z over Z[ 1
15 ]:

0 −→ Z/2Z −→ Φ −→ µ2 −→ 0.

Since Φ is unique, it is self-dual. The Galois group Gal(Q/Q) acts on Φ(Q) through
the unique quadratic character χ of conductor 15. The endomorphism ring of Φ is F2.
Explicitly, the Hopf algebra of Φ is Z[ 1

15 ][X,Y ]/(X2 − X − 2Y, Y 2 + 2Y ). The neutral
element is (0, 0) and the addition formula is given by

(x, y) + (x′, y′) = (x+ x′ − 2xx′ + 2
15yy

′(1− 2x)(1− 2x′), y + y′ + yy′).

The subgroup scheme Z/2Z of Φ is given by the equation Y = 0, while the subring
Z[Y ]/(Y 2 + 2Y ) gives rise to the morphism Φ −→ µ2.

The group scheme Φ is isomorphic to the group scheme of 2-torsion points of the semi-
stable elliptic curve [4, p.82] of conductor 15 given by the minimal Weierstrass equation
Y 2 + XY + Y = X3 + X2. The coordinates of the points of order 2 are x = −1 and

x = −1±
√
−15

8 . The Zariski closure of the subgroup generated by the integral point (−1, 0)
is the closed subgroup scheme Z/2Z.

Remark 2.4. Let F = Q(
√

5) and S = {3}. The ring of S-integers is Z[η, 1
3 ] where η =

1
2 (1 +

√
5). Put F2 = F ⊗Q2. Since the kernel of the natural map

Z[η, 1
3 ]∗/(Z[η, 1

3 ]∗)2 −→ F ∗2 /F
∗
2

2.

is the cyclic group generated by −3, Prop. 2.3 implies that over Z[η, 1
3 ] there is a unique

non-split extension of µ2 by Z/2Z. This group scheme is self-dual. It is related to Φ as
follows. Let S′ = {3,

√
5}. The ring of S′-integers is Z[η, 1

15 ]. Since the kernel of the
natural map

Z[η, 1
15 ]∗/(Z[η, 1

15 ]∗)2 −→ F ∗2 /F
∗
2

2.

is the cyclic group generated by −3, we see that also over Z[η, 1
15 ] there is a unique non-

split extension of µ2 by Z/2Z. It is the base change of the group scheme over Z[η, 1
3 ]

constructed above. Since −15 = −3(
√

5)2, it is also the base change of the Z[ 1
15 ]-group

scheme Φ.

Remark 2.5. Let E = Q(ζ3) and S = {5}. The ring of S-integers is Z[ζ3,
1
5 ]. Put

E2 = E ⊗Q2. Since the kernel of the natural map

Z[ζ3,
1
5 ]∗/(Z[ζ3,

1
5 ]∗)2 −→ E∗2/E

∗
2

2.
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is the cyclic group generated by 5, Prop. 2.3 implies that over Z[ζ3,
1
5 ] there is a unique

non-split extension of µ2 by Z/2Z. This group scheme is self-dual. Like in Remark 2.4
it is related to Φ. Indeed, since −15 = 5(

√
−3)2, its base change to the ring Z[ζ3,

1
15 ] is

isomorphic to the base change of the Z[ 1
15 ]-group scheme Φ.

In this paper we abuse notation somewhat and denote the various base changes of the
group scheme Φ described in Remarks 2.4 and 2.5 by Φ.

3. Proof of Theorem 1.2.

Put η = 1+
√

5
2 and F = Q(

√
5). Let C be the category of finite flat commutative 2-power

order group schemes G over the ring Z[η, 1
3 ] for which (σ − id)2 = 0 on G(F ) for all

σ ∈ Gal(F/F ) in the inertia group of any of the primes of F lying over 3. Morphisms are
morphisms of group schemes.

The category C has good stability properties. Duals and subquotients of objects in
C are again objects of C. An object G is simple if and ony if the Galois action on its
group of points G(F ) is irreducible. For two objects G, G′ in C, the group Ext1(G,G′)
classifies extensions of G by G′ in the category of group schemes over Z[η, 1

3 ]. The subset

Ext1
C(G,G′) of such extensions that are themselves objects in C, is a subgroup. To any

exact sequence 0 −→ G −→ G′ −→ G′′ −→ 0 of group schemes in C and any H in C there
is associated a long exact sequence of the form

0 −→ HomC(H,G) −→ HomC(H,G′) −→ HomC(H,G′′) −→
−→Ext1

C(H,G) −→ Ext1
C(H,G′) −→ Ext1

C(H,G′′).

There is an analogous contravariant exact sequence. For all objects G, H of C the group
HomC(H,G) is equal to the group Hom(H,G) of all group scheme morphisms H −→ G.

In general, the group Ext1
C(H,G) is strictly smaller than the group Ext1(H,G) of all

extensions of H by G. The two extension groups are equal when the Galois action on the
points of G and H is unramified at 3. This happens for instance when both G and H are
isomorphic to Z/2Z or µ2.

In particular, the group schemes Φ and Gε for ε ∈ Z[η, 1
3 ]∗ defined in section 2, are

objects of C.

Proposition 3.1. The only simple objects in the category C are Z/2Z and µ2.

Proof. Let G be a simple object. Then G is killed by 2. Let G′ be the product of G
and the group schemes Gε that were discussed in section 2. The result is again an object
of C that is killed by 2. The field K generated by the points of G′ is a Galois extension
of F . The square roots of the generators −1, η and 3 of the group Z[η, 1

3 ]∗ are in K.

