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Abstract. Shanks’s infrastructure algorithm and Buchmann’s algorithm for computing class groups and
unit groups of rings of integers of algebraic number fields are most naturally viewed as computations inside
Arakelov class groups. In this paper we discuss the basic properties of Arakelov class groups and of the
set of reduced Arakelov divisors. As an application we describe Buchmann’s algorithm in this context.

1. Introduction.
In his 1972 Boulder paper [26], Daniel Shanks observed that the quadratic forms in the
principal cycle of reduced binary quadratic forms of positive discriminant exhibit a group-
like behavior. This was a surprising phenomenon, because the principal cycle itself con-
stitutes the trivial class of the class group. Shanks called this group-like structure ‘inside’
the neutral element of the class group the infrastructure. He exploited it by designing
an efficient algorithm to compute regulators of real quadratic number fields. Eight years
later, Hendrik Lenstra made Shanks’s observations more precise. He introduced a certain
topological group and provided a satisfactory framework for Shanks’s algorithm [17, 25].
Both Shanks [27, sect.1] and [32, sect.4.4] and Lenstra [17, sect.15] indicated that the in-
frastructure ideas could be generalized to arbitrary number fields. This was done first by
H. Williams and his students [33] for complex cubic fields, then by J. Buchmann [2, 3, 4]
and by Buchmann and Williams [6]. Finally in 1988, Buchmann [ 7, 8] described an algo-
rithm for computing the class group and regulator of an arbitrary number field that, under
reasonable assumptions, has a subexponential running time. It has been implemented in
the LiDIA, MAGMA and PARI software packages [21, 22, 24].

In these expository notes we present a natural setting for the infrastructure phe-
nomenon and for Buchmann’s algorithm. It is provided by Arakelov theory [28, 29, 31].
We show that Buchmann’s algorithm for computing the class number and regulator of a
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number field F has a natural description in terms of the Arakelov class group Pic0
F of F

and the set RedF of reduced Arakelov divisors. We show that Lenstra’s topological group
is essentially equal to the Arakelov class group of a real quadratic field. We also introduce
the oriented Arakelov class group P̃ic

0

F . This is a natural generalization of Pic0
F , useful for

analyzing Buchmann’s algorithm and for computing the units of the ring of integers OF

themselves rather than just the regulator.
The main results of the paper are to be found in sections 7 and 12. Here we discuss

the basic properties of reduced Arakelov divisors and Buchmann’s algorithm respectively.
In section 2 we introduce the Arakelov class group of a number field F . In section 3 we

study the étale R-algebra F ⊗Q R. In section 4 we discuss the relations between Arakelov
divisors, Hermitian line bundles and ideal lattices. In section 5 we define the oriented
Arakelov class group and in section 6 we give both Arakelov class groups a natural trans-
lation invariant Riemannian structure. The rest of the notes is devoted to computational
issues. Section 7 contains the main results. Here we introduce reduced Arakelov divisors
and prove their basic properties. In section 8, we work out the details for quadratic number
fields. In section 9 we present explicit examples illustrating various properties of reduced
divisors. In section 10 we discuss the computational aspects of reduced Arakelov divisors.
In section 11 we present a deterministic algorithm to compute the Arakelov class group.
Finally, in section 12 we present Buchmann’s algorithm from the point of view of Arakelov
theory. See [23] for the basic properties of algebraic number fields.

I thank the Clay Foundation for financial support during my stay at MSRI in the fall
of 2000, Hendrik Lenstra and Sean Hallgren for several useful remarks and YoungJu Choie
for inviting me to lecture on ‘infrastructure’ at KIAS in June 2001.

2. The Arakelov class group.

In this section we introduce the Arakelov class group of a number field F . This group is
analogous to the degree zero subgroup of the Picard group of a complete algebraic curve.
In order to have a good analogy with the geometric situation, we formally ‘complete’ the
spectrum of the ring of integers OF by adjoining primes at infinity. An infinite prime of F
is a field homomorphism σ : F −→ C, considered up to complex conjugation. An infinite
prime σ is called real when σ(F ) ⊂ R and complex otherwise. We let r1 and r2 denote the
number of real and complex infinite primes, respectively. We have that r1 +2r2 = n where
n = [F : Q].

An Arakelov divisor is a formal finite sum D =
∑

p npp +
∑

σ xσσ, where p runs over
the non-zero prime ideals of OF and σ runs over the infinite primes of F . The coefficients
np are in Z but the xσ can be any number in R. The Arakelov divisors form an additive
group, the Arakelov divisor group DivF . It is isomorphic to ⊕p Z × ⊕σ R. The principal
Arakelov divisor associated to an element f ∈ F ∗ is the divisor (f) =

∑
p npp +

∑
σ xσσ

with np = ordp(f) and xσ(f) = −log|σ(f)|. The principal Arakelov divisors form a
subgroup of DivF .

Since it is analogous to the Picard group of an algebraic curve, the quotient of DivF

by its subgroup of principal Arakelov divisors is denoted by PicF . A principal Arakelov
divisor (f) is trivial if and only if f is a unit of OF all of whose conjugates have absolute
value equal to 1. It follows that (f) is trivial if and only if f is contained in the group of
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roots of unity µF . Therefore there is an exact sequence

0 −→ µF −→ F ∗ −→ DivF −→ PicF −→ 0.

We call I =
∏

p p−np the ideal associated to an Arakelov divisor D =
∑

p npp +
∑

σ xσσ.
The ideal associated to the zero Arakelov divisor is the ring of integers OF . The ideal
associated to a principal Arakelov divisor (f) is the principal ideal f−1OF . Here and in
the rest of the paper we often call fractional ideals simply ‘ideals’. If we want to emphasize
that an ideal is integral, we call it an OF -ideal.

The map that sends a divisor D to its associated ideal I is a homomorphism from
DivF to the group of fractional ideals IdF of F . Its kernel is the group ⊕σ R of divisors
supported in the infinite primes. We have the following commutative diagram, the rows
and columns of which are exact.

0 0 0y y y
0 −→ O∗

F /µF −→ F ∗/µF −→ PidF −→ 0y y y
0 −→ ⊕

σ
R −→ DivF −→ IdF −→ 0y y y

0 −→ T −→ PicF −→ ClF −→ 0y y y
0 0 0

Here PidF denotes the group of principal ideals of F . The map F ∗/µF −→ DivF induces a
homomorphism from O∗

F /µF to ⊕σ R. This homomorphism is given by ε 7→ (−log|σ(ε)|)σ

and its cokernel is denoted by T .
The norm N(p) of a non-zero prime ideal p of OF is the order of its residue field OF /p.

The degree deg(p) of p is defined as log(N(p)). The degree of an infinite prime σ is equal
to 1 or 2 depending on whether σ is real or complex. The degree extends by linearity to
a surjective homomorphism deg : DivF −→ R. The norm N(D) of a divisor D is defined
as N(D) = edeg(D). The divisors of degree 0 form a subgroup Div0

F of DivF . By the
product formula, Div0

F contains the principal Arakelov divisors.

Definition 2.1. Let F be a number field. The Arakelov class group Pic0
F of F is the

quotient of Div0
F by its subgroup of principal divisors.

The degree map deg : DivF −→ R factors through PicF and the Arakelov class
group is the kernel of the induced homomorphism deg : PicF −→ R. We let (⊕σ R)0

denote the subgroup of divisors in ⊕σ R that have degree zero and T 0 the cokernel of the
homomorphism O∗

F −→ (⊕σ R)0. In other words, T 0 is the quotient of the vector space
{(vσ)σ ∈ ⊕σ R :

∑
σ deg(σ)vσ = 0} by the group of vectors {(log|σ(ε)|)σ : ε ∈ O∗

F }. By
Dirichlet’s unit theorem it is a compact real torus.
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Proposition 2.2. There is a natural exact sequence

0 −→ T 0 −→ Pic0
F −→ ClF −→ 0.

Proof. Since F has at least one infinite prime, the composite map Div0
F ↪→ DivF −→ IdF

is still surjective. The result now follows by replacing the groups DivF , PicF , T and ⊕σR
in the diagram above by their degree 0 subgroups.

The group T 0 is the connected component of the identity of the topological group Pic0
F .

It follows that Pic0
F , being an extension of the finite class group by T 0, is a compact real

Lie group of dimension r1 + r2 − 1.

Definition 2.3. The natural homomorphism Div0
F −→ IdF admits a section

d : IdF −→ Div0
F .

It is given by d(I) = D where D =
∑

p npp +
∑

σ xσσ is the Arakelov divisor for which we
have I =

∏
p p−np and xσ = − 1

n log(N(I)) for every infinite prime σ.

Proposition 2.4. Let d : IdF −→ Pic0
F denote the homomorphism that maps I to the

class of the divisor d(I). Then the sequence

0 −→ {f ∈ F ∗ : all |σ(f)| are equal}/µF −→ IdF
d−→ Pic0

F

is exact. Moreover, the image of d is dense in Pic0
F .

This proposition is not used in the rest of the paper. We do not prove it, because it
follows immediately from Proposition 6.4 below. The kernel of d is not a very convenient
group to work with. This is one of the reasons for introducing the oriented Arakelov
divisors in section 5.

Finally we remark that there is a natural surjective homomorphism A∗
F −→ DivF

from the idèle group A∗
F to the Arakelov divisor group. It follows that PicF is a quotient

of the idèle class group. We do not make any use of this fact in the rest of the paper.

3. Etale R-algebras.
Let F be a number field of degree n. In this section we study the R-algebra FR = F ⊗QR.

For any infinite prime σ of F , we write Fσ for R or C depending on whether σ is
real or complex. The natural map F −→

∏
σ Fσ that sends f ∈ F to the vector (σ(f))σ,

induces an isomorphism FR = F ⊗Q R ∼=
∏

σ Fσ of R-algebras. Let u 7→ u denote the
canonical conjugation of the étale algebra FR. In terms of the isomorphism FR

∼=
∏

σ Fσ,
it is simply the morphism that maps a vector u = (uσ)σ to u = (uσ)σ. In these terms it is
also easy to describe the set of invariants of the canonical conjugation. It is the subalgebra∏

σ R of
∏

σ Fσ.
For any u ∈ FR, we define the norm N(u) and trace Tr(u) of u as the determinant

and trace respectively of the n × n-matrix (with respect to any R-basis) of the R-linear
map FR −→ FR given by multiplication by u. In terms of coordinates, we have for
u = (uσ)σ ∈

∏
σ Fσ that Tr(u) =

∑
σ deg(σ)Re(uσ) while N(u) =

∏
σ u

deg(σ)
σ .

4



Being an étale R-algebra, FR admits a canonical Euclidean structure [13]. It is given
by the scalar product

〈u, v〉 = Tr(uv), for u, v ∈ FR.

This scalar product has the ‘Hermitian’ property 〈λu, v〉 = 〈u, λv〉 for u, v, λ ∈ FR. In
terms of coordinates, we have for u = (uσ)σ and v = (vσ)σ in FR

∼=
∏

σ Fσ that

〈u, v〉 =
∑

σ

deg(σ)Re(uσvσ).

We write ||u|| = 〈u, u〉1/2 for the length of u ∈ FR. For the element 1 ∈ F ⊂ FR we
have that ||1|| =

√
n. For every u ∈ FR, all coordinates of the product uu ∈

∏
σ Fσ are

non-negative real numbers. We define |u| to be the vector

|u| = (|uσ|)σ

in the group
∏

σ R∗
+ ⊂ F ∗

R. Here we let R∗
+ = {x ∈ R∗ : x > 0}. We have |u|2 = uu. The

map u 7→ |u| is a homomorphism. It is a section of the inclusion map
∏

σ R∗
+ ⊂ F ∗

R.

Proposition 3.1. Let F be a number field of degree n. For every u ∈ FR we have that
(i)

N(uu)1/n ≤ 1
nTr(uu);

(ii)
|N(u)| ≤ n−n/2||u||n.

In either case, equality holds if and only if u is contained in the subalgebra R of FR.

Proof. Since all coordinates of uu are non-negative, part (i) is just the arithmetic-
geometric mean inequality. The second inequality follows from (i) and the fact that
N(u) = N(u).

This proves the proposition.

4. Hermitian line bundles and ideal lattices.

In this section we introduce the Hermitian line bundles and ideal lattices associated to
Arakelov divisors and study some of their properties.

Let F be a number field of degree n and let D =
∑

p npp +
∑

σ xσσ be an Arakelov
divisor. By I =

∏
p p−np we denote the ideal associated to D in section 2 and by u the

unit (exp(−xσ))σ ∈
∏

σ R∗
+ ⊂ F ∗

R. This leads to the following definition.

Definition 4.1. Let F be a number field. A Hermitian line bundle is a pair (I, u) where
I is a fractional F -ideal and u a unit of the algebra FR

∼=
∏

σ Fσ all of whose coordinates
are positive real numbers.

As we explained above, to every Arakelov divisor D there corresponds a Hermitian line
bundle (I, u). This correspondence is bijective and we will often identify the two notions.
The zero Arakelov divisor corresponds to the trivial bundle (OF , 1). A principal Arakelov
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divisor (f) corresponds to the Hermitian line bundle (f−1OF , |f |) and the divisor d(I) asso-
ciated to a fractional ideal I at the end of section 2, corresponds to the pair (I,N(I)−1/n).
Note that N(I)−1/n is contained in the ‘diagonal’ subgroup R∗

+ of
∏

σ R∗
+. It follows from

the formulas for N(u) given in the previous section that the degree of an Arakelov divisor
D = (I, u) is equal to −log(|N(u)|N(I)).

Definition 4.2. Let F be a number field. An ideal lattice of F is a projective rank 1
OF -module L equipped with a real valued positive definite scalar product on L ⊗Z R
satisfying 〈λx, y〉 = 〈x, λy〉 for x, y ∈ L ⊗Z R and λ ∈ FR. Two ideal lattices L, L′ are
called isometric if there is an OF -isomorphism L ∼= L′ that is compatible with the scalar
products on L⊗Z R and L′ ⊗Z R.