Since (σ − id)2 = 0 on G(F ) for all σ in any of the inertia subgroups of Gal(F/F ) of the
primes lying over 3, the field K is tamely ramified at 3 with ramification index ≤ 2. By
Fontaine [8, Cor.3.3.2] or Abrashkin [3, p.38] the root discriminant of K is therefore at
most 4

√
15 = 15.49 . . .. Odlyzko’s discriminant bounds [10] imply [K : Q] < 76. We have

the inclusions

Q
2
⊂ F

8
⊂ k

≤4

⊂ K,
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where k denotes the field F (
√
−3, i,

√
η). We show that the index of the rightmost inclusion

cannot be 3. Note that the unique prime over 3 ramifies in F ⊂ k, so that the extension k ⊂
K is unramified outside 2. Since η3 is congruent to 1 modulo 2, the relative discriminant
of k over F (

√
−3, i) divides 2. Therefore the root discriminant of k is at most

√
2 ·
√

60 =
10.95 . . .. Odlyzko’s bounds imply that any unramified extension of the latter field has
degree < 26/16 and hence is trivial. There are two primes lying over 2 in F (ζ3), generated
by ζ3 + η and ζ−1

3 + η respectively. Since the extension F (ζ3) ⊂ k is totally ramified at
both primes over 2, there are also precisely two primes in k lying over 2. The residue fields
are both equal to F4. One checks that the product of the two multiplicative groups of
the residue fields is generated by the global units ζ3 and η. Therefore class field theory
implies that the field k does not admit any odd degree non-trivial extension inside K. In
particular [K : k] cannot be 3.

It follows that Gal(K/F ) is a 2-group. The subfield K ′ ⊂ K generated by the points
of the group scheme G we started with, is Galois over F . Therefore Gal(K ′/F ) is also a
2-group and hence it fixes some non-zero point P of the 2-group G(F ). Since G is simple,
G(F ) must be generated by P . Therefore G has order 2. Since 2 is prime in the ring
Z[η, 1

3 ], the theorem by Oort-Tate [13] implies that G is isomorphic to Z/2Z or µ2, as
required.

Proposition 3.2. The ring Z[η, ζ3,
1
3 ] is an unramified quadratic extension of Z[η, 1

3 ]. It
does itself not admit any non-trivial 2-power degree unramified Galois extension.

Proof. Clearly the ring Z[η, ζ3,
1
3 ] is an unramified quadratic extension of Z[η, 1

3 ]. The
quotient field H of the maximal 2-power degree unramified Galois extension of Z[η, 1

3 ] is
an extension of F that is unramified outside 3 and the infinite primes. Let π = Gal(H/F ).
By class field theory, the maximal abelian quotient of π is isomorphic to the multiplicative
group F∗9 ×R∗/R∗>0×R∗/R∗>0 modulo the image of the global units of Z[η]. It is easy to
see that the units −1 and η of Z[η] generate a subgroup of index 2. Therefore the quotient
of π by its commutator subgroup has order 2. Group theory implies then that π itself is
also cyclic of order 2. This proves the proposition.

Let ω3 : Gal(F/F ) −→ F2 denote the restriction of the unique Dirichlet character of
Q of conductor 3.

Corollary 3.3. The F2-vector space Ext1(Z/2Z,Z/2Z) of extensions of Z/2Z by Z/2Z
over Z[η, 1

3 ] has dimension 2. It is generated by the class of Z/4Z and by an extension
killed by 2 on which the Galois group acts via matrices of the form(

1 ω3

0 1

)
.

Proof. The action of the Galois group on the points of an étale group scheme is unramified
and étale group schemes are characterized by this action. The corollary follows from
the fact that the maximal unramified 2-power degree Galois extension of Z[η, 1

3 ] is the
ring Z[η, 1

3 , ζ3].
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Corollary 3.4. Any extension of group schemes Z/2Z over Z[η, 1
3 ] becomes constant

over Z[η, ζ3,
1
3 ]. Any extension of group schemes µ2 over Z[η, 1

3 ] becomes diagonalizable
over Z[η, ζ3,

1
3 ].

Proof. This follows inductively from Prop. 3.2 and Cartier duality.

The group of upper triangular 3 × 3-matrices over F2 is isomorphic to the dihedral
group D4. Consider a subgroup

Γ ⊂ {

 1 a c
0 1 b
0 0 1

 : a, b, c ∈ F2}.

The maps Γ −→ F2 given by γ 7→ a and γ 7→ b are group homomorphisms. The following
elementary lemma is repeatedly used in the sequel.

Lemma 3.5. Let Γ be as above and let N ⊂ Γ be a normal subgroup of order at most 2.
Then either a(N) = b(N) = 0 or one of a, b vanishes on Γ.

Proof. If neither a nor b vanishes on Γ, then Γ must contain a matrix of the form 1 1 c
0 1 1
0 0 1

 .

This matrix has order 4. It follows that Γ is either the full dihedral group or its unique
cyclic subgroup of order 4. Either group has a unique normal subgroup of order 2. It is
given by a = b = 0.

This proves the lemma.

Let Φ denote the group scheme over Z[η, 1
3 ] that was introduced in Remark 2.4. It is

a self-dual object of the category C. The action of Gal(F/F ) on the points of Φ is through
the character ω3.

Proposition 3.6. We have

Ext1
C(Φ,Z/2Z) = Ext1

C(µ2,Φ) = 0.

Proof. By Cartier duality it suffices to show that Ext1
C(Φ,Z/2Z) vanishes. Consider an

extension in the category C

0 −→ Z/2Z −→ G −→ Φ −→ 0.

Then G is killed by 4. Let C be the kernel of the morphism G −→ Φ −→ µ2. Then C is
an extension of Z/2Z by Z/2Z and we have an exact sequence

0 −→ C −→ G −→ µ2 −→ 0.
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If C(F ) were cyclic, any σ ∈ Gal(F/F ) would necessarily act trivially on the quotient of
G(F ) by the subgroup 2C(F ). Since the Galois action on Φ(F ) is non-trivial, this cannot
happen. Therefore C is killed by 2. It follows from the connected-étale exact sequence
that G is killed by 2 over the completion at the prime 2. This implies that G itself is also
killed by 2. By Remark 2.4 the Galois group acts on G(F ) through matrices of the form 1 ψ a

0 1 ω3

0 0 1

 .

Since C is étale, the character ψ : Gal(F/F ) −→ F2 is unramified outside 3. Since G is
an object of C, the action of Gal(F/F ) on G(F ) is tamely ramified at every prime over 3.
Moreover, the inertia group has order ≤ 2. Therefore Lemma 3.5 applies with Γ equal to
the decomposition group of a prime over 3 and N its inertia subgroup: since ω3(N) 6= 0,
we have ψ(Γ) = 0. It follows that ψ is unramified at all finite primes. Since the narrow
class number of F is 1, class field theory implies ψ = 0.

To finish the proof, we consider the exact sequence

Hom(Z/2Z,Z/2Z)
g−→ Ext1(µ2,Z/2Z) −→ Ext1(Φ,Z/2Z)

h−→ Ext1(Z/2Z,Z/2Z).

The map h sends the class of G to the class of the extension determined by ψ. By
Remark 2.4 the map g is an isomorphism of two groups of order 2. It follows that h is
injective. This implies the proposition.

Proposition 3.7. The natural maps

Ext1
C(Z/2Z,Φ) −→ Ext1(Z/2Z, µ2),

Ext1
C(Φ, µ2) −→ Ext1(Z/2Z, µ2)

are both zero.

Proof. By Cartier duality it suffices to deal with the first map. Since the Galois covariants
of Homab(Φ(E),Z/2Z) have order 2, Lemma 2.1 implies that Ext1

C(Z/2Z,Φ) is generated
by the extensions that are killed by 2 and by the image of the class of Z/4Z. The latter is
mapped to zero because the sequence

Ext1(Z/2Z,Z/2Z) −→ Ext1
C(Z/2Z,Φ) −→ Ext1(Z/2Z, µ2).

is exact. Therefore it suffices to show that any extension in C of the form

0 −→ Φ −→ G −→ Z/2Z −→ 0,

that is killed by 2, is mapped to zero in Ext1
C(Z/2Z, µ2).

The Galois group acts on the points of G via matrices of the form 1 ω3 a
0 1 ψ
0 0 1


9



The homomorphism Ext1
C(Z/2Z,Φ) −→ Ext1

C(Z/2Z, µ2) maps G to the quotient of G by
the subgroup scheme Z/2Z of Φ. This is an extension of Z/2Z by µ2. By Proposition 2.2
it is a group scheme of the form Gε for some ε in Z[η, 1

3 ]∗ = 〈−1, 3, η〉. We want to show

that the corresponding character, i.e. the character ψ given by (−1)ψ(σ) = σ(
√
ε)/
√
ε,

vanishes.
Let K denote the field generated by the points of G and let Γ ⊂ Gal(K/F ) denote the

decomposition group of a prime over 3. Since G is an object of C, the ramification indices
of the primes over 3 are at most 2. Therefore Lemma 3.5 applies to Γ with N equal to its
inertia subgroup: since ω3 is ramified at 3, the character ψ is trivial on Γ. We conclude
that 3 splits in F (

√
ε), so that ε is a square modulo 3.

Since ε = ±η are not squares in the residue field F9, we have therefore ε = ±1. If
ε = −1, then the field K is a quadratic extension of F (i,

√
−3). Locally at 2 the extension

of Z/2Z by Φ looks like

0 −→ Z/2Z× µ2 −→ G −→ Z/2Z −→ 0.

Therefore the ramification index of the prime 2 in the extension F ⊂ K is equal to 2. It
follows that K is everywhere unramified over F (i,

√
−3) = Q(i,

√
−3,
√

5). A standard
computation involving Odlyzko’s discriminant bounds shows that the latter field does not
admit any non-trivial everywhere unramified extension. Contradiction. It follows that
ε = 1 and hence ψ = 0 as required.

This proves the proposition.

Next we compute the long exact sequences that we obtain by applying the bifunctor
HomC(−,−), in both arguments, to the exact sequence 0 −→ Z/2Z −→ Φ −→ µ2 −→ 0.
By Corollary 3.3 and Propositions 3.6 and 3.7 we obtain the following commutative diagram
with exact rows and columns

0y
0 −→ F2y y

0 −→ Ext1
C(Φ,Φ) −→ Ext1

C(Z/2Z,Φ)y y y
0 −→ F2 −→ Ext1

C(Φ, µ2) −→ 0

Here the “F2” in the upper right corner is the image of the map from Ext1(Z/2Z,Z/2Z)
to Ext1

C(Z/2Z,Φ). It is the image of the class of Z/4Z. It is also the unique non-split
extension of µ2 by Z/4Z. Similarly, the “F2” in the lower left corner denotes the extension
of Φ by µ2 that is the image of the class of µ4 in Ext1(µ2, µ2). It is also the unique non-split
extension of µ4 by Z/2Z. It follows at once that in the category C there is at most one
non-trivial extension of Φ by itself. We prove the following stronger statement.
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Proposition 3.8. We have
Ext1

C(Φ,Φ) = 0.

Proof. If a non-trivial extension exists, it is mapped to the image of the class of Z/4Z in
Ext1

C(Z/2Z,Φ) and to the image of µ4 in Ext1
C(Φ, µ2). This means that the group G(F )

of a non-trivial extension
0 −→ Φ −→ G −→ Φ −→ 0,

is of type 4× 4. It follows that Φ(F ) is precisely equal to 2G(F ). Proposition 3.7 implies
that the natural map Ext1

C(Φ,Φ) −→ Ext1(Z/2Z, µ2) is zero. Therefore Corollary 3.3 and
its Cartier dual show that we have an extension of the form

0 −→ Z/4Z −→ G −→ µ4 −→ 0

The Galois group acts on the points of G via matrices of the form(
1 a
0 ω4

)
where ω4 is the character that gives the action on the group µ4 of 4th roots of unity and
a : Gal(F/F ) −→ Z/4Z is a 1-cocycle with the property that the restriction of a to the
absolute Galois group of F (i) is a character satisfying 2a = ω3. In particular, a has order 4
and the field K generated by the points of G contains F (i) and has degree 8 over F .

Since the extension 0→ Z/4Z→ G→ µ4 → 0 is split over the completion of OF at 2,
the prime 1 + i of F (i) is split in K. In particular, the extension F (i) ⊂ K is unramified
outside 3. Since F (i) admits no non-trivial everywhere unramified extensions, class field
theory implies that Gal(K/F (i)) is a quotient of the multiplicative group (OF (i)/3OF (i))

∗

by the subgroup generated by O∗F (i) and by the generator 1 + i of the prime lying over 2.
There are two primes lying over 3, each with residue field F9. One checks that the quotient
of F∗9×F∗9 by the global unit η and the element 1 + i, has order 2 rather than 4. It follows
that [K : F ] 6= 8 and we obtain a contradiction.