Here λ 7→ λ is the canonical algebra involution of the étale R-algebra FR introduced in
section 3. Note that it need not preserve F . Note also that L ⊗Z R has the structure of
an FR-module. See [1, 13] for more on ideal lattices. There is a natural way to associate
an ideal lattice to an Arakelov divisor D. It is most naturally expressed in terms of
the Hermitian line bundle (I, u) associated to D. The OF -module I is projective and of
rank 1. Multiplication by u gives an OF -isomorphism with uI = {ux : x ∈ I} ⊂ FR. The
canonical scalar product on FR introduced in section 3 gives uI the structure of an ideal
lattice. Alternatively, putting

||f ||D = ||uf ||, for f ∈ I,

we obtain a scalar product on I itself that we extend by linearity to I ⊗Z R. In ad-
ditive notation, if f ∈ I and u ∈ F ∗

R is equal to exp((−xσ)σ), then uf is equal to the
vector (σ(f)e−xσ )σ ∈ FR and we have that ||f ||2D = ||uf ||2 =

∑
σ deg(σ)|σ(f)e−xσ |2 for

f ∈ I.
The ideal lattice corresponding to the zero Arakelov divisor, i.e. to the trivial bundle

(OF , 1), is the the ring of integers OF viewed as a subset of F ⊂ FR equipped with its
canonical Euclidean structure. The covolume of this lattice is equal to

√
|∆F |, where ∆F

denotes the discriminant of the number field F . The covolume of the lattice associated to
an arbitrary divisor D = (I, u) is equal to

covol(D) =
√
|∆F |N(I)|N(u)| =

√
|∆F |/N(D) =

√
|∆F |e−deg(D).

For any ideal I, the lattice associated to the Arakelov divisor d(I) = (I,N(I)−1/n) can be
thought of as the lattice I ⊂ F ⊂ FR equipped with the canonical scalar product of FR,
but scaled with a factor N(I)−1/n so that its covolume is equal to

√
|∆F |.

Proposition 4.3. Let F be a number field of discriminant ∆F .

(i) The map that associates the ideal lattice uI to an Arakelov divisor D = (I, u), induces
a bijection between the group PicF and the set of isometry classes of ideal lattices.

(ii) The same map induces a bijection between the group Pic0
F and the set of isometry

classes of ideal lattices of covolume
√
|∆F |.
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Proof. Let D = (I, u) be an Arakelov divisor and let D′ = D+(g) for some g ∈ F ∗. Then
we have D′ = (g−1I, u|g|) and multiplication by g induces and isomorphism g−1I ∼= I of
OF -modules. This map is also an isometry between the associated lattices since

||g−1f ||D′ = ||u|g|g−1f || = ||uf || = ||f ||D, for all f ∈ I ⊗Z R.

Here we use the fact that v = |g|g−1 satisfies vv = 1 and that therefore ||vh|| = Tr(vhvh) =
Tr(hh) = ||h|| for all h ∈ I⊗Z R. We conclude that the map that sends an Arakelov divisor
to its associated ideal lattice induces a well defined map from PicF to the set of isometry
classes of ideal lattices. This map is injective. Indeed, if D = (I, u) and D′ = (I ′, u′) give
rise to isometric lattices, then there exists g ∈ F ∗ so that I ′ = gI and ||gf ||D′ = ||f ||D
for all f ∈ I ⊗Z R. This means that ||u′gf || = ||uf || for all f ∈ I ⊗Z R = FR. For any
infinite prime σ, we let eσ ∈ FR be the idempotent for which σ(eσ) = 1 while σ′(eσ) = 0
for all σ′ 6= σ. Substituting f = eσ, we find that |σ(g)u′σ| = |uσ| for every σ. It follows
that |g| = u/u′, implying that D′ = D + (g) as required.

To see that the map is surjective, consider an ideal lattice L with Hermitian scalar
product 〈〈−,−〉〉 on L ⊗Z R = FR. We may assume that L is actually an OF -ideal.
The idempotent elements eσ in FR

∼=
∏

σ Fσ are invariant under the canonical involu-
tion. This implies that the eσ are pairwise orthogonal because 〈〈eσ, eσ′〉〉 = 〈〈e2

σ, eσ′〉〉 =
〈〈eσ, eσeσ′〉〉 = 0. Therefore the real numbers uσ = 〈〈eσ, eσ〉〉1/2 determine the metric
on I ⊗Z R. The Arakelov divisor (L, u) with u = (uσ)σ ∈

∏
σ R∗

+ is then mapped to the
isometry class of L.

This proves (i). Part (ii) follows immediately from this.

The following proposition is concerned with the lengths of the shortest non-zero vectors
in the lattices associated to Arakelov divisors.

Proposition 4.4. Let F be a number field of degree n and let D = (I, u) be an Arakelov
divisor. Then

(i) for every non-zero f in I we have that

||f ||D ≥
√

ne−
1
n deg(D).

Moreover, equality holds if and only if we have D = (fOF , λ|f |−1) for some λ > 0. In
other words, if and only if D is equal to the principal Arakelov divisor −(f), scaled
by a factor λ > 0;

(ii) there exists a non-zero f ∈ I such that |uσσ(f)| <
(

2
π

)r2/n covol(D)1/n for every σ
and hence

||f ||D ≤
√

n ·
(

2
π

)r2/ncovol(D)1/n.

Here r2 is the number of complex primes of F .
Proof. (i) Let f ∈ I. By Prop. 3.1 we have that ||f ||2D = ||uf ||2 ≥ n|N(uf)|2/n. Since
|N(f)| ≥ N(I) we find that

||f ||2D ≥ n|N(u)N(I)|2/n = ne−
2
n deg(D).
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The last inequality follows from the fact that deg(D) = − log |N(u)N(I)|. This proves the
first statement. By Prop. 1.3 equality holds if and only if all |uσσ(f)| are equal to some
λ > 0 and if I is the principal ideal generated by f . This implies that D is of the form
(f−1OF , |f |−1λ) as required.

To prove (ii) consider the set V = {(yσ)σ ∈ FR : |yσ| ≤
(

2
π

)r2/n covol(D)1/n for all σ}.
This is a bounded symmetric convex set of volume 2r1(2π)r2

(
2
π

)r2 covol(D) = 2ncovol(D).
By Minkowski’s Convex Body Theorem there exists a non-zero element f ∈ I for which
(uσσ(f))σ ∈ uI ⊂ FR is in V . This implies (ii).

This proves the proposition.

We mention the following special case of the proposition.

Corollary 4.5. Let D = (I, u) be an Arakelov divisor of degree 0. Then any non-zero
f ∈ I has the property that ||f ||D ≥

√
n, with equality if and only if D = −(f). On the

other hand, there exists a non-zero f ∈ I with ||f ||D ≤
√

n
(

2
π

)r2/n√|∆F |
1/n

.

Part (i) of Prop. 4.4 says that the lattices associated to Arakelov divisors D are rather
‘nice’. They are not very skew in the sense that they do not contain any non-zero vectors
that are extremely short with respect to covol(D)1/n. This property can be expressed by
means of the Hermite constant γ(D). The latter is defined as the square of the length of
the shortest non-zero vector in the lattice associated to D divided by covol(D)2/n. The
skewer the lattice, the smaller is its Hermite constant. The constant γ(D) only depends
on the class of D in PicF .

Corollary 4.6. Let F be a number field of degree n and let D = (I, u) be an Arakelov
divisor. Then

n

|∆F |1/n
≤ γ(D) ≤ n

(
2
π

)2r2/n
.

The lower bound is attained if and only if D is a principal divisor scaled by some λ > 0 as
in Prop. 4.4 (i).

The function h0(D) = log
(∑

f∈I exp(−π||f ||2D)
)

introduced in [31] and briefly dis-
cussed in section 10, is related to the Hermite constant γ(D). Indeed, for most Arakelov
divisors D = (I, u) the shortest non-zero vectors in the associated lattice are equal to
products of a root of unity by one fixed shortest vector. Moreover, for most D the con-
tributions of the zero vector and these vectors constitute the bulk of the infinite sum∑

f∈I exp(−π||f ||2D). Therefore, for most Arakelov divisors D the quantity (h0(D)−1)/wF

is close to exp(−πγ(D)covol(D)2/n). Here wF denotes the number of roots of unity in the
field F .
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5. The oriented Arakelov class group.

In this section we introduce the oriented Arakelov divisor group P̃icF associated to a
number field F .

In section 4 we have associated to an Arakelov divisor D a Hermitain line bundle (I, u).
Here I is an ideal and u is a unit in F ∗

R,+ =
∏

σ R∗
+. An oriented Hermitian line bundle is a

pair (I, u) where I is an ideal and u is an arbitrary unit in F ∗
R
∼=
∏

σ F ∗
σ . The corresponding

oriented Arakelov divisors are formal sums
∑

p npp +
∑

σ xσσ with np ∈ Z and xσ ∈ F ∗
σ .

They form a group D̃ivF and we have that

D̃ivF
∼= IdF × F ∗

R
∼= ⊕

p
Z×

∏
σ

F ∗
σ .

The principal oriented Arakelov divisor associated to f ∈ F ∗ is simply the oriented divisor
corresponding to the oriented Hermitian bundle (f−1OF , f), where the second coordinate
f is viewed as an element of F ∗

R. The cokernel of the injective homomorphism F ∗ −→ D̃ivF

is denoted by P̃icF . The inclusion DivF ⊂ D̃ivF admits the natural section D̃ivF −→ DivF

given by (I, u) 7→ (I, |u|). The degree deg(D) of an oriented Arakelov divisor D = (I, u)
is by definition the degree of the ‘ordinary’ Arakelov divisor (I, |u|). In this way principal
oriented Arakelov divisors have degree 0.

Definition 5.1. The quotient of the group D̃iv
0

F of oriented Arakelov divisors of degree 0
by the subgroup of principal divisors is called the oriented Arakelov class group. It is
denoted by P̃ic

0

F .

The commutative diagram below has exact rows and columns. The bottom row relates
the groups P̃ic

0

F and Pic0
F to one another.

0 0 0y y y
0 −→ µF −→ F ∗ −→ F ∗/µF −→ 0y y y
0 −→

∏
σ Kσ −→ D̃iv

0

F −→ Div0
F −→ 0y y y

0 −→ (
∏

σ Kσ)/µF −→ P̃ic
0

F −→ Pic0
F −→ 0y y y

0 0 0

Here Kσ denotes the maximal compact subgroup of F ∗
σ . In other words Kσ = {1,−1} if

σ is real, while Kσ = {z ∈ C∗ : |z| = 1} if σ is complex. Since Pic0
F and the groups Kσ
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are compact, it follows from the exactness of the bottom row of the diagram that P̃ic
0

F is
compact as well.

In order to see the topological structure of P̃ic
0

F better, we construct a second exact
sequence. Let F ∗

R, conn denote the connected component of 1 ∈ F ∗
R. It is isomorphic to

a product of copies of R∗
+ for the real primes and F ∗

σ = C∗ for the complex ones. It is
precisely the kernel of the homomorphism D̃ivF −→ IdF ×

∏
σ real{±1}, given by mapping

D = (I, u) to (I, sign(u)). Here sign(u) denotes the vector (sign(uσ))σ real.

Definition 5.2. By T̃ we denote the quotient of the group F ∗
R, conn by its subgroup O∗

F,+ =
{ε ∈ O∗

F : σ(ε) > 0 for all real σ}. Taking degree zero subgroups, we put (F ∗
R, conn)0 =

{u ∈ F ∗
R, conn : N(u) = 1} and T̃ 0 = (F ∗

R, conn)0/O∗
F,+.

The map T̃ −→ P̃icF given by v 7→ (OF , v) is a well defined homomorphism. So is
the map P̃icF −→ ClF,+ that sends the class of the divisor (I, u) to the narrow ideal class
of gI where g ∈ F ∗ is any element for which sign(g) = sign(u). Here the narrow ideal
class group ClF,+ is defined as the group of ideals modulo the principal ideals that are
generated by f ∈ F ∗

+ = {f ∈ F ∗ : σ(f) > 0 for all real σ}. It is a finite group.
The following proposition says that the groups T̃ and T̃ 0 are the connected components

of identity of P̃icF and P̃ic
0

F respectively. It provides an analogue to Proposition 2.2.

Proposition 5.3. Let F be a number field of degree n.
(i) The natural sequences

0 −→ T̃ −→ P̃icF −→ ClF,+ −→ 0

and

0 −→ T̃ 0 −→ P̃ic
0

F −→ ClF,+ −→ 0

are exact.

(ii) The groups T̃ and T̃ 0 are the connected components of identity of P̃icF and P̃ic
0

F

respectively. The group T̃ has dimension n while T̃ 0 is a compact torus of dimen-
sion n− 1.

Proof. (i) Let P̃idF denote the image of the map F ∗ −→ D̃ivF −→ IdF ×
∏

σ real{±1}.
This leads to the following commutative diagram with exact rows.

0 −→ O∗
F,+ −→ F ∗ −→ P̃idF −→ 0y y y

0 −→ F ∗
R, conn −→ D̃ivF −→ IdF ×

∏
σ real{±1} −→ 0.

The vertical maps in this diagram are all injective. An application of the snake lemma
shows that the sequence of cokernels is exact. This is the first exact sequence of (i).
Indeed, the kernel of the surjective homomorphism IdF ×

∏
σ real{±1} −→ ClF,+ given by

mapping a pair (I, s) to the narrow ideal class of gI where g ∈ F ∗ is any element for which

10



sign(g) = s, is precisely equal to P̃idF . The second exact sequence is obtained by taking
degree zero parts.

(ii) Since ClF,+ is finite and both groups T̃ and T̃ 0 are connected, the first statement is

clear. Since the Lie group F ∗
R, conn has dimension n, so do the groups T̃ and P̃ic

0

F . It

follows that the groups T̃ 0 and P̃ic
0

F have dimension n− 1.
This proves the proposition.

Note that the classes of two extended Arakelov divisors (I, u) and (J, v) are on the

same connected component of P̃ic
0

F if and only if J = gI for some g ∈ F ∗ for which
uσvσg(σ) > 0 for each real σ.