It follows that Ext1
C(Φ,Φ) is trivial, as required.

Proof of Theorem 1.2. Let A be a semistable abelian variety over F = Q(
√

5) with
good reduction outside 3. A result by Grothendieck [9, Cor.3.5.2] implies that for any σ
in an inertia group of a prime lying over 3, the endomorphism (σ − id)2 acts as zero on
the 2n-torsion subgroup schemes A[2n] for n ≥ 1. Therefore the latter are objects of the
category C. Proposition 3.6 implies that each A[2n] admits a filtration of the form

0 ⊂︸ ︷︷ ︸
µ2
′s

Mn ⊂︸ ︷︷ ︸
Φ′s

Nn ⊂︸ ︷︷ ︸
Z/2Z′s

A[2n]

where Mn is filtered by copies of µ2, the quotient Nn/Mn is filtered by copies of Φ and
A[2n]/Nn is filtered by copies of Z/2Z.

By Corollary 3.4 the étale group schemes M∨n and A[2n]/Nn become constant over the
ring Z[η, ζ3,

1
3 ]. Choose a residue field Fq of this ring. The groups of points of A[2n]/Nn
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and M∨n map injectively to the group of Fq-rational points of the abelian varieties A/Nn
and Adual/N ′n respectively. Here N ′n = ker(A[2n]∨ →M∨n ).

The abelian varieties A/Nn and Adual/N ′n are all isogenous to A. Therefore they have
the same number of points as A over Fq. It follows that #Mn and #(A[2n]/Nn) are at
most #A(Fq). In particular, they remain bounded as n grows. By Proposition 3.8 the
group schemes Nn/Mn are killed by 2. Therefore A[2n] is killed by some positive integer
that does not depend on n. This is impossible unless A = 0.

This proves Theorem 1.2.

4. Proof of Theorem 1.3.

Let B be the category of finite flat commutative 2-power order group schemes over Z[ 1
15 ]

on which (σ − id)2 = 0 for all σ in the inertia subgroup of Gal(Q/Q) of any of the primes
lying over 3 or 5. We write S for the set of primes {3, 5}. The category B enjoys the same
stability properties as the category C of the previous section.

The following group theoretical fact is used in the proof of Prop. 4.2. We only apply
it for n = 3.

Lemma 4.1. Let n ≥ 3. Then the symmetric group Sn is not the commutator subgroup
of any group.

Proof. Let G be a group and let G′ be its commutator subgroup. Conjugation gives rise
to a homomorphism G −→ Aut(G′). On the one hand this homomorphism maps G′ to the
commutator subgroup of Aut(G′). On the other hand its image is the group Inn(G′) of
inner automorphisms of G′. Therefore, if a group H is the commutator subgroup of some
group, we must have Inn(H) ⊂ Aut(H)′.

This condition is not satisfied for H = Sn when n ≥ 3. We leave the verification to
the reader.

Proposition 4.2. The only simple objects in the category B are Z/2Z and µ2.

Proof. Let G be a simple object. As in the proof of Prop. 3.1, let G′ be the product
of G with the group schemes Gε of section 2, where ε runs through the group Z[ 1

15 ]∗

modulo squares. Then G′ is killed by 2. Let K be the field generated by the points
of G′. Put Γ = Gal(K/Q). The square roots of −1, 3 and 5 are contained in K. The
field K is tamely ramified at 3 and 5 with ramification index at most 2. By the results
of Abrashkin [3, p.38] and Fontaine [8, Cor.3.3.2] the root discriminant of K is therefore
strictly smaller than 4

√
15 = 15.49 . . .. Odlyzko’s discriminant bounds [10] imply [K :

Q] < 76. We have the inclusions

Q
8

⊂ k
≤9

⊂ K.

where k = Q(
√

5,
√
−3, i). The extension k ⊂ K is unramified outside 2. Therefore,

by the Kronecker-Weber Theorem any larger extension inside K that is abelian over Q,
necessarily contains Q(ζ8). Since the root discriminant of Q(ζ8) is equal to 4, this is
impossible. Therefore k is the maximal abelian extension of Q inside K and Gal(K/k)
is equal to the commutator subgroup Γ′. This group is solvable and we study Γ′/Γ′′.
We already saw in the proof of Proposition 3.7 that k admits no non-trivial unramified
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extensions. In k there are two primes lying over 2. Writing η = (1 +
√

5)/2, one prime
contains ζ3 + η while the other contains ζ−1

3 + η. Their product is (1 + i). Since the global
units ζ3 and η generate the group (Ok/(1 + i)Ok)∗ ∼= F∗4 × F∗4, class field theory implies
that [Γ′ : Γ′′] is a power of 2.

If [Γ′ : Γ′′] = 1, 4 or 8, it is immediate that Γ is a 2-group. If [Γ′ : Γ′′] = 2, we
have #Γ′′ ≤ 4. If #Γ′′ = 3, we have Γ′ ∼= S3 which is impossible by Lemma 4.1. Therefore
#Γ′′ is necessarily a power of 2 and Γ is a 2-group. The subfield K ′ ⊂ K generated by
the points of the group scheme G is a Galois extension of Q. Therefore the Galois group
Gal(K ′/Q) is also a 2-group. So Γ has non-zero fixed points in the irreducible 2-power
order Galois module G(F ). It follows that G has order 2. By the Oort-Tate Theorem [13]
the group scheme G is isomorphic to Z/2Z or µ2 as required.

Since the Galois extension Q ⊂ Q(ζ15) is not cyclic, the same is true for the max-
imal 2-power degree unramified Galois extension of Z[ 1

15 ]. As a consequence the group

Ext1
B(Z/2Z,Z/2Z) = Ext1

Z[ 1
15 ](Z/2Z,Z/2Z) is relatively large. It has order 8. This affects

the size of other extension groups, in particular the ones involving the group scheme Φ of
section 2. A computation similar to the one performed in the proof of Prop. 3.8 shows
that Ext1

B(Φ,Φ) has dimension 2 over F2. It is generated by the 4-torsion of the Jacobian
of the modular curve X0(15) and by an unramified quadratic twist of the product Φ× Φ.