Definition 5.4. An embedded ideal lattice is an ideal lattice L together with an OF -linear
isometric embedding L ↪→ FR.

To every oriented Arakelov divisor D = (I, u) we associate the ideal lattice uI together
with the embedding uI ⊂ FR. Two embedded ideal lattices are called isometric if there is
an isometry of ideal lattices that commutes with the embeddings. We have the following
analogue of Proposition 4.3.

Proposition 5.5. Let F be a number field of discriminant ∆F . Then
(i) the map that associates to an oriented Arakelov divisor D = (I, u) its associated

embedded ideal lattice, induces a bijection between the oriented Arakelov class group
P̃icF and the set of isometry classes of embedded ideal lattices;

(ii) the same map induces a bijection between P̃ic
0

F and the set of isometry classes of
embedded ideal lattices of covolume

√
|∆F |.

Proof. If two oriented Arakelov divisors D = (I, u) and D′ = (I ′, u′) differ by a principal
divisor (f−1OF , f), then multiplication by f induces an isometry between the embedded
lattices uI and u′I ′. Therefore the map in (i) is well defined. If the embedded lattices
uI and u′I ′ are isometric, then this isometry is given by multiplication by some x ∈ F ∗

R.
Then f = u−1xu′ is contained in F ∗ and we have that D −D′ = (f−1OF , f). This shows
that the map is injective. To see that the map is surjective, let I be a fractional ideal and
let ι : I ↪→ FR be an OF -linear embedding. Tensoring I with R, we obtain an FR-linear
isomorphism FR

∼= I ⊗Z R −→ FR which is necessarily multiplication by some u ∈ F ∗
R.

Therefore ι(I) = uI and the oriented divisor (I, u) maps to the embedded ideal lattice
ι : I ↪→ FR.

This proves the proposition

We will not use this in the rest of the paper, but note that there is a natural surjective
homomorphism from the idèle group A∗

F to the oriented Arakelov divisor group D̃ivF . It
follows that the group P̃icF is a quotient of the idèle class group.

11



6. Metrics on Arakelov class groups.

Let F be a number field. In this section we provide the Arakelov class groups PicF and
P̃icF with translation invariant Riemannian structures.

By the diagram in section 2, the connected component T of the group PicF is isomor-
phic to ⊕σ R modulo the closed discrete subgroup Λ = {(log |σ(ε)|)σ : ε ∈ O∗

F }. Therefore
the tangent space at 0 is isomorphic to ⊕σ R. Identifying this vector space with the sub-
algebra

∏
σ R of FR =

∏
σ Fσ, it inherits the canonical scalar product from FR. Since

this R-valued scalar product is positive definite, both groups T and PicF are in this way
equipped with a translation invariant Riemannian structure.

For u ∈
∏

σ R∗
+ ⊂ F ∗

R we let log(u) denote the element (log(σ(u)))σ ∈
∏

σ R ⊂ FR.
We have that

|| log(u)||2 =
∑

σ

deg(σ)| log(σ(u))|2.

Definition 6.1. For u ∈ T we put

||u||Pic = min
u′∈F∗

R,+
u′≡u (mod Λ)

|| log(u′)||,

= min
ε∈O∗

F

|| log(|ε|u)||.

Every divisor class in T is represented by a divisor of the form D = (OF , u) for some
u ∈ ⊕σ R∗

+. Here u is unique up to multiplication by units ε ∈ O∗
F . For such a divisor

class in T we define
||D||Pic = ||u||Pic.

The function ||u||Pic on T satisfies the triangle inequality. It gives rise to a distance function
that induces the natural topology of PicF . The distance is only defined for divisor classes
D and D′ that lie on the same connected component. By Prop. 2.2, the class of the
difference D − D′ is then equal to (OF , u) for some unique u ∈ T and we define the
distance ||D − D′||Pic between D and D′ as ||u||Pic. The closed subgroups T 0 and Pic0

F

inherit their Riemannian structures from PicF .
The Euclidean structures of the ideal lattices corresponding to Arakelov divisors and

the metric on PicF are not unrelated. The following proposition says that the difference
between the Euclidean structures of two Arakelov divisors D,D′ is bounded in terms
of ||D −D′||Pic.

Proposition 6.2. Let F be a number field and let D = (I, u) and D′ = (I, u′) be two
Arakelov divisors. Then there exists a unit ε ∈ O∗

F for which the divisor D′′ = (I, u′|ε|)
satisfies

e−||D−D′′||Pic ≤ ||x||D
||x||D′′

≤ e||D−D′′||Pic , for every x ∈ I.

Note that the classes of D′ and D′′ in PicF are the same, so that we have ||D −D′||Pic =
||D −D′′||Pic.
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Proof. Let ε ∈ O∗
F be such that the expression

∑
σ deg(σ)log|σ(ε)u′σ/uσ|2 is minimal.

Let D′′ = (I, |ε|u′). Putting v = u′|ε|/u we have as a consequence

||D −D′′||2Pic =
∑

σ

deg(σ)log|vσ|2.

For any x ∈ I we have

||x||2D′′ = ||u′εx||2 = ||vux||2 =
∑

σ

deg(σ)|uσvσσ(x)|2 ≤

≤ max
σ

|vσ|2
∑

σ

deg(σ)|uσσ(x)|2 =
(
max

σ
|vσ|
)2

||x||2D.

Since we have

log
(
max

σ
|vσ|
)

= max
σ

log |vσ| ≤ max
σ

|log |vσ|| ≤ ||D −D′′||Pic,

the first inequality follows. The second one follows by symmetry.

We now define a similar metric on the oriented Arakelov class group. By Prop. 5.3,
the connected component of P̃icF is T̃ = F ∗

R, conn/O∗
F,+. We recall that F ∗

R, conn is the
connected component of identity of the group F ∗

R. It is isomorphic to a product of copies
of R∗

+, one for each real prime, and C∗ one for each complex prime. The group O∗
F,+ is

the subgroup of ε ∈ O∗
F for which σ(ε) > 0 for every real infinite prime σ.

The exponential homomorphism exp : FR −→ F ∗
R is defined in terms of the usual

exponential function by exp(u) = (exp(uσ))σ for u = (uσ) ∈ FR
∼=
∏

σ Fσ. The image
of the exponential function is precisely the group F ∗

R, conn. The counterimage of O∗
F,+

is a discrete closed subgroup Λ of FR. We have a natural isomorphism of Lie groups
exp : FR/Λ

∼=−→F ∗
R, conn/O∗

F,+ = T̃ . Therefore the tangent space of T̃ at 0 is isomorphic
to FR. The canonical scalar product on FR provides both groups T̃ and P̃ic with a
translation invariant Riemannian structure.

Definition 6.3. For u ∈ T̃ we put

||u||
P̃ic

= min
y∈FR

exp(y)≡u (mod O∗
F,+

)

||y||

Explicitly, for u ∈ F ∗
R =

∏
σ F ∗

σ we let log(u) denote the element (log(σ(u))σ ∈
∏

σ Fσ ⊂
FR. Here we use the principal branch of the complex logarithm. We have that

||u||
P̃ic

= min
ε∈O∗

F,+

|| log(εu)|| = min
ε∈O∗

F,+

∑
σ

deg(σ)| log(σ(εu))|2.

Every divisor class in T̃ can be represented by a divisor of the form D = (OF , u) for
some u ∈ F ∗

R, conn. Here u is unique up to multiplication by units ε ∈ O∗
F,+. For any

divisor D of the form (OF , u) with u ∈ T̃ we define

||D||
P̃ic

= ||u||
P̃ic

.
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The function ||u||
P̃ic

on T̃ satisfies the triangle inequality and this gives rise to a distance

function that induces the natural topology on P̃icF . The distance is only defined for divisor
classes D and D′ that lie on the same connected component. By Prop. 5.3, the class of
the difference D − D′ is then equal to (OF , u) for some unique u ∈ T̃ and we define the
distance ||D −D′||

P̃ic
between D and D′ as ||u||

P̃ic
.

The closed subgroups T̃ 0 and P̃ic
0

F inherit their Riemannian structures from PicF .
We leave to the task of proving an ‘oriented’ version of Proposition 6.2 the reader.

The morphism d : IdF −→ D̃iv
0

F given by d(I) = (I,N(I)−1/n) is a section of the

natural map D̃iv
0

F −→ IdF . The embedded ideal lattice associated to d(I) is the ideal
lattice I ⊂ FR scaled by a factor N(I)−1/n. This lattice has covolume

√
|∆F |.

Next we prove an oriented version of Proposition 2.4. It says that the classes of the
divisors of the form d(I) are dense in P̃ic

0

F and it implies Proposition 2.4. The exactness
of the first sequence of [17, section 9] is a special case.

Proposition 6.4. Let F be a number field of degree n. Let d : IdF −→ P̃ic
0

F be the map

that sends I to the class of the oriented Arakelov divisor d(I) in P̃ic
0

F . Then the sequence

0 −→ IdQ −→ IdF
d−→ P̃ic

0

F

is exact. The image of the map d is dense in P̃ic
0

F .

Proof. Every ideal in IdQ is generated by some f ∈ Q∗
>0. Let f ∈ Q∗

>0. Then d maps
the F -ideal fOF to the class of the oriented Arakelov divisor (fOF , |N(f)|−1/n). Since

we have |N(f)| = |f |n, this divisor is equal to (fOF , f−1). Therefore its image in P̃ic
0

F

is trivial. Conversely, suppose that a fractional ideal I has the property that the class
of (I,N(I)−1/n) is trivial in P̃ic

0

F . That means that I = fOF for some f ∈ F ∗ and
that f = N(I)1/n. In other words, σ(f) = N(I)1/n for all infinite primes σ. This implies
that all conjugates of f are equal, so that f ∈ Q∗. This shows that the sequence is exact.

To show that the image of d is dense, we let 0 < ε < 1 and pick D = (I, u) ∈ D̃iv
0

F .
Note that we have N(I)|N(u)| = 1. Consider the set

B = {(vσ)σ ∈ FR : |vσ − uσ| < ε|uσ| for all σ}.

Then B is a an open subset of F ∗
R and all v ∈ B have the same signature as u. Since F is

dense in FR, there is an element f ∈ B ∩ F .
The difference between d(fI) and the divisor D is equal to (fOF , N(fI)−1/nu−1)

which is equivalent to the Arakelov divisor (OF , v) where v = N(f/u)−1/nu−1f ∈ F ∗
R.

Therefore the distance between D and d(f−1I) is at most ||v||
P̃ic

. Since |σ(f)
uσ

− 1| < ε,
it follows from the Taylor series expansion of the principal branch of the logarithm that
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|log(σ(f)
uσ

)| < ε
1−ε for all σ and hence 1

n |log(N(f)
N(u) )| <

ε
1−ε . It follows that we have

||v||
P̃ic

≤
√

n max
σ

|log(N(f/u)−1/nu−1
σ σ(f))|,

≤
√

n

(
1
n |log(

N(f)
N(u)

)|+ max
σ

|log(
σ(f)
uσ

)|
)

,

≤ 2ε
√

n

1− ε
.

This implies that the image of d is dense, as required.

Finally we compute the volumes of the compact Riemannian manifolds Pic0
F and P̃ic

0

F .

Proposition 6.5. Let F be a number field of degree n and discriminant ∆F . Then

(i)

vol(Pic0
F ) =

wF
√

n

2r1(2π
√

2)r2
· |∆F |1/2 · Res

s=1
ζF (s).

(ii)

vol(P̃ic
0

F ) =
√

n · |∆F |
1/2 · Res

s=1
ζF (s).

Here r1 is the number of real primes and r2 is the number of complex primes of F . By
wF we denote the number of roots of unity and by ζF (s) the Dedekind zeta function
of F .

Proof. (i)

The subspace (⊕σR)0 of divisors of degree 0 is the orthogonal complement of 1 in the
subalgebra

∏
σ R of FR. Using the fact that ||1|| =

√
n, one checks that the volume of Pic0

F

is equal to
√

n 2−r2/2RF where RF is the regulator of F . It follows from the exact sequence
of Prop. 2.2 that the compact group Pic0

F has volume
√

n 2−r2/2hF RF where hF = #ClF
is the class number of F . The formula [23] for the residue of the zeta function in s = 1
now easily implies (i).
(ii) Since the natural volume of the group Kσ is 2 or 2π

√
2 depending on whether σ is

real or complex, it follows from the commutative diagram following Definition 5.1 that the
volume of vol(P̃ic

0

F ) is equal to 2r1(2π
√

2)r2/wF times Pic0
F . This implies (ii).
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7. Reduced Arakelov divisors.
Let F be a number field of degree n. In this section we introduce reduced Arakelov divisors
associated to F . These form a finite subset of Div0

F . The main result of this section is that

the image of this set in the groups Pic0
F and P̃ic

0

F is in a certain sense regularly distributed.
The results of this section extend work by Lenstra [17] and Buchmann and Williams [5]

and make certain statements by Buchmann in [3, 7, 8] more precise. In particular, Theo-
rems 7.4 and 7.6 and Corollary 7.9 extend [3, section 2], [5, Prop.2.7] and [7, section 3.3].
Note that in deducing the corollaries below we did not make any particular effort to obtain
the best possible estimates. They can most certainly be improved upon.

Let I be a fractional ideal. A non-zero element f ∈ I is called minimal if the only
element g ∈ I for which one has |σ(g)| < |σ(f)| for all infinite primes σ, is g = 0. If f ∈ I
is minimal, then for every h ∈ F ∗, the element hf is minimal in the ideal hI. In particular,
if h ∈ O∗

F , the element hf is minimal in the same ideal I. Therefore there are, in general,
infinitely many minimal elements in I.

If D = (I, u) is an Arakelov divisor, then the minimal elements f ∈ I are precisely the
ones for which the open boxes {(yσ)σ ∈ FR : |yσ| < |uσσ(f)| for all σ} contain only the
point 0 of the lattice uI. Note however that the notion of minimality depends only on I
and is independent of the metric induced by the element u. Shortest elements f ∈ I are the
elements for which ||f ||D = min{||g||D : g ∈ I − {0}}. This notion depends on the divisor
D = (I, u) and hence on the lattice uI. It does not merely depend on I. Since ||g||D = ||ug||
for each g ∈ I, the vectors uf are the shortest non-zero vectors of the lattice uI associated
to D. The number of shortest elements in I is always finite. Shortest vectors are clearly
minimal, but the converse is not true. It may even happen that a minimal element f ∈ I
is not a shortest element of the lattice D = (I, u) for any choice of u. See section 9 for an
explicit example.
Definition. An Arakelov divisor or oriented Arakelov divisor D in DivF is called reduced
if it is of the form D = d(I) = (I,N(I)−1/n) for some fractional ideal I, and if 1 is a
minimal element of I. The set of reduced Arakelov divisors is denoted by RedF .

Since reduced Arakelov divisors have degree zero, the covolume of the lattices associ-
ated to reduced Arakelov divisors are equal to

√
|∆F |. With respect to the natural metric,

1 ∈ OF is a shortest and hence minimal element. Therefore the trivial Arakelov divisor
(OF , 1) is reduced. In general, if D = d(I) is reduced, the element 1 ∈ I is merely minimal
and need not be a shortest element. However, the next proposition shows that it is not
too far away from being so.

Proposition 7.1. Let F be a number field of degree n and let D = d(I) = (I,N(I)−1/n)
be a reduced Arakelov divisor. Then we have

||1||D ≤
√

n||x||D, for all non-zero x ∈ I.

In particular, the element 1 ∈ I is at most
√

n times as long as the shortest element in I.

Proof. We have that ||1||D =
√

nN(I)−1/n. Since 1 ∈ I is minimal, every non-zero
x ∈ I has the property that |σ(x)| ≥ 1 for some embedding σ : F −→ C. Therefore
||x||D ≥ N(I)−1/n|σ(x)| ≥ N(I)−1/n. This proves the proposition.
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If D = (I, u) is an Arakelov divisor and f ∈ I is minimal, then 1 ∈ f−1I is again
minimal and the divisor d(f−1I) = (f−1I,N(fI−1)1/n) is reduced. In particular, if f ∈ I
is a shortest element, then the divisor d(f−1I) is reduced. Note however that even though
the element 1 ∈ f−1I is minimal, it need not be a shortest element. Indeed, even if it is
true that 1 is a shortest vector of the lattice associated to (f−1I, |f |−1u), it may not be a
shortest vector of the lattice d(f−1I) = (f−1I, N(fu−1)1/n), which has a different metric.
In the section 9 we present an explicit example of this phenomenon.

It is not so easy to say in terms of the associated ideal lattice uI precisely what it means
that a divisor D = (I, u) is reduced. We make the following imprecise observation. When
1 ∈ I is not merely minimal, but happens to be a shortest element in I, then all roots of
unity in F are also shortest elements in I. Usually, these are the only shortest elements in I.
In that case the arithmetic-geometric mean inequality implies that the Hermite constant
γ(D), viewed as a function on Pic0

F attains a local minimum at D = (I,N(I)−1/n). So,
the lattices corresponding to reduced divisors are the “skewest” OF -lattices around. But
this holds only usually and locally.

It is convenient to introduce the following notation.

Definition. Let F be a number field. Let ∆F denote its discriminant and r2 its number
of complex infinite primes. Then we put

∂F =
(

2
π

)r2 √
|∆F |.

Proposition 7.2. Let F be a number field of degree n.
(i) Let I be a fractional ideal. If d(I) = (I,N(I)−1/n) is a reduced Arakelov divisor, then

the inverse I−1 of I is an OF -ideal of norm at most ∂F .
(ii) The set RedF of reduced Arakelov divisors is finite.

(iii) The natural map RedF −→ P̃ic
0

F is injective.

Proof. Since 1 ∈ I, the ideal I−1 is contained in OF . By Prop. 4.4 (ii) there exists a
non-zero f ∈ I for which |N(I)−1/nσ(f)| < ∂

1/n
F for each σ. Therefore, if N(I−1) > ∂F ,

we have that |σ(f)| < 1 for each σ, contradicting the minimality of 1 ∈ I. This proves (i).
Part (ii) follows at once from (i) and the fact that there are only finitely many OF -ideals
of bounded norm.

To prove (iii), suppose that the reduced Arakelov divisors D = d(I) and D′ = d(I ′)

have the same image in P̃ic
0

F . Then there exists f ∈ F ∗ so that I ′ = fI and N(I ′)1/n =
N(I)1/nf . As in the proof of Prop. 5.3, it follows that all conjugates of f are equal and
hence that f ∈ Q∗. Since both I and I ′ contain 1 as a minimal vector, this implies that
f = ±1. Since f = N(I ′I−1)1/n > 0, we have that f = 1 and hence D = D′ as required.

Part (iii) of Proposition 7.2 does not hold when we replace P̃ic
0

F by Pic0
F . See Exam-

ple 9.3 below for an example. Incidentally, Theorem 7.7 below strengthens the statement
considerably.

For every divisor D = (I, u) of degree zero consider the following set of divisors of
degree zero:

ΣD = {(I, v) ∈ Div0
F : log(vσ) ≤ 1

n log(∂F ) for all σ}.
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If N(I−1) ≤ ∂F , the set ΣD is a non-empty simplex. Indeed, under this condition ΣD

contains the divisor (I,N(I)−1/n) and any element of ΣD has the form (I, N(I)−1/n) +
(OF , w) with w running over the exponentials of the vectors y ∈ (⊕σR)0 satisfying

yσ ≤
1
n

(log(∂F ) + log(N(I))) , for every σ.

Since
∑

σ deg(σ)yσ = 0, the set ΣD is a bounded simplex.
The following proposition expresses the notion of a reduced divisor in terms of these

simplices.

Proposition 7.3. An Arakelov divisor of the form D = d(I) = (I,N(I)−1/n) with 1 ∈ I,
is reduced if and only if there is no other divisor D′ = d(I ′) with 1 ∈ I ′ for which the
image of the simplex ΣD in Pic0

F is contained in the image of ΣD′ .

Proof. Suppose that D = (I,N(I)−1/n) is reduced and that for some divisor D′ =
(I ′, N(I ′)−1/n) with 1 ∈ I ′ the image in Pic0

F of ΣD is contained in the image of ΣD′ .
Then D and D′ lie on the same component of Pic0

F . This implies that I ′ = fI for some
f ∈ F ∗. Since 1 ∈ I is minimal, so is f ∈ I ′. The simplex ΣD′ or rather its image in Pic0

F

is equal to the set

{(I, v/|f |) : v satisfies log(vσ/|σ(f)|) ≤ 1
n log(∂F )}.

Since ΣD ⊂ ΣD′ , we have for each σ that log(vσ/|σ(f)|) ≤ 1
n log(∂F ) whenever log(vσ) ≤

1
n log(∂F ). This implies that |σ(f)| ≥ 1 for every σ, contradicting the minimality of f ∈ I ′.

Conversely, suppose that D = (I,N(I)−1/n) is not reduced. This means that 1 ∈ I
is not minimal. Let g ∈ I such that |σ(g)| ≤ 1 for all σ. Consider the OF -ideal I ′ =
g−1I. Then ΣD ⊂ ΣD′ . Indeed, if (I, v) ∈ ΣD then log(vσ) ≤ 1

n log(∂F ) and hence
log(vσ|σ(g)|) ≤ 1

n log(∂F ). Since (I, v) is equivalent to the divisor (I ′, v|g|), this means
precisely (I, v) is contained in ΣD′ .

This proves the proposition.

In the rest of this section we study the distribution of the image of the set RedF in
the compact groups Pic0

F and P̃ic
0

F and estimate its size. First we look at the image of the
set RedF in Pic0

F . Theorem 7.4 says that RedF is rather dense in Pic0
F .

Theorem 7.4. Let F be a number field of degree n admitting r2 complex infinite primes.
Then
(i) for any Arakelov divisor D = (I, u) of degree 0 there is a reduced divisor D′ and an

element f ∈ F ∗ so that
D −D′ = (f) + (OF , v)

with

log |vσ| ≤
1
n

log(∂F ).

In particular, we have that

||D −D′||Pic ≤ log(∂F ), for each σ;

(ii) the natural map
∪
D

ΣD −→ Pic0
F

is surjective. Here D runs over the reduced Arakelov divisors.
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Proof. By Minkowski’s Theorem (Prop. 4.4 (ii)), there is a non-zero element f ∈ I

satisfying |uσσ(f)| ≤ ∂
1/n
F for every σ. Then there is also a shortest and hence a minimal

such element f . The divisor D′ = d(f−1I) is then reduced. It lies on the same component
of Pic0

F as D. We have that
D −D′ = (f) + (OF , v)

where v is the vector (vσ)σ ∈
∏

σ R∗
+ with vσ = uσ|σ(f)|N(f−1I)1/n and hence log |vσ| =

log |uσσ(f)|+ 1
n log(N(f−1I)) for every σ. Since N(f−1I) ≤ 1, this implies that log |vσ| ≤

log |uσσ(f)| which by assumption is at most 1
n log(∂F ) as required.

Since
∑

σ log(vσ) = 0, Lemma 7.5 below implies that

||D −D′||2Pic = ||v||2Pic ≤ n(n− 1)
(

1
n

log(∂F )
)2

.

This proves (i). Part (ii) is merely a reformulation of part (i).

Lemma 7.5. Let xi ∈ R for i = 1, . . . , n. Suppose that
∑n

i=1 xi = 0 and that x ∈ R has
the property that xi ≤ x for all i = 1, . . . , n. Then we have

∑n
i=1 x2

i ≤ n(n− 1)x2.

We leave the proof of this lemma to the reader. The theorem says that Pic0
F can be

covered with simplices ΣD centered in the reduced divisors D. We use the Theorem to
estimate the volume of the Arakelov class group Pic0

F in terms of the number of reduced
divisors.

Corollary 7.6. Let F be a number field of degree n with r1 real and r2 complex infinite
primes. We have that

vol(Pic0
F ) ≤ 2−

r2
2 nr2− 1

2

(n− 1)!
(log(∂F ))r1+r2 #RedF ,

≤ (log |∆F |)n#RedF .

Proof. Let D = d(I) = (I,N(I)−1/n) be reduced divisor. Then the set ΣD is given by

ΣD = {(I,N(I)−1/n) + (OF , v) : log(vσ) ≤ 1
n

(log(∂F ) + log(N(I)))}.

By Prop. 7.2 (i) we have that N(I−1) ≤ ∂F . This implies that the set ΣD is a non-
empty simplex of volume equal to

(
1
n log(∂F N(I))

)r1+r2 times the volume of the standard
simplex {(yσ) ∈ ⊕σ R :

∑
σ yσ = 0 and yσ ≤ 1 for each σ}, which one checks to be equal

to 2−
r2
2 nn− 1

2 /(n− 1)!. This leads to the inequality

vol(Pic0
F ) ≤ 2−

r2
2 nn− 1

2

(n− 1)!

∑
D

(
1
n

log(∂F N(I))
)r1+r2

Here the sum runs over the reduced divisors D = (I,N(I)−1/n) of F .
Since N(I) ≤ 1, the first estimate follows follows. The second inequality follows by a

rather crude estimate from the first one. This proves the corollary.

Next we prove some kind of converse to Theorem 7.4. The following theorem and its
corollary say that the image of the set RedF is rather sparse in the group P̃ic

0

F . Recall
that F ∗

+ = {x ∈ F ∗ : σ(x) > 0 for all real σ}.
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Theorem 7.7. Let F be a number field.

(i) Let D and D′ be two reduced divisors in D̃iv
0

F . If there exists an element f ∈ F ∗
+ for

which
D −D′ + (f) = (OF , v)

with | log(vσ)| < log(4
3 ) for each σ, then we have that D = D′ in D̃iv

0

F . Similarly, if

||v||
P̃ic

< log(4
3 ), we have that D = D′ in D̃iv

0

F .

(ii) The natural map

∪
D′∈RedF

{D′ + (OF , v) : v ∈ (F ∗
R, conn)0 and | log(vσ)| < 1

2 log(4
3 ) for each σ}y

P̃ic
0

F

is injective.

Proof. Suppose that D = d(I) and D′ = d(I ′) are two reduced divisors with the property
that D − D′ + (f) = (OF , v) with f ∈ F ∗ for which σ(f) > 0 for all σ. By Prop.5.3,

the images of D and D′ in P̃ic
0

F lie on the same connected component of P̃ic
0

F . We put
λ = N(I/I ′)1/n. Then σ(f)/λ = vσ. Since |log(vσ)| < log(4

3 ), we have that

|σ(f)
λ

− 1| = |vσ − 1| = |exp(log(vσ))− 1| ≤ exp|log(vσ)| − 1 < exp(log( 4
3 ))− 1 = 1

3 ,

and hence
|σ(f)− λ| < 1

3λ, for every σ.
Since D and D′ are reduced, the element 1 is minimal in both I and I ′. Therefore both 1
and f are minimal in fI ′ = I.

If λ is small, i.e., if 0 < λ < 1
2 , we have that |σ(f)| ≤ |σ(f)−λ|+|λ| < 1

3λ+λ < 4
3 ·

1
2 < 1

for each σ. In other words, |σ(f)| < |σ(1)| for all σ, contradicting the fact that 1 ∈ I is
minimal. If λ is large, i.e., if λ > 3

2 , we have that |σ(f)| ≥ |λ|−|σ(f)−λ| ≥ λ− 1
3λ > 2

3 ·
3
2 = 1

for each σ. In other words, |σ(1)| < |σ(f)| for all σ, contradicting the fact that f ∈ I is a
minimal vector.

Therefore 1
2 ≤ λ ≤ 3

2 . This implies that |σ(f−1)| ≤ |σ(f)−λ|+|λ−1| < 1
3λ+|λ−1| ≤

1
3 ·

3
2 + 1

2 = 1 = |σ(1)| for all σ. Since 1 ∈ I is a minimal vector, this implies that f −1 = 0.
Therefore I = I ′ and hence D = D′. This proves the first statement.