Since it is essential for our method that Ext1
B(Φ,Φ) be 1-dimensional, this is a problem.

We avoid it by making a base change. We move over to the ring Z[ζ3,
1
15 ] and modify the

category B accordingly. Put E = Q(ζ3) and let S denote the set of Z[ζ3]-primes {
√
−3, 5}.

Definition. Let D be the category of commutative finite flat 2-power order group schemes
over Z[ζ3,

1
15 ] with the property that (σ−id)2 = 0 on G(Q) for all σ contained in the inertia

subgroup of Gal(E/E) of any of the primes lying over primes in S.

The category D has the same stability properties as the category C of the previous section.
The group schemes Φ and Gε for ε ∈ Z[ζ3,

1
15 ]∗ of section 2 are objects of D.

Proposition 4.3. Let R denote the ring of integers of the ray class field of conduc-
tor 5

√
−3 of E = Q(ζ3). Then the ring R[ 1

15 ] is an unramified cyclic degree 8 extension
of Z[ζ3,

1
15 ]. It does itself not admit any non-trivial 2-power degree unramified Galois

extension.

Proof. Let π denote the Galois group of the maximal unramified 2-power degree extension
of Z[ζ3,

1
15 ]. Then π/π′ is isomorphic to the ray class group of E of conductor 5

√
−3. This

shows that R[ 1
15 ] is the maximal unramified abelian 2-power degree extension of Z[ζ3,

1
15 ].

This ray class group is isomorphic to F∗3×F∗25 modulo the global unit −ζ3. Therefore it is
cyclic and group theory implies then that π itself is also cyclic. It follows that R[ 1

15 ] does
not admit any non-trivial 2-power degree unramified Galois extension, as required.

Corollary 4.4. The F2-vector space Ext1(Z/2Z,Z/2Z) of extensions of Z/2Z by Z/2Z
over Z[ζ3,

1
15 ] has dimension 2. It is generated by Z/4Z and an extension killed by 2 on

which the Galois group acts via matrices of the form(
1 χ5

0 1

)
.
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Here χ5 : Gal(E/E) −→ F2 is the restriction of the unique quadratic Dirichlet character
of conductor 5. It corresponds to the extension E ⊂ E(

√
5).

Proof. It suffices to observe that E(
√

5) is the unique quadratic extension of E that is
unramified outside S. Now apply Prop.4.3.

Corollary 4.5. Any extension of group schemes Z/2Z over Z[ζ3,
1
15 ] is constant overR[ 1

15 ].
Similarly, any extension of group schemes µ2 over Z[ζ3,

1
15 ] is diagonalizable over R[ 1

15 ].

Proof. This follows from Proposition 4.3 and Cartier duality.

Let Φ denote the group scheme over Z[ζ3,
1
5 ] that was introduced in Remark 2.5. It is

a self-dual object of the category D. The action of Gal(E/E) on the points of Φ is through
the character χ5. The following proposition is analogous to Proposition 3.6.

Proposition 4.6. We have

Ext1
D(Φ,Z/2Z) = Ext1

D(µ2,Φ) = 0.

Proof. By Cartier duality it suffices to show that the left hand side group vanishes.
Consider an extension in the category D

0 −→ Z/2Z −→ G −→ Φ −→ 0.

The kernel C of the morphism G −→ Φ −→ µ2 is an extension of Z/2Z by Z/2Z. We have
an exact sequence

0 −→ C −→ G −→ µ2 −→ 0.

If C(E) were cyclic, then any automorphism of G(E) necessarily acts trivially on the
quotient of G(E) by the subgroup 2C(E). Since the Galois action on Φ(E) is non-trivial,
this cannot happen. Therefore C and hence, by the connected-étale sequence, the group
scheme G itself is killed by 2. So the Galois group acts through matrices of the form 1 ψ a

0 1 χ5

0 0 1


Here ψ is a character of Gal(E/E). Since C is étale, ψ is unramified outside

√
−3 and 5.

We apply Lemma 3.5 with Γ equal to a decomposition group of a prime over 5 and N
its inertia subgroup. Note that #N ≤ 2 because G is an object of D. We find that
Γ ⊂ kerψ so that ψ is unramified outside

√
−3. Since the ray class field of conductor

√
−3

of E = Q(ζ3) is trivial, we have ψ = 0.
Consider the exact sequence

Hom(Z/2Z,Z/2Z)
g−→ Ext1(µ2,Z/2Z) −→ Ext1(Φ,Z/2Z)

h−→ Ext1(Z/2Z,Z/2Z).

The map h sends the class of G to the class of the extension determined by ψ. By
Remark 2.5 the map g is an isomorphism of two groups of order 2. It follows that h is
injective. Now the proposition follows.

The following proposition is analogous to Proposition 3.7. The group scheme G−1

was discussed in section 2. See the example there.
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Proposition 4.7. The images of both natural maps

Ext1
D(Z/2Z,Φ) −→ Ext1(Z/2Z, µ2),

Ext1
D(Φ, µ2) −→ Ext1(Z/2Z, µ2)

are contained in the subgroup generated by the class [G−1].

Proof. By Cartier duality it suffices to give a proof for the first map. Since the Galois
covariants of Homab(Φ(E),Z/2Z) have order 2, Lemma 2.1 implies that Ext1

D(Z/2Z,Φ)
is generated by the extensions that are killed by 2 and by the image of the class of Z/4Z.
The latter is mapped to zero because the sequence

Ext1(Z/2Z,Z/2Z) −→ Ext1
D(Z/2Z,Φ) −→ Ext1(Z/2Z, µ2)

is exact. Therefore it suffices to show that any extension in D of the form

0 −→ Φ −→ G −→ Z/2Z −→ 0,

that is killed by 2, is mapped to the subgroup generated by [G−1] in Ext1
D(Z/2Z, µ2).

The Galois group acts on the points of G via matrices of the form 1 χ5 a
0 1 ψ
0 0 1

 .