If we know that ||v||
P̃ic

< log(4
3 ), then there is a totally positive unit ε for which

| log(σ(ε)vσ)| < log( 4
3 ) for each σ. Replacing f by εf if necessary, we may then assume

that | log(vσ)| < log( 4
3 ) for each σ and we are back in the earlier situation. This proves (i).

Part (ii) follows, because (i) implies that the sets
{D′ + (OF , v) : v ∈ (F ∗

R, conn)0 and | log(vσ)| < 1
2 log( 4

3 ) for each σ}

map injectively to P̃ic
0

F and that their images are mutually disjoint. This proves the
theorem.

Corollary 7.8. Let F be a number field of degree n. Then we have that #RedF ≤
vol(P̃ic

0

F ) · (4n)
n
2 .
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Proof. Theorem 7.7 (ii) implies that the volume of P̃ic
0

F is at least #RedF times the
volume of the simplex {v ∈ ((F ∗

R, conn)0 : | log(vσ)| < 1
2 log(4

3 ) for each σ}, which is equal
to

2−
r2
2 nr2− 1

2

(n− 1)!
(

1
2 log(4

3 )
)r1+r2

.

Since this is at least (4n)−
n
2 , the result follows.

Corollary 7.9. There is a constant c > 0, so that for every number field F of degree n,
the number of reduced divisors contained in a ball of radius 1 in Pic0

F is at most (cn)n/2.

Proof. The reduced divisors whose images in Pic0
F are contained in a ball of radius 1,

are contained in a subset S of P̃ic
0

F of volume 2r1(2π
√

2)r2/wF times the volume of a unit
ball in Pic0

F . By Theorem 7.7, the balls of radius 1
2 log( 4

3 ) centered in reduced divisors, are

mutually disjoint in P̃ic
0

F . Comparing the volume of the union of the disjoint balls with
the volume of S leads to the estimate.

Corollary 7.10. Let F be a number field of degree n. Then we have that

(log|∆F |)−n ≤ #RedF

vol(Pic0
F )

≤
(
8πn

√
2
)n

2
.

Proof. Since the volume of P̃ic
0

F is 2r1(2π
√

2)r2/wF times the volume of Pic0
F , the in-

equalities follow from Corollaries 7.6 and 7.8 respectively. This proves the corollary

We recall the following estimates for the volume of Pic0
F . They say that in a sense

the volume of Pic0
F is approximately equal to

√
|∆F |.

Proposition 7.11. Let n ≥ 1. Then for every number field F of degree n we have that
(i)

vol(Pic0
F ) ≤

√
|∆F | (log|∆F |)n−1 ;

(ii) (GRH) there exists a constant c > 0 only depending on the degree n so that

vol(Pic0
F ) ≥ c

√
|∆F |/loglog|∆F |.

Proof. Part (i) follows from Corollary 7.7, the fact that for every reduced divisor d(I)
the ideal I−1 is integral and has norm at most ∂F =

(
2
π

)r2
√
|∆F | and the estimate for

the number of OF -ideals of bounded norm provided by Lenstra in [18, Thm.6.5]. Under
assumption of the generalized Riemann Hypothesis (GRH) for the zeta function of the
normal closure of F , Buchmann and Williams [6, (3.2)] obtained the estimate in (ii). This
proves the proposition.
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8. Quadratic fields.

Since the class group of Q is trivial and since we have Z∗ = {±1}, the group Pic0
Q is trivial

and the degree map induces an isomorphism PicQ ∼= R. The narrow class group of Q is

also trivial and it follows from Proposition 5.1 that P̃ic
0

Q = 0 and that P̃icQ is isomorphic
to R∗.

This is the whole story as far as Q is concerned. In this section we briefly work out the
theory of the previous sections for quadratic number fields. For these fields the language
of binary quadratic forms is often used [17, 26].

Example 8.1. For complex quadratic fields F , the torus T 0 of section 2 is trivial so that
the group Pic0

F is canonically isomorphic to the class group ClF of F . The group P̃ic
0

F

is an extension of ClF by a circle group of length 2π
√

2/wF . Here wF = 2 except when
F = Q(i) or Q( 1+

√
−3

2 ), in which case wF = 4 or 6 respectively.
We describe the reduced Arakelov divisors of F . Let D = (I,N(I)−1/2) be reduced.

The fact that 1 is a minimal element of I simply means that it is a shortest vector in
the corresponding lattice in FR

∼= C. We write I = Z + fZ for some f in the upper
half plane {z ∈ C : Im(z) > 0}. Since OF · I ⊂ I, we have that f = b+

√
∆F

2a for certain
a, b ∈ Z, a > 0 and that b2 − 4ac = ∆F for some c ∈ Z. The OF -ideal I−1 is generated by
a and b+

√
∆F

2 and has norm a. For complex quadratic fields, the simplices ΣD introduced
in section 6 are simply points.

Since f is unique up to addition of an integer, the SL2(Z)-equivalence class of the
binary quadratic form N(X + fY )/N(I) = aX2 + bXY + cY 2 is well defined. The form
has discriminant ∆F . If we choose f to lie in the usual fundamental domain for the
action of SL2(Z) on the upper half plane, the corresponding quadratic form is reduced in
the sense of Gauss. There is a slight ambiguity here. If |f | = 1, the reduced Arakelov
divisors d(Z + fZ) and d(Z + fZ) give rise to the quadratic forms aX2 + bXY + aY 2 and
aX2−bXY +aY 2 respectively. If f is not a root of unity, the Arakelov divisors are distinct,
but the two quadratic forms are SL2(Z)-equivalent and only one of them is reduced. Apart
from this ambiguity, the map that associates to a reduced Arakelov divisor its associated
reduced quadratic form, is a bijection.

Example 8.2. Any real quadratic field F can be written as Q(
√

∆F ) where ∆F denotes
the discriminant of F . The group Pic0

F is an extension of the class group by a circle group

and the group P̃ic
0

F is an extension of the narrow class group by a circle group. We describe
the reduced Arakelov divisors of F . Let σ and σ′ denote the two infinite primes of F . To be
definite, we let σ denote the embedding that maps

√
∆F to the positive square root of ∆F

in R. Let D = d(I) = (I, N(I)−1/2) be reduced. The fact that 1 ∈ I is minimal implies
that we can write I = Z + fZ for a unique f satisfying σ(f) > 1 and −1 < σ′(f) < 0.
The fact that we have OF · I ⊂ I implies that f = b+

√
∆F

2a where ∆F = b2 − 4ac for some
c ∈ Z. The conditions on σ(f) and σ′(f) say that a > 0 and |

√
∆F −2a| < b <

√
∆F . The

OF -ideal I−1 is generated by a and b+
√

∆F

2 . Its norm is a. The simplex ΣD of section 6 is
an interval of length

√
2 log(

√
∆F

a ) centered in D.
The map that associates the quadratic form aX2 + bXY + cY 2 to the reduced divisor
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D = (I,N(I)−1/2), is a bijection between the set of reduced Arakelov divisors of F and
the set of reduced binary quadratic forms of discriminant ∆F with a > 0.

The element 1 ∈ I is a shortest vector precisely when both ||f || and ||f − 1|| are at
least ||1|| =

√
2. This condition is not always satisfied. Drawing a picture, one sees that

it is when σ(f)− σ′(f) ≥ 2, or equivalently when a < 1
2

√
∆F , but this is not a necessary

condition.
When D = d(I) and I = Z+fZ as above, then the vector f is a minimal element of I.

Therefore D′ = d(f−1I) is a reduced Arakelov divisor. We have that D = D′+(f)+(OF , v),
where v ∈ F ∗

R
∼= R∗ ×R∗ is the vector (|σ′(f)/σ(f)|1/2,−|σ(f)/σ′(f)|1/2). The distance

between the images of D and D′ in Pic0
F is equal to ||v||Pic. Since f = b+

√
∆

2a , we have
||v||Pic = 1

2
√

2
log| b+

√
∆F

b−
√

∆F
|. In this way we recover Lenstra’s distance formula [17, (11.1)].

The divisor D′ is the ‘successor’ of D in its component, in the sense that there are no
reduced divisors on the circle between D and D′. In order to obtain D’s ‘predecessor’,
take g the shortest minimum such that |σ(g)| < |σ′(g)|. Then the Arakelov divisor d(g−1I)
is the predecessor of D.

Lenstra’s group F or rather its topological completion F , is closely related to the
oriented Arakelov class group of the real quadratic field F and several of the results in [17]

are special cases of the results of this paper. The group F is not quite equal to P̃ic
0

F but it
admits a degree 2 cover onto it. More generally, for a number field F we let Pic+

F denote

the group D̃iv
0

F modulo its subgroup ±F ∗
+. When F is totally complex, i.e., when r1 = 0,

this is simply P̃ic
0

F . When r1 > 0 however, there is an exact sequence

0 −→ {±1}r1/{±1} −→ Pic+
F −→ P̃ic

0

F −→ 0.

Let (F ∗
R)0 = {u ∈ FR : |N(u)| = 1}. The topological structure of Pic+

F can be seen from
the exact sequence

0 −→ (F ∗
R)0/±O∗

F,+ −→ Pic+
F −→ ClF,+ −→ 0,

realizing Pic+
F as an extension of the narrow class group ClF,+ by a 2r1−1-component Lie

group. When F is real quadratic, the group Pic+
F is equal to Lenstra’s group F .
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9. Reduced Arakelov divisors; examples and counterexamples.
Let F be a number field of degree n and discriminant ∆F . Theorems 7.4 and 7.7 say
that the image of the set RedF of reduced Arakelov divisors is, in a precise sense, rather
regularly distributed in the groups Pic0

F and P̃ic
0

F . In this section we discuss these results
and we consider variations in the definition of the set of reduced divisors.

Theorem 7.4 says that the image of RedF is rather ‘dense’ in Pic0
F . I do not know how

to prove similar result for the larger group P̃ic
0

F rather than Pic0
F . I cannot even exclude

the possibility that some components of P̃ic
0

F contain no reduced Arakelov divisors at all.
The problem is related to the following question.

Question 9.1. Let L ⊂ Rn be a lattice of covolume 1. Suppose that all non-zero vectors
of L have all their coordinates different from zero and have length at least ε. Does there
exist a minimal vector (xi) ∈ L with xi > 0 for all i? Here a vector (xi) is called minimal
if the only vector (yi) ∈ Rn with |yi| < |xi| for all i is the zero-vector. Does there exist
such a vector of length O(ε−N ) for some N that only depends on n? Can one compute it
efficiently?

In the other direction, Theorem 7.5 implies that the image of RedF in P̃ic
0

F is rather

‘sparse’. When we replace P̃ic
0

F by Pic0
F , the theorem is no longer true. First of all the

map RedF −→ PicF is in general not injective. In addition, it may happen that distinct
reduced divisors have images in Pic0

F that are much closer to one another than the bound
log(4

3 ) of Theorem 7.5. However, by Corollary 7.9, the number of reduced divisors in a
ball in Pic0

F of radius 1 is bounded by a constant only depending on the degree of F .

Lemma 9.2. Let F be a number field of degree n, let D = (I, u) be an Arakelov divisor
and suppose f ∈ I. Then
(i) d(f−1I) = d(I) in Div0

F if and only if f is a unit of OF .
(ii) The classes of d(f−1I) and d(I) in Pic0

F are equal if and only if f is the product of a
unit and an element g ∈ F ∗ all of whose absolute values |σ(g)| are equal.

(iii) ||d(I)− d(f−1I)||Pic < 2
√

n maxσ|log|σ(f)||.

Proof. Part (i) follows from the fact that I = f−1I if and only if we have f ∈ O∗
F . Since

we have
d(f−1I)− d(I) = (fOF , |N(f)|1/n),

the class of this divisor is trivial in Pic0
F if and only if there is g ∈ F ∗ for which f = εg for

some unit ε ∈ O∗
F and |σ(g)|−1 = |N(f)|−1/n for all σ. Since |N(g)| = |N(f)|, the second

relation is equivalent to the fact that the |σ(g)| are all equal. This proves (ii).
To prove (iii) we note that ||d(I)− d(f−1I)||Pic ≤

√
n maxσ|log|σ(f)/N(f)1/n|| which

is at most
√

n times maxσ|log|σ(f)|| + 1
n

∑
σ deg(σ)|log|σ(f)|. This easily implies the

estimate.
This implies that f is a root of unity. This completes the proof of the lemma.

Prop. 7.2 (iii) says that the natural map from the set of reduced divisors RedF to

the oriented Arakelov class group P̃ic
0

F is injective. The following example shows that, in
general, the map RedF −→ Pic0

F is not.
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Example 9.3. Let a > b ≥ 1 and put ∆ = b2 − 4a2. Suppose that ∆ is squarefree and
let F denote the complex quadratic number field Q(

√
∆). Let I denote the fractional

OF -ideal Z + fZ where f = b+
√

∆
2a . Then 1 ∈ I is minimal. Let σ : F −→ C denote

the unique infinite prime. Since σ(f) has absolute value 1, the element f is also minimal.
Since f is not a unit of OF , Lemma 9.2 implies that the reduced divisors d(I) and d(f−1I)
are distinct, but that their classes in Pic0

F are equal.

Theorem 7.7 says that the distance between the images of the reduced divisors in P̃ic
0

F

is bounded from below by an absolute constant. The following example shows that this is
false for the Arakelov class group Pic0

F .

Example 9.4. Let n be a large even integer such that ∆ = n2 + 1 is squarefree and
consider the field F = Q(

√
∆). Let f = 1+

√
∆

n ∈ F . Then 1 is a minimal element
in I = Z + fZ. The conjugates σ(f) are close to 1 and −1 respectively. Indeed, we
have |log|σ(f)|| ≈ ∆−1/2 for each infinite prime σ. It follows from Lemma 9.2 (iii) that
the classes of the reduced divisors d(I) and d(f−1I) are at distance at most 2

√
2 ∆−1/2

in Pic0
F .

The definition of the set RedF is rather delicate as we’ll see now by considering slight
variations of it. We let Red′F denote the set of divisors d(I) for which 1 ∈ I is a shortest
rather than a minimal vector and write Red′′F for the set of divisors d(I) for which we have
N(I−1) ≤ ∂F =

(
2
π

)r2
√
|∆F | and for which 1 ∈ I is merely primitive, i.e., not divisible by

an integer d ≥ 2. Since shortest implies minimal and minimal implies primitive, we have
the following inclusions of finite sets

Red′F ⊂ RedF ⊂ Red′′F .

Theorem 7.4 says that the set RedF is rather ‘dense’ in the Arakelov divisor class group.
It is not clear whether the set Red′F has the same property. The proof of Theorem 7.4
showing that every D = (I, u) of degree 0 is close to a reduced divisor D′ ∈ RedF does
not work for Red′F . Indeed, tracing the steps of the proof of Theorem 7.4, we see that if
f ∈ I is a shortest vector, it is also minimal and hence the element 1 ∈ f−1I is minimal.
It follows that the divisor d(f−1I) is in RedF . However, 1 need not be a shortest vector
in f−1I so that d(f−1I) may not be contained in Red′F .

The following example shows that this phenomenon actually occurs. It shows that
the set Red′F is, at least in this sense, too small.

Example 9.5. We present examples of reduced Arakelov divisors D = d(I) with the
property that the element 1 ∈ I is not a shortest vector of the lattice I associated to (I, u)
for any u ∈ F ∗

R. This implies that D is not equal to d(f−1J) for any divisor D′ = (J, v)
and a shortest element f ∈ J . Indeed, if that were the case, 1 would be shortest vector in
the lattice associated to the Arakelov divisor (I, f−1v).

Let F be a real quadratic number field of discriminant ∆. Then F = Q(
√

∆). Suppose
that d(I) is a reduced Arakelov divisor. We write I = Z+fZ where f > 0 and −1 < f < 0.
Here we identify F with its image in R through one of its embeddings and we write f 7→ f
for the other embedding.
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Claim. If N(f − 1
2 ) > − 3

4 , then 1 is not a shortest element of I for any degree zero
Arakelov divisor (I, u).

Proof. Suppose that D = (I, u) has degree 0. Then we have u = (υ/
√

N(I), υ−1/
√

N(I))
for some υ ∈ R∗

>0. Suppose that 1 ∈ I is a shortest vector in the lattice associated to D.
This implies in particular that ||1||D ≤ ||f ||D and ||1||D ≤ ||f − 1||D. This means that
υ−2 + υ2 ≤ υ−2f2 + υ2f

2
and that υ−2 + υ2 ≤ υ−2(f − 1)2 + υ2(f − 1)2. In other words

we have that υ4 ≤ (f2− 1)/(1− f
2
) and υ4 ≥ (2f − f2)/(f

2− 2f) respectively. Therefore,
if the upper bound for υ4 is smaller than the lower bound, there cannot exist such υ. This
happens precisely when (f − f)(2ff − f − f + 2) > 0. Since f − f is positive, this means
that 2ff − f − f + 2 > 0 which is equivalent to N(f − 1

2 ) > − 3
4 . This proves the claim.

When f = b+
√

∆
2a as in section 8, a sufficient condition for the inequality of the claim

to hold is that a ≥ 1√
3

√
∆. An explicit example is provided by the field Q(

√
21) and the

reduced divisor d(I) where I = Z + fZ with f = 3+
√

21
6 .

In the other direction, it may happen that the image of Red′′F is very dense in P̃ic
0

F ,
so that an analogue of Theorem 7.7 does not hold for this set. We present two examples,
due to H.W. Lenstra showing that for some number fields certain small open balls in P̃ic

0

F

contain the images of very many D ∈ Red′′F . Both examples exploit the existence of certain
‘very small’ elements in F . In the first example these are contained in a proper subfield,
but this is not the case in the second example.

Example 9.6. Let F be a number field of degree n containing Q(i). Let m, m′ ∈ Z
satisfy 1

2 |∆F |1/2n < m, m′ < |∆F |1/2n − 1. Let I and I ′ denote the inverses of the OF -
ideals generated by m − i and m′ − i respectively. Then 1 is primitive in both I and I ′

and the norms of I−1 and I ′
−1 do not exceed ∂F =

(
2
π

)r2 |∆F |1/2. It follows that d(I) and

d(I ′) are in Red′′F . If the images of d(I) and d(I ′) in P̃ic
0

F are equal, Prop. 6.4 implies that
I = mI ′ for some m ∈ Q∗. Since 1 is primitive in both I and I ′, it follows that m = ±1.
This implies that I = I ′ and hence that N(I) = m2 + 1 is equal to N(I ′) = m′2 + 1, so

that m = m′. Therefore d(I) and d(I ′) are distinct in P̃ic
0

F , whenever m and m′ are.
Assume in addition that |m−m′| < |∆F |1/3n and that |∆F | > 46n. Then the distance

between m and m′ is much smaller than m and m′ themselves. The distance between the
Arakelov divisors d(I) and d(I ′) in P̃ic

0

F is at most
√

n |log((m− i)/(m′ − i))|. This does
not exceed

√
n|m − m′|/(|m − i| − |m − m′|) ≤

√
n||∆F |1/3n/( 1

2 |∆F |1/2n − |∆F |1/3n) ≤
4
√

n||∆F |−1/6n.

In this way we obtain |∆F |1/3n elements of Red′′F whose images in P̃ic
0

F are distinct,
but are as close as 4

√
n||∆F |−1/6n to one another. By varying F over degree n/2 extensions

of Q(i), we can make |∆F | as large as we like. One may replace Q(i) by any number field
and proceed similarly.

Example 9.7. Let n ≥ 4 and a ∈ Z be such that the polynomial Xn − a is irreducible
over Q. Let α denote a zero and put F = Q(α). Suppose that the ring of integers of F
is equal to Z[α]. There are infinitely many such integers a. Then |∆F | = nn|a|n−1 and
|σ(α)| = |a|1/n for every infinite prime σ. Let m,m′ ∈ Z satisfy 1

2 |a|
1/2−1/2n + |a|1/n <
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m,m′ < |a|1/2−1/2n and |m−m′| ≤ |a|1/4. Consider two Arakelov divisors d(I) and d(J)
given by I−1 = (m − α)OF and J−1 = (m′ − α)OF . The norms of I−1 and J−1 are at
most ∂F =

(
2
π

)r2 |∆F |1/2. Since both I and J contain 1 as a primitive element, we have
d(I), d(J) ∈ Red′′F . The argument used in Example 9.6 shows that the images of d(I) and

d(J) in P̃ic
0

F are distinct when m 6= m′. The difference between d(I) and d(J) is equal to
(IJ−1, N(IJ−1)1/n) which is equivalent to (OF , v) where

v =
m− σ(α)
m′ − σ(α)

∣∣∣∣N (
m′ − α

m− α

)∣∣∣∣1/n

.

It follows that ||d(I)−d(J)||
P̃ic

is at most 2
√

n maxσ

∣∣∣log( m−σ(α)
m′−σ(α) )

∣∣∣. Since (m−σ(α))/(m′−
σ(α)) = 1+ (m−m′)/(m′−σ(α)) and since |m′−σ(α)| ≥ m′− |σ(α)| ≥ 1

2 |a|
1/2−1/2n, the

absolute value of the logarithm of (m−σ(α))/(m′−σ(α)) is at most 4|m−m′|/|a|1/2−1/2n

for each σ. It follows that ||d(I) − d(J)||
P̃ic

is at most 4
√

n|a|−1/4+1/2n, which becomes
arbitrarily small as |a| grows.

10. Computations with reduced Arakelov divisors.

In this section we discuss the set of reduced Arakelov divisors from a computational point
of view. Our presentation is rather informal. In particular, we do not say much about the
accuracy of the approximations required to perform the computations with the real and
complex numbers involved. See [30] for a more rigorous approach. Since Arakelov divisors
can be represented as lattices in the Euclidean space FR, lattice reduction algorithms
play an important role. When the degree n of the number field is large, the celebrated
LLL-reduction algorithm [16, 20] is an important tool.

We suppose that the number field F is given as Q(α) where α is the zero of some
irreducible monic polynomial ϕ(X) ∈ Z[X]. We assume that we have already computed
an LLL-reduced basis {ω1, . . . , ωn} for the ring of integers OF embedded in FR. In other
words, we have an explicit lattice

OF = ω1Z + . . . + ωnZ ⊂ FR,

with, say, an LLL-reduced basis {ω1, . . . , ωn}. Such a basis can be computed as explained
in [18, sect.4] or [10, sect.6.1] combined with a basis reduction algorithm. We have also
computed a multiplication table i.e., coefficients λijk ∈ Z for which ωiωj =

∑
k λijkωk.

The discriminant ∆F of F is the integer given by ∆F = det(Tr(ωiωj)). By [18, section
2.10] we have that λijk = |∆F |O(n). We view the degree n of F as fixed and estimate the
running times of the algorithms in terms of |∆F |.

An Arakelov divisor or oriented Arakelov divisor D = (I, u) is determined by its
associated ideal I and the vector u ∈ F ∗

R
∼=
∏

σ F ∗
σ . It can be represented by an n × n

matrix λij for which the vectors
∑

ij λijωj are an LLL-reduced basis for the lattice I ⊂ FR,
together with a sufficiently accurate approximation of the vector u = (uσ)σ. We have that
λij = O(N(I)). See [30]. In practice, one might want to take logarithms and work with the
vectors (log(uσ))σ. There are efficient algorithms to multiply ideals, to compute inverses
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and to test for equality. See [10, sects.4.6-8]. Using these one can compute efficiently in the
group DivF . The algorithms have been implemented in the LiDIA, MAGMA and PARI
software packages [21, 22, 24].

Rather than the Arakelov divisor group, we are interested in computing in the Arakelov
class group Pic0

F . We do calculations in this group by means of the set RedF of reduced
divisors in Div0

F . By Theorems 7.4 and 7.7, the image of the finite set RedF is in a

certain sense regularly distributed in the compact groups Pic0
F and P̃ic

0

F . Reduced divisors
have one further property that is important for our application: a reduced divisor D
is of the form D = d(I) = (I,N(I)−1/n) where I−1 is and integral ideal of norm at
most ∂F =

(
2
π

)r2 |∆F |1/2. Therefore D can be represented using only (log|∆F |)O(n) bits.
Before describing the algorithms, we formulate a lemma concerning the Lenstra-

Lenstra-Lovasz (LLL) lattice reduction algorithm [16].

Lemma 10.1. Let b1, . . . ,bn be an LLL-reduced basis of a real vector space V . Then for
every vector x =

∑n
i=1 mibi of V we have that

|mi|||b∗i || ≤
(

3√
2

)n−i

||x||, for 1 ≤ i ≤ n.

Here b∗1, . . . ,b
∗
n denotes the Gram-Schmidt orthogonalization of the basis b1, . . . ,bn.

Proof. See [20].

Corollary 10.2. Let b1, . . . ,bn be an LLL-reduced basis of a real vector space V . Then
we have for any vector x =

∑n
i=1 mibi in V that

|mi| ≤ 2
n−1

2

(
3
2

)n−i ||x||
||b1||

, for i = 1, . . . , n.

Proof. The LLL-conditions [16] imply ||b∗1|| ≤ 2
i−1
2 ||b∗i || for every i = 1, 2 . . . , n. Since

b1 = b∗1, the result follows from Lemma 10.1.

We have the following basic algorithms at our disposal. For number fields of fixed
degree n, each runs in time polynomial in log|∆F |.

Algorithm 10.3. (Reduction algorithm) Given an Arakelov divisor D = (I, u) ∈ Div0
F ,

– check whether it is reduced or not;
– compute a reduced divisor D′ that is close to D in Pic0

F .

Description. We compute an LLL-reduced basis b1, . . . ,bn of the lattice uI ⊂ FR.
Any shortest vector x =

∑n
i=1 mibi in the lattice satisfies ||x||/||b1|| ≤ 1. Therefore Corol-

lary 10.2 implies that the coordinates mi ∈ Z are bounded independent of the discriminant
of F . To compute a shortest vector in the lattice in time polynomial in log |∆F |, we may
therefore just try all possible mi.

In order to compute a reduced divisor D′ that is close to D in Pic0
F , we compute

a shortest vector f in the lattice I associated to D. The divisor D′ = d(f−1I) is then
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reduced. Moreover, by Theorem 7.4 or rather its proof, the divisor D′ has the property
that ||D −D′||Pic ≤ log(∂F ), so that D′ is close to D.

In a similar way one can check that a given divisor D = (I, u) is reduced. First of all
we must have that u = N(I)−1/n. Then we check that 1 is contained in I. To see whether
or not 1 is a minimal element of I, we need to make sure that the box

B = {(yσ) ∈ FR : |yσ| < 1 for all σ.}.

contains no non-zero points of the lattice I ⊂ FR. The box B contains all vectors of length
at most 1. On the other hand, every vector in B has length at most

√
n.

If the first vector b1 of the LLL-reduced basis has length less than 1/
√

n, it is contained
in B and the element 1 ∈ I is not minimal. In this case we are done. Suppose therefore
that we have ||b1|| ≥ 1/

√
n. It suffices now to compute all vectors x in the lattice that have

length less than
√

n and see whether they are in the box B or not. By Corollary 10.2, the
vectors x =

∑n
i=1 mibi of length at most

√
n have the property that

|mi| ≤ 2
n−1

2

(
3
2

)n−i ||x||
||b1||

≤ 2
n−1

2

(
3
2

)n−i

n.

So, the number of vectors to be checked is bounded independently of the discriminant of F .
This completes the description of the algorithm. Both algorithms run in time polynomial
in log |∆F |, log ||u|| and the logarithmic height of N(I).

Algorithm 10.4. (Composition algorithm.) Given two reduced Arakelov divisors D =
d(I) and D′ = d(J), compute a reduced divisor that is close to the sum D + D′ in Pic0

F .

Description. One first adds D and D′ as divisors. Since N(I−1), N(J−1) ≤ ∂F , the
result (IJ,N(IJ)−1/n) can be computed in time polynomial in log|∆F |. Then one reduces
the result by means of Algoithm 10.3. Since we have N(IJ)−1 ≤ ∂2

F , the running time of
this second step is also polynomial in log|∆F |.