The extension G is mapped to the class of Gε in Ext1(Z/2Z, µ2), where ε is a unit in
Z[ζ3,

1
15 ]∗ = 〈−1,

√
−3, 5〉 and the corresponding quadratic character is ψ. Since G is an

object of D, the inertia subgroup of any prime lying over
√

5 has order ≤ 2 and Lemma 3.5
applies to the decomposition group. As χ5 is ramified, we deduce that the prime

√
5 splits

in the field cut out by ψ. Since ε = ±
√
−3 are not squares in the residue field F25, we

have ε = ±1. The class in Ext1(Z/2Z, µ2) associated to ε = −1 is precisely [G−1].
This proves the proposition.

Remark 4.8. If there were no group scheme H in Ext1(Z/2Z,Φ) that maps to the class
[G−1] in Ext1

D(Z/2Z, µ2), then a proof of Prop. 4.11 could be given along the lines of the
arguments of section 3. However, such a group scheme does exist and therefore our proof
is more complicated in this case. The group scheme H is unique. The Galois group acts
on its points through matrices of the form 1 χ5 a

0 1 ω2

0 0 1

 ,

where ω2 : Gal(E/E) −→ F2 is the character corresponding to the field E(i). It follows
from the proof of Proposition 4.7 that the field K generated by the points of H is a
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quadratic extension of E(i,
√

5), unramified outside the primes lying over 3. There is only
one such field: K is the ray class field of conductor

√
−3 of the field E(

√
−5) = Q(ζ3,

√
−5).

Next we compute the long exact sequences that we obtain by applying the bifunctor
HomD(−,−), in both arguments, to the exact sequence 0 −→ Z/2Z −→ Φ −→ µ2 −→ 0.
As a consequence of the previous propositions, we have the following commutative diagram
with exact rows and columns

0y
0 −→ F2y y

0 −→ Ext1
D(Φ,Φ) −→ Ext1

D(Z/2Z,Φ)y y y
0 −→ F2 −→ Ext1

D(Φ, µ2) −→ F2

Here the “F2” in the upper right corner denotes the extension of Z/2Z by Φ that is the
image of the class of Z/4Z in Ext1(Z/2Z,Z/2Z). It is also the unique non-split extension
of Z/4Z by µ2. Similarly, the “F2” in the lower left corner denotes the extension of Φ
by µ2 that is the image of the class of µ4 in Ext1(µ2, µ2). It is also the unique non-split
extension of Z/2Z by µ4. The “F2” in the lower right corner is the extension [G−1] in
Ext1(Z/2Z, µ2).

It follows that the F2-dimension of Ext1
D(Φ,Φ) is at most 2. On the other hand the

dimension is at least 1, because the 4-torsion of the elliptic curve Y 2 +XY +Y = X3 +X2

of section 2, is a non-trivial extension of Φ by Φ in D. We now proceed to show that
Ext1

D(Φ,Φ) has dimension exactly 1.

Lemma 4.9. Let G be an extension of Φ by Φ. Then the underlying group structure of
G(E) is not of type 4× 2× 2.

Proof. Suppose it is. Let e1 ∈ G(E) be a point of order 4. Choose e2 of order 2 so that 2e1

and e2 are a basis for the group of points of the subspace Φ(E) of G(E). Finally, choose
e3 ∈ G(E) of order 2 so that the images of e1, e3 are a basis for the group G(E)/Φ(E).
Every point in the Φ(E)-coset of e3 has order 2, while the points in the cosets of e1 and
e1 +e3 all have order 4. This implies that Gal(E/E) preserves the coset of e3 and switches
those of e1 and e1 + e3. Since Φ(E) is generated by 2e1 and e2, it follows that Gal(E/E)
fixes 2e1 and hence switches e2 and 2e1 + e2.

Over Z2 the group scheme Φ is a split extension of µ2 by Z/2Z and the group scheme
G/Φ ∼= Φ admits a unique morphism onto its maximal étale quotient Z/2Z. Let N
denote the quotient of the kernel of the composition G→ G/Φ→ Z/2Z by the connected
component of the subgroup scheme Φ of G. Let E2 be the completion of E at 2. For any
embedding E ↪→ E2, either e1 or e1 +e3 is contained in N(E2). In the first case the natural
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map 〈e1〉 → N(E2) is an isomorphism. In the second case the map 〈e1 + e3〉 → N(E2)
is an isomorphism. This shows that the group N(E2) is cyclic of order 4. On the other
hand, there is an exact sequence of Z2-group schemes

0 −→ Z/2Z −→ N −→ µ2 −→ 0.

Since this sequence is split over Z2, the group scheme N is killed by 2. Contradiction.
This proves the lemma.

Corollary 4.10. The group Ext1
D(Φ,Φ) is generated by the subgroup of extensions that

are killed by 2 and by the extension of Φ by Φ realized by the 4-torsion of the elliptic curve
with Weierstrass equation Y 2 +XY + Y = X3 +X2.

Proof. The index “[2]” indicates the subgroup of extensions that are killed by 2. The
square

Ext1
D,[2](Φ,Φ) ↪→ Ext1

D,[2](Z/2Z,Φ)y⊂ y⊂
Ext1

D(Φ,Φ) ↪→ Ext1
D(Z/2Z,Φ)

is Cartesian. This follows from Lemma 4.9 and the fact that extensions in Ext1
D(Φ,Φ)

with underlying group of type 4 × 4, map to extensions in Ext1
D(Z/2Z,Φ) that are not

killed by 2. It follows that the induced map between the cokernels of the vertical maps is
injective. We already saw in the proof Proposition 4.7 that Lemma 2.1 implies that the
cokernel of the rightmost arrow has order 2. This proves the corollary

Proposition 4.11. We have

dimF2
Ext1

D(Φ,Φ) = 1.

Proof. By Lemma 4.9 and Corollary 4.10 it suffices to show that extensions in D of the
form

0 −→ Φ −→ G −→ Φ −→ 0,

that are killed by 2 are necessarily split.
Let G be such an extension. The map Ext1

D(Φ,Φ) −→ Ext1
D(Z/2Z,Φ) sends G

to the kernel of the composed morphism G → Φ → µ2. The 2-dimensional F2-vector
space Ext1

D(Z/2Z,Φ) is generated by the class of the group scheme H of Remark 4.8

and by the image of Z/4Z under the natural map Ext1(Z/2Z,Z/2Z) −→ Ext1
D(Z/2Z,Φ).