Algorithm 10.5. (Inversion algorithm.) Given a reduced Arakelov divisor D = d(I),
compute a reduced divisor that is close to −D in Pic0

F .

Description. One just computes the inverse ideal I−1 and reduces the divisor d(I−1) by
means of Algorithm 10.3. Since N(I−1) ≤ ∂F , the running time of this algorithm is also
polynomial in log |∆F |.

Before describing the next algorithm, it is convenient to prove a lemma.

Lemma 10.6. Let D = (I, u) be an Arakelov divisor of degree 0 and let ε > 0. Then
every reduced divisor at distance at most ε from D is of the form d(Iµ−1) where µ is a
minimal element of I satisfying

||µ||D <
√

n e2ε||y||D, for all non-zero y ∈ I.

In particular, the inequality holds for a non-zero y ∈ I that is shortest with respect to the
metric of P .
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Proof. Let D′ be a reduced divisor for which we have ||D − D′||Pic < ε. Then we have
D′ = d(Iµ−1) for some minimal element µ ∈ I. By Proposition 6.2 there is a unit ε so
that for D′′ = D − (µ) + (OF , |ε|) we have

e−||D
′−D′′||Pic ≤ ||x||′D

||x||D′′
≤ e||D

′−D′′||Pic , for every x ∈ Iµ−1.

We multiply µ by ε. Then µ remains a minimal element of I and the divisor D′ does not
change. But now D′′ is equal to D − (µ). Since we have ||D −D′||Pic = ||D′ −D′′||Pic, the
inequality above and Proposition 7.1 imply that

||µ||D = ||1||D−(µ) ≤ eε||1||D′ ≤ eε
√

n||x||D′ ≤ e2ε
√

n||x||D−(µ) = e2ε
√

n||xµ||D,

for any non-zero x ∈ Iµ−1. It follows that we have ||µ||D ≤
√

ne2ε||y||D for all non-zero y ∈ I.
This proves the proposition.

I owe the following algorithm to Hendrik Lenstra. See [2, 4, 30] for a different approach.

Algorithm 10.7. (Scan algorithm.) Let D = (I, u) be an Arakelov divisor of degree 0
and let R > 0. Compute all reduced Arakelov divisors in a ball in the Arakelov class group
Pic0

F of radius R and center D in time polynomial in log |∆F | and linear in the volume of
the ball.

Description. Choose ε, ε′ ∈ R such that 0 < ε′ < ε < R. Inside the open ball of divisors
in Pic0

F having distance at most R + ε from D, we compute a web of regularly distributed
points. The points P in the web are at most ε and at least ε′ apart, say. By Theorem 7.4
every P is the class of a divisor of the form D′+(OF , v) for some reduced divisor D′ = d(J)
and a totally positive v ∈ F ∗

R satisfying ||v||Pic < log(∂F ). Moreover, LLL-reduced bases
for the lattice associated to each P can be computed in time polynomial in log |∆F |.

By Lemma 10.6, the reduced divisors we are looking for are among the divisors of the
form d(Jµ−1) where D′ = d(J) is reduced, P = D′ + (OF , v) is in the web and µ ∈ J is a
minimal element for which ||µ||P is at most e2ε

√
n times the length of a shortest non-zero

element x ∈ J . So, it suffices to compute the elements µ for all P in the web. For a given
P , Corollary 10.2 says that the number of vectors µ ∈ J of length at most e2ε

√
n times

the length of the shortest non-zero vector, is bounded independently of P and even of the
discriminant of F . They can be computed in time polynomial in log |∆F |. Minimality of
the elements µ can be tested by means of Algorithm 10.3. Finally, since the divisors P
are at least ε′ apart, the number of points in the web is proportional to the volume of the
ball. This completes the description of the algorithm.

Algorithm 10.8. (Jump algorithm.) Given the coefficients of a divisor D =
∑

p npp +∑
σ xσσ of degree 0, compute a reduced Arakelov divisor whose image in Pic0

F has distance
less than log(∂F ) from D.

Description. We assume that at most O(log |∆F |) coefficients of D are non-zero and that
the coefficients themselves are of size |∆F |O(1). Directly applying the reduction algorithm
to D is not a very good idea, since the LLL-algorithm and therefore the reduction algorithm
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run in time polynomial in log ||u|| which is exponential in the terms of the log(xσ). Therefore
we proceed differently.

It is easy to compute a reduced divisor that is close to d(I). Here I is the ideal
∏

p pnp .
Indeed, for each prime ideal p with np 6= 0, we compute a reduced divisor D′ close to
d(p) = (p, N(p)−1/n) and then by successive squarings, multiplications and reductions
we compute a reduced divisor close to d(I). Here we use the binary expansion of the
coefficient np. The coefficients at the primes p of the divisor D−d(I) are all equal to zero.
Therefore it suffices to explain how to compute a reduced divisor that is close to a given
divisor D of the form D = (OF , v) for some v.

We first compute a list of r1 + r2− 1 reduced divisors Ei in the connected component
of identity of Pic0

F that are equivalent to divisors (OF , vi) that have the property that
the vectors vi form a reasonably orthogonal basis of short vectors of the, multiplicatively
written, metric vector space (

∏
σ R∗

+)0. This can be accomplished as follows. Pick w1 ∈
(
∏

σ R∗
+)0 of length log|∆F | at random and reduce the divisor (OF , w1) to E1 = d(f−1

1 OF )
for some f1 ∈ OF . Then E1 is equivalent to (OF , v1) where v1 = |f1|/|N(f1)|1/nw1.
When E1, . . . , Ei are constructed, then pick wi+1 of length log|∆F | in the orthogonal
complement of the span of {v1, . . . , vi} inside (

∏
σ R)0 and reduce (OF , wi+1) to Ei+1,

which is equivalent to (OF , vi+1) where vi+1 = |fi+1|/|N(fi+1)|1/nwi+1 for some fi+1 ∈
OF . This completes the description of the calculation of the ‘good basis’ {Ei}.

To express D = (OF , v) as a sum of the divisors Ei, we solve a linear system and
write v =

∏
i vλi

i and let mi denote the integers nearest to λi for 1 ≤ i ≤ r1 + r2− 1. Then
the coefficients mi are at most O(|∆F |O(1)). Using the binary expansion of the coefficients
mi we compute the sum

∑
i miEi by means of successive compositions and reductions.

The result is a reduced divisor that is quite close to (OF , v). One can get as close as
log(∂F ) to D by additional compositions with the divisors Ei or by adjusting the infinite
components and reducing. We leave this to the reader. The amount of calculations to do
all this is bounded by log|∆F |O(n).

This completes the description of the algorithm.

We leave the reader the task of modifying these algorithms so that they work for
the group D̃iv

0

F of oriented divisors and for the oriented Arakelov class group P̃ic
0

F . The
only difference is that the unit u of an extended Arakelov divisor D = (I, u) is a complex
rather than a positive real number. The image of the set of reduced Arakelov divisors in
this group is probably also reasonably dense in P̃ic

0

F and that’s all we need for the Jump
Algorithm to work. See Question 9.1.

Application 10.9. As an application we present an algorithm to compute the function
h0(D) that was introduced in [31]. For an Arakelov divisor D = (I, u), the number h0(D)
should be viewed as the arithmetic analogue of the dimension of the space of global sections
of a divisor D on an algebraic curve. The number h0(D) depends only on the class of D
in Pic0

F and is defined as

h0(D) = log(
∑
f∈I

exp(−π||f ||2D)).
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See section 4 for the close relation between the function h0(D) and the Hermite con-
stant γ(D) of the ideal lattice associated to D. Since the short vectors f ∈ I contribute
the most to this exponentially quickly converging sum, the function h0(D) can be evalu-
ated most efficiently when we know a good, i.e., a reasonably orthogonal basis for I. As
we explained above, a direct application of a lattice reduction algorithm to D may be very
time consuming. Therefore we apply the Jump algorithm. We jump to a reduced divisor
D′ = d(J) close to D in Pic0

F . Then D is equivalent to D′+(OF , v) for some short v ∈ F ∗
R

and
h0(D) = h0(D′ + (OF , v)) = log(

∑
f∈J

exp(−π||f ||2D′+(OF ,v))),

= log(
∑
f∈J

exp

(
−πN(J)−2/n

∑
σ

deg(σ)|σ(f)|2v2
σ

)
).

Since D′ is reduced and the vector v = (vσ)σ is short, an LLL reduced basis for the lattice
associated to D′ + (OF , v) can be computed efficiently . Such a basis can be computed
efficiently since J−1 is an integral ideal of norm at most |∆F |1/2. This completes the
description of the algorithm to compute h0(D).

11. A deterministic algorithm.

In this section we describe a deterministic algorithm to compute the Arakelov class group
of a number field F of degree n and discriminant ∆F . It runs in time proportional to√
|∆F | times a power of log |∆F |.

Lemma 11.1. Let B > 0. Then any ideal J ⊂ OF with N(J) < B is of the form
J = xI−1, where

– the Arakelov divisor D = (I,N(I)−1/n) is reduced;
– the element u = N(x)1/n/|x| of F ∗

R satisfies ||u||Pic < log(∂F );
– the element x is contained in I and satisfies ||x||D+(OF ,u) <

√
nB1/n.

Proof. Suppose that J ⊂ OF satisfies N(J) < B. By Minkowski’s Theorem there exists
y ∈ J−1, a shortest vector in J−1 ⊂ FR satisfying |σ(y)| < N(J)−1/n∂

1/n
F for every σ.

We pick such an element y, put x = 1/y and I = xJ−1. Then the Arakelov divisor
D = (I,N(I)−1/n) is reduced. Moreover, since xI−1 = J ⊂ OF , we have x ∈ I.

Writing u = N(x)1/n/|x|, all coordinates of the vector N(I)−1/nux have absolute value
N(I)−1/nN(x)1/n = N(J)1/n so that ||x||D+(OF ,u) =

√
nN(J)1/n <

√
nB1/n. Finally, we

estimate ||u||Pic. Since N(I) ≤ 1, we have

|uσ| =
|N(x)|1/n

|σ(x)|
= |σ(y)||N(x)|1/n ≤ N(J)−1/n∂

1/n
F |N(x)|1/n = N(I)1/n∂

1/n
F ≤ ∂

1/n
F .

Lemma 7.5 implies than that ||u||Pic ≤
(
1− 1

n

)1/2 log(∂F ) ≤ log(∂F ) as required.

It is not difficult to see that the converse of Lemma 11.1 also holds: any ideal J ⊂ OF

for which the three conditions are satisfied, automatically has norm at most B.
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Algorithm 11.2. Suppose we have computed all reduced divisors in a given connected
component of the Arakelov class group Pic0

F . In the component, detect all divisors that
are of the form (J−1, N(J)1/n) with J ⊂ OF and N(J) < ∂F .

Description. Let ε, ε′ ∈ R such that 0 < ε′ < ε. For each reduced divisor D =
(I,N(I)−1/n) in the given connected component, we make a web in the ball of center D =
(I,N(I)−1/n) and radius log(∂F ), whose members P = D + (OF , v) = (I,N(I)−1/nv) are
at most ε and at least ε′ apart. For each divisor P = D + (OF , v) in the web, we compute
the vectors x for which we have ||x||P ≤

√
ne2ε∂

1/n
F . This is done as follows. First we com-

pute an LLL-reduced basis b1, . . . ,bn for the lattice associated to the Arakelov divisor P .
Let b∗1, . . . ,b

∗
n denote its Gram-Schmidt orthogonalization. By Lemma 10.1 we have for

any vector x =
∑n

i=1 mibi in the lattice for which ||x||P is at most
√

ne2ε∂
1/n
F , that

|mi|||b∗i || ≤
(

3√
2

)n−1√
ne2ε∂

1/n
F .

We simply try all coefficients mi satisfying this inequality.
For each such element x we then compute the corresponding ideals J = I−1x. The

ideals J that we compute in this way are contained in OF . Moreover, every ideal J ⊂ OF

of norm at most ∂F and for which the Arakelov divisor (J−1, N(J)1/n) lies on the given
component, is obtained in this way. Indeed, if we have N(J) < ∂F , Lemma 11.2 with
B = ∂F implies that J = xI−1 for some reduced divisor d(I) = (I,N(I)−1/n) and some
x ∈ I. Moreover, we have ||x||D+(OF ,u) <

√
n∂

1/n
F for some u satisfying ||u||Pic < log(∂F ).

This means that the divisor D+(OF , u) is contained in the ball of center D = (I,N(I)−1/n)
and radius log(∂F ). Therefore there is a member P = D + (OF , v) of the web at distance
at most ε from D + (OF , u). Proposition 6.2 implies then that

||x||P ≤ e2ε
√

n∂
1/n
F ,

as required.
This shows that we encounter all ideals J that we are after. But we’ll find many more

and we’ll find each ideal many times. Indeed, the vectors x =
∑n

i=1 mibi that we consider

in the computation above satisfy |mi|||b∗i || ≤
(

3√
2

)n−1√
ne2ε∂

1/n
F for each i and hence

||x||P ≤ n

(
3√
2

)n−1

e2ε∂
1/n
F .

It follows from the arithmetic geometric mean inequality that for the ideal J = xI−1 we
have

N(J) = N(xI−1) ≤ nn/2e2εn

(
3√
2

)n(n−1)

∂F .

In order to estimate the running time of this algorithm, we estimate the number of ideals
J that we compute and in addition, we estimate for how many divisors P in the web and
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how many vectors x, we obtain each ideal J . By [18, Thm.6.5], the number of ideals J is
bounded by

√
|∆F | times a power of log |∆F | times a constant that depends only on the

degree n. Next we bound the number of times we find each ideal J .
First, suppose that for some divisor P = (I,N(I)−1/n) + (OF , v) in the web, there

are two elements x, x′ ∈ I−1 satisfying ||x||P , ||x′||P ≤
√

ne2ε∂
1/n
F , for which the ideals xI−1

and x′I−1 are the same. Then we have |σ(x)N(I)−1/nvσ| ≤
√

ne2ε∂
1/n
F for each σ. Since

we have |N(v)| = 1, the product over σ satisfies∏
σ

|σ(x)N(I)−1/nvσ|deg(σ) = N(xI−1) ≥ 1.

Therefore we have

−(n− 1) log(
√

ne2ε∂
1/n
F ) ≤ log |σ(x)N(I)−1/nvσ| ≤ log(

√
ne2ε∂

1/n
F )

for every σ. We have the same inequalities for x′. Therefore the unit ε = x′/x satisfies

− log(∂F )− n log(
√

ne2ε) ≤ log |σ(ε)| = log
∣∣∣∣σ(x′)
σ(x)

∣∣∣∣ ≤ log(∂F ) + n log(
√

ne2ε),

for every σ and hence we have

|| log |ε||| ≤
√

n log(∂F ) + n3/2 log(
√

ne2ε).

By Dobrowolski [12], there exists an absolute constant c > 0, so that any unit ε ∈ O∗
F that

is not a root of unity satisfies || log |ε||| > cn−3/2. Since the number of roots of unity in F is
O(n log(n)), the number of units satisfying the bounds above is bounded by a polynomial
expression in log(∂F ). It follows that the number of distinct elements x ∈ I for which the
ideals xI−1 are equal to the same ideal J ⊂ OF is also bounded by a polynomial expression
in log(∂F ).

Next, suppose that an ideal J ⊂ OF of norm at most ∂F is of the form xI−1 where
D = (I,N(I)−1/n) is a reduced divisor and x ∈ I satisfies ||x||P ≤ e2ε

√
n∂

1/n
F for some

divisor P = D +(OF , v) in the web constructed. In particular, v satisfies ||v||Pic < log(∂F ).
This implies that∣∣∣∣ σ(x)

N(x)1/n
v−1

σ

∣∣∣∣ = ∣∣∣σ(x)N(I)1/nv−1
σ

∣∣∣ 1
N(J)1/n

<

√
ne2ε∂

1/n
F

N(J)1/n
≤
√

ne2ε∂
1/n
F .

It follows that the Arakelov divisors P and (J−1, N(J)1/n) are rather close to one another
in Pic0

F . Indeed, we have

||P − (J−1, N(J)1/n)||Pic = ||(OF , |x|N(x)−1/nv−1
σ )||Pic.

Since we have log |σ(x)N(x)−1/nv−1
σ | < log(

√
ne2ε∂

1/n
F ) for every infinite prime σ, it follows

from Lemma 7.5 that we have

||P − (J,N(J)1/n)||Pic < log(n2/ne2ε/n∂F ).
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By Corollary 7.9, the number of reduced divisors in a ball is bounded by some constant,
depending only on the degree of the number field, times its volume. Therefore the num-
ber of web members P for which we encounter a given ideal J ⊂ OF , is bounded by a
polynomial expression in log(∂F ).

This completes the description and our analysis of the algorithm.

A Deterministic Algorithm. Finally we explain the deterministic algorithm to compute
the Arakelov class group of a number field F . This algorithm seems to have been known to
the experts. It was explained to me by Hendrik Lenstra. We start at the neutral element
(OF , 1) of the Arakelov class group. We use Algorithm 10.3 to determine all reduced
Arakelov divisors in the ball of radius 2 log(∂F ) and center (OF , 1). Then we do the same
with the reduced divisors D we found: determine all reduced Arakelov divisors in the
ball of radius 2 log(∂F ) and center D. Proceeding in a systematic way that is somewhat
complicated to write down, we find in this way all reduced divisors in the connected
component of identity. Keeping track of their positions in terms of the coordinates in

∏
σ Fσ

one computes in this way the absolute values of a set of generators of the unit group O∗
F .

The running time is proportional to the volume of the connected component of identity
and is polynomial in log |∆F |.

Next we use Algorithm 11.2 and make a list L of all integral ideals J ⊂ OF of norm at
most ∂F , for which (J−1, N(J)1/n) is on the connected component of identity. The amount
of work is again proportional to the volume of the connected component of identity and
polynomial in log |∆F |. By Minkowski’s Theorem, the prime ideals of norm at most ∂F

generate the ideal class group of F . Therefore we check whether all prime ideals of norm
at most ∂F are in the list. This involves computing gcd’s of the polynomial that defines
the number field F with the polynomials Xpi −X for i = 1, 2, . . . , n for prime numbers p
that are smaller than the Minkowski bound ∂F . One reads off the degrees of the prime
ideals over p and hence the number of primes of norm pi for i = 1, 2, . . .. The amount of
work is linear in the length of the list and polynomial time in log p for each prime p. If all
prime ideals of norm at most ∂F are in the list L, then we are done. The class number is 1
and the Arakelov class group is connected.

However, if we do encounter a prime number p, for which a prime ideal p of norm pi <
∂F is missing, then we compute it. This involves factoring a polynomial of degree n
modulo p. When we do this with a simple minded trial division algorithm, the amount
of work is at most pi < ∂F times a power of log |∆F |. By successive multiplications and
reductions, we compute for j = 1, 2, . . . reduced divisor Dj in the connected components of
the Arakelov class groups that contain divisors of the form (pj , u) for some u. Each time
we check whether Dj is already in the list L. If it is, we stop computing divisors Dj .

Then we repeat the algorithm, but this time we work with the connected components
of the divisors Dj rather than (OF , 1): we use Algorithm 10.3 to determine all reduced
Arakelov divisors in the balls of radius 2 log(∂F ) and center Dj . Then we do the same with
the reduced divisors we found, and so on . . .. Once we have computed all reduced divisors
on the connected components of Dj , we use Algorithm 11.2 to compute all integral ideals
J ⊂ OF of norm at most ∂F , for which (J−1, N(J)1/n) is on the connected components of
the divisors Dj and we add these to the list L.

When we are done with this, the list L contains all integral ideals J ⊂ OF of norm
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at most ∂F , whose classes are in the group generated by the ideal class of p. We check
again whether all prime ideals of norm at most ∂F are in the list. If this turns out to be
the case, we are done. The ideal class group is cyclic, generated by the class of p. If, on
the other hand, we do encounter a second prime number q, for which a prime ideal q of
norm qi < ∂F is missing, then we compute it. We compute reduced divisors that are in
the components of the powers of q . . . etc.

For each new prime that we find is not in the list L, we factor a polynomial and the
amount of work to do this is at most ∂F . However, since the ideal class group has order
at most

√
|∆F | times power of log |∆F |, we need to do this at most log |∆F | times. As a

result this algorithm takes time at most
√
|∆F | times power of log |∆F |.

12. Buchmann’s algorithm.
In this section we briefly sketch Buchmann’s algorithm [7, 8] for computing the Arakelov
divisor class group and, as a corollary, the class group and regulator of a number field F .
This algorithm combines the infrastructure idea with an algorithm for complex quadratic
number fields presented by J. Hafner and K. McCurley [14] in 1989. When we fix the degree
of F , the algorithm is under reasonable assumptions subexponential in the discriminant of
the number field F . A practical approach is described in [10, section 6.5]. The algorithm
has been implemented in the LiDIA, MAGMA and PARI software packages [21, 22, 24].
See also [30].

Let F be a number field of degree n. The structure of Buchmann’s algorithm is
very simple. Our first description involves the Arakelov class group Pic0

F rather than the

oriented group P̃ic
0

F .
Step 1. Estimate the volume of Pic0

F . By Prop. 6.5 the volume of the compact Lie group
Pic0

F is given by

vol(Pic0
F ) =

wF
√

n

2r1(2π
√

2)r2
· |∆F |1/2 · Res

s=1
ζF (s).

The computation of r1, r2 and wF = #µF is easy. The discriminant is computed as a
byproduct of the calculation of the ring of integers OF . Approximating the residue of the
zeta function

ζF (s) =
∏
p

(
1− 1

N(p)s

)−1

in s = 1 is done by dividing ζF (s) by the zeta function of Q and by directly evaluating a
truncated Euler product

∏
p≤X

(
1− 1

p

)∏
p|p

(
1− 1

N(p)

)−1

.

This involves factoring the ideals pOF for all prime numbers p < X. See [10] for efficient
methods to do this. The Euler product converges rather slowly. Under assumption of the
Generalized Riemann Hypothesis for the zeta function of F , using the primes p < X, the
relative error is O(X−1/2log|∆F X|). Here the O-symbol only depends on the degree of the
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number field F . See [6, 25]. Therefore, there is a constant c only depending on the degree
of F , so that if we truncate the Euler product at X = c log2|∆F |, the relative error in the
approximation of vol(Pic0

F ) is at most 1/2.
Step 2. Compute a factor basis. We compute a factor base B i.e., a list of prime ideals p
of OF of norm less than Y for some Y > 0. Computing a factor basis involves factoring
the ideals pOF for various prime numbers p. It is convenient to do this alongside the
computation of the Euler factors in Step 1. We add the infinite primes to our factor basis.
By normalizing, we obtain in this way a factor basis of Arakelov divisors of degree 0. The
factor basis should be so large that the natural homomorphism(

⊕
p∈B

Z×⊕
σ

R
)0

−→ Pic0
F

is surjective. By Prop. 2.2 this means that the classes of the primes in B must generate
the ideal class group. Under assumption of the Generalized Riemann Hypothesis for the
L-functions L(s, χ) associated to characters χ of the ideal class group ClF of F , this is the
case for Y > c′ log2 |∆F | for some constant c′ > 0 that only depends on the degree of F .
Taking B this big, we have that

Pic0
F =

(
⊕

p∈B
Z×⊕

σ
R
)0

/H

where H is the discrete subgroup of principal divisors of B-units, i.e., the group H consists
of divisors (f) where f ∈ F ∗ are elements whose prime factorizations involve only prime
ideals p ∈ B.
Step 3. Compute many elements in H. An Arakelov divisor D = (I, u) is called B-smooth
if I is a product of powers of primes in B. We need to find elements f ∈ F ∗ for which (f)
is B-smooth and hence (f) ∈ H. This is achieved by repeatedly doing the following. For at
most O(log|∆F |) prime ideals p ∈ B pick random exponents mp ∈ Z of absolute value not
larger than |∆F |. In addition, pick random xσ ∈ R of absolute value not larger than |∆F |.
Replacing xσ by xσN(D)−1/n, scale the Arakelov divisor D =

∑
p mpp +

∑
σ xσσ so that

it acquires degree zero. Then the class of D is a random element of Pic0
F . We use the

Jump Algorithm described in section 10 and ‘jump to D’. The result is a reduced divisor
D′ = (I,N(I)−1/n) whose image in Pic0

F is not too far from the image of D. This means
that

D = (f) + D′ + (OF , v)

for some f ∈ F ∗ and v = (vσ) ∈
(∏

σ R∗
+

)0 for which ||v||Pic is small, at most log(∂F ) say.
There is no need to compute f , but when one applies the Jump Algorithm one should keep
track of the infinite components and compute v or its logarithm.

Since the divisor D is random, it seems reasonable to think of the reduced divisor
D′ = (I,N(I)−1/n) as being ‘random’ as well. Next we attempt to factor the integral ideal
I−1 into a product of prime ideals p ∈ B. Since D′ is random and since the norm of I−1 is
at most ∂F =

(
2
π

)r2 |∆F |1/2 and hence relatively small, we have a fair chance to succeed.
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If we do, then we have D′ =
∑

p∈B npp +
∑

σ yσσ and hence (f) ∈ H. This factorization
leads to a relation of the form

(f) = D −D′ − (OF , v) =
∑
p∈B

(mp − np)p +
∑

σ

(xσ − yσ + vσ)σ.

In this way we have computed an explicit element in H.
Since we want to find many such relations, we need to be successful relatively often.

In other words, the ‘random’ reduced divisors D′ that we obtain, should be B-smooth rela-
tively often. This is the weakest point of our analysis of the algorithm. In section 9 the set
Red′′F of Arakelov divisors d(I) for which 1 ∈ I is primitive and N(I−1) ≤

√
|∆F | was in-

troduced. Under the assumption of the Generalized Riemann Hypothesis, Buchmann and
Hollinger [9] showed that when Y ≈ exp(

√
log |∆F |), the proportion of B-smooth ideals J

with d(J−1) ∈ Red′′F is at least exp(−
√

log |∆F | log log |∆F |). Here the Riemann Hypoth-
esis for the zeta-function of the normal closure of F is used to guarantee the existence of
sufficiently many prime ideals of norm at most

√
|∆F | and degree 1. It is likely, but at

present not known whether the proportion of B-smooth ideals I for which d(I) is contained
in the subset RedF rather than Red′F , is also at least exp(−

√
log |∆F | log log |∆F |). Even

if this were the case, there is the problem that the divisor D′ that comes out of the reduc-
tion algorithm is not a ‘random’ reduced divisor. Indeed, Example 9.5 provides examples
of reduced divisors that are not the reduction of any Arakelov divisor. These reduced
divisors will never show up in our calculations, since everything we compute is a result of
the reduction algorithm. It would be of interest to know how many such reduced divisors
there may be.

For the next step we need to have computed approximately as many elements in H as
the size of the factor base B. This implies that we expect to have to repeat the computation
explained above about exp(

√
log |∆F | log log |∆F |) times. When the discriminant |∆F | is

large, this is more work than we need to do in Steps 1, 2 and 4. Step 3 is in practice the
dominating part of the algorithm. It follows that the algorithm is subexponential and runs
in time O(exp(

√
log |∆F | log log |∆F |)).

Step 4. Verify that the elements computed in Step 3 actually generate H. Let H ′ denote
the subgroup of H generated by the divisors (f) =

∑
p∈B kpp+

∑
σ yσσ that we computed

in Step 3. The quotient group (⊕p∈BZ×⊕σR)0 /H ′ admits a natural map onto Pic0
F .

Its volume is equal to the determinant of a square matrix of size #B whose rows are the
coefficients of a set of #B independent principal divisors that generate H ′. If the quotient
of the volume by the estimate of vol(Pic0

F ) computed in Step 1, is less than 1/2, then we
have H ′ = H