The only non-trivial extension class Ext1
D(Z/2Z,Φ) that is killed by 2, is the one repre-

sented by H. It follows that the class of G maps to the class of H. Similarly, the map
Ext1

D(Φ,Φ) −→ Ext1
D(Φ, µ2) sends G to the quotient by the subgroup scheme Z/2Z of its

subgroup scheme Φ. The class ofGmaps to the class of the Cartier dualH∨ in Ext1
D(Φ, µ2).

Let {e1, e2, e3} be a basis of H∨(E) with the property that {e1} and {e1, e2} are bases
of its unique 1- and 2-dimensional sub-Galois modules respectively. Then the Galois group

17



acts on H∨(E) through matrices of the form 1 ω2 a+ µω2 + λχ5 + χ5ω2

0 1 χ5

0 0 1

 , for certain λ, µ ∈ F2.

This follows from a short computation using the 3 × 3 matrix that describes the Galois
action on H(E) given in Remark 4.8. It follows that the Galois group acts on G(E) through
matrices of the form 

1 χ5 a b
0 1 ω2 a+ µω2 + λχ5 + χ5ω2

0 0 1 χ5

0 0 0 1

 .

We recall that λ, µ ∈ F2 are fixed constants that depend on the F2-basis of H∨(E) that
we use. On the other hand, ω2, χ5, a and b are functions Gal(E/E) −→ F2. Let L be the
field generated by the points of G. It contains the field K generated by the points of H
(or equivalently of H∨).

Claim. We have L = K.

Since G is an object of the category D that is killed by 2, the ramification indices over E
of the primes of L lying over

√
−3 and 5 are at most 2. Let O2 be the completion of

Z[ζ3] at 2. Over O2 the group scheme Φ is isomorphic to Z/2Z × µ2. This implies that
the ramification indices of the primes in L lying over 2 are at most and hence equal
to 2. It follows that E(

√
5, i) ⊂ L is an abelian exponent 2 extension that is unramified

outside the primes lying over 3. We saw already in the proof of Proposition 3.7 that
E(
√

5, i) = Q(
√
−3,
√

5, i) admits no non-trivial unramified extensions. The two primes of
E(
√

5, i) lying over 3 have residue fields isomorphic to F9. Since the quotient of F∗9 × F∗9
by the global unit η = (1 +

√
5)/2 is cyclic, class field theory implies that L is a cyclic

extension of E(
√

5, i). It follows that L has degree 2 over E(
√

5, i) and hence L = K as
required.

Abusing notation, we see that as a consequence the map
1 χ5 a b
0 1 ω2 a+ µω2 + λχ5 + χ5ω2

0 0 1 χ5

0 0 0 1

 7→

 1 χ5 a
0 1 ω2

0 0 1


is an isomorphism of groups. The fact that the 3 × 3-matrices with ω2 = 0 have order 2
implies the same for the 4× 4-matrices and this easily implies that λ = 0. The subgroup
Gal(K/E(

√
5)) of Gal(K/E) consists of automorphisms whose corresponding matrices

have χ5 = 0. These are the four matrices 1 0
0 1

M

0 0
0 0

1 0
0 1


18



with

M =

(
0 0
0 0

)
,

(
1 µ+ 1
0 1

)
,

(
0 β
1 µ

)
,

(
1 β + µ+ 1
1 µ+ 1

)
for some β ∈ F2. Indeed, the second matrix comes from the square of the 4 × 4-matrix
that is mapped to any of the 3 × 3-matrices with χ5 = 1 and ω2 = 1. The third comes
from the 4× 4-matrix that is mapped to the 3× 3-matrix with χ5 = 0, ω2 = 1 and a = 1.
The fourth matrix is the sum of the second and the third.

Since the rightmost two matrices have the same determinant, we see that the number
of automorphisms σ ∈ Gal(K/E(

√
5)) for which the rank of the 4×4-matrix corresponding

to σ − id is equal to 2, is odd.
Let Γ = Gal(K/E). Recall that Γ is isomorphic to the dihedral group of order 8.

Claim. The decomposition subgroup Γ2 ⊂ Γ of any prime lying over 2 has order 2.

Proof of the claim. Since 2 splits in E(
√

5) and is ramified in K, the group Γ2 has order 2
or 4. Suppose that #Γ2 = 4. Then Γ2 = Gal(K/E(

√
5)) and as we have seen above, the

number of automorphisms σ ∈ Γ2 for which the rank of the 4× 4-matrix corresponding to
σ − id is equal to 2, is odd.

On the other hand, let O2 denote the completion of Z[ζ3] at 2. Over O2 we have
Φ ∼= Z/2Z × µ2. Therefore Gal(E2/E2) acts via Γ2 on the points of G through matrices
of the form 

1 0 γ 0
0 1 ω2 γ′

0 0 1 0
0 0 0 1

 .

Here γ and γ′ are unramified characters. If one of γ, γ′ is trivial, then all σ ∈ Gal(L/E(
√

5))
have the property that the rank of the matrix corresponding to σ − id is at most 1. This
is a contradiction. If both γ, γ′ are non-trivial, then they are equal and Γ2 acts through
matrices of the form  1 0

0 1
M

0 0
0 0

1 0
0 1


with

M =

(
0 0
0 0

)
,

(
0 0
1 0

)
,

(
1 0
0 1

)
,

(
1 0
1 1

)
.

Since exactly two of these matrices are invertible, exactly two σ ∈ Γ2 have the property
that the rank of the 4× 4-matrix corresponding to σ− id is equal to 2. Contradiction. So
we have #Γ2 = 2 and the claim follows.

The second claim implies that the two primes over 2 in E(i,
√

5) split in the quadratic
extension K. But they don’t. Indeed, consider the element

√
−3 +

√
−5 of the subfield

E(
√
−5). Since its norm to E is −2, it generates one of the prime ideals over 2. The other

prime over 2 is generated by
√
−3−

√
−5. Since both primes are principal ideals, they split

in the Hilbert class field E(
√

5, i) of E(
√
−5). If the two primes were splitting completely

in K, then both would admit generators that are congruent to 1 (mod
√
−3). This follows

19



from Remark 4.8: the field K is the ray class field of of conductor
√
−3 of the field E(

√
−5).

In other words, we would have u(
√
−3+

√
−5) ≡ 1 (mod

√
−3) for some unit u in E(

√
−5).

Since the unit group of E(
√
−5) is generated by −1 and 4 +

√
15 = 4 +

√
−3
√
−5, this

implies that

±(4 +
√
−3
√
−5)m(

√
−3 +

√
−5) ≡ 1 (mod

√
−3), for some m ∈ Z.

However, the left hand side is congruent to ±
√
−5 modulo

√
−3, so that this is impossible

for any m ∈ Z.
This proves the proposition.

Proof of Theorem 1.3. Let A be a semistable abelian variety over Q with good reduction
outside 15. By Grothendieck [9, Cor.3.5.2], for every n ≥ 1 the 2n-torsion subgroup schemes
A[2n] are objects of the category B over the ring Z[ 1

15 ]. Proposition 4.2 implies then that
for every n ≥ 1, the subgroup scheme A[2n] admits a filtration with simple subquotients
isomorphic to Z/2Z or µ2. We now make a base change to the ring Z[ζ3,

1
15 ]. The group

schemes A[2n] are objects of the category D. By Remark 2.5 and Proposition 4.7 we obtain
for any n ≥ 1 over Z[ζ3,

1
15 ] a filtration of A[2n] as follows:

0 ⊂︸ ︷︷ ︸
µ2
′s

Mn ⊂︸ ︷︷ ︸
Φ′s

Nn ⊂︸ ︷︷ ︸
Z/2Z′s

A[2n],

where Mn is filtered by copies of µ2, the quotient Nn/Mn is filtered by copies of the group
scheme Φ and A[2n]/Nn is filtered by copies of Z/2Z.

By Corollary 4.5 the étale group schemes M∨n and A[2n]/Nn become constant over the
ring R[ 1

15 ]. Here R denotes the ring of integers of the ray class field of conductor 5
√
−3 of

E = Q(ζ3). Therefore, for every residue field Fq of R[ 1
15 ], the groups of points of M∨n and

A[2n]/Nn map injectively to the group of Fq-rational points of the abelian varieties A/Nn
and Adual/N ′n. Here N ′n = ker(A[2n]∨ → M∨n ). As in the proof of Theorem 1.2 it follows
that #Mn and #(A[2n]/Nn) remain bounded as n grows.

Let J denote the elliptic curve given by the Weierstrass equation Y 2 + XY + Y =
X3 +X2. Then the group scheme J [2] is isomorphic to Φ and J [4] is a non-trivial extension
in D of Φ by Φ. It is unique by Proposition 4.11. Since End(Φ) is isomorphic to the finite
field F2, one proves by induction [12, section 8] that any object in D that admits a filtration
with flat closed subgroup schemes with successive quotients isomorphic to Φ, is isomorphic
to

t
⊕
i=1

J [2mi ],

for certain integers mi > 0. We apply this to the subquotients Nn/Mn of A[2n]. For every
n ≥ 0 the underlying group of A[2n] is isomorphic to (Z/2nZ)2g where g = dimA. This
implies that for all n ≥ 0 there are morphisms of group schemes

A[2n]
fn−→ J [2n]g

whose kernels and cokernels are bounded as n grows. The morphisms fn are not necessarily
compatible, but there is a cofinal compatible system. Taking the limit we obtain an exact
sequence of 2-divisible groups

0 −→ H −→ Adiv −→ Jgdiv −→ 0,
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where H is a finite 2-power order subgroup scheme of A. By Faltings’ theorem [7] the
abelian varieties A and Jg are isogenous over E. Lemmas 4.12 and 4.13 below imply that
A and Jg are also isogenous over Q. Since J is isogenous to the Jacobian of the modular
curve X0(15), Theorem 1.3 follows.

Lemma 4.12. Let Γ be a group and let M and N be Z-torsion free Z[Γ]-modules. Let
H be a subgroup of Γ of finite index and let I ⊂ Γ be a subset for which

• for every σ ∈ I the element (σ − 1)2 annihilates M and N ;

• the group Γ is generated by H and I.

Then every H-linear morphism f : M −→ N is actually Γ-linear.

Proof. Let f : M −→ N be H-linear. Let σ ∈ I. Then σk ∈ H for some positive integer k.
We have

σk = (1 + (σ − 1))k ≡ 1 + k(σ − 1) (mod (σ − 1)2), in the ring Z[Γ].

Let f : M −→ N be H-linear and let m ∈ M . We have f((1 − k)m) = (1 − k)f(m) and
f(σkm) = σkf(m). Since (σ− 1)2 kills both M and N , it follows that kf(σm) = kσf(m).
Since N is torsion-free, it follows that f(σm) = σf(m). This implies that f is Γ-linear, as
required.

Proposition 4.13. Let F be a number field and let A, B be two semi-stable abelian
varieties. Let K be a finite extension of F that does not contain any proper subextension
that is unramified outside the set S of primes of bad reduction of A and B. Then A and
B are isogenous over K if and only if they are isogenous over F .

Proof. Pick a prime l. Any K-isogeny A −→ B induces a Galois isomorphism between the
Tate modules. More precisely, it gives rise to an isomorphism f : Vl(A) −→ Vl(B) of Ql[H]-
modules. Here H denotes Gal(F/K). By assumption, the union I of the inertia groups in
G = Gal(F/F ) of any of the primes lying over S has the property that I and H generate G.
Since A and B are semi-stable abelian varieties, Grothendieck’s result [9, Cor.3.5.2] implies
that the conditions of Lemma 4.12 are both satisfied. Therefore f : Vl(A) −→ Vl(B) is
G-linear. Faltings’ theorem implies then that A and B are isogenous over F .
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[9] Grothendieck, A.: Modèles de Néron et monodromie, Exp IX in Groupes de monodromie en
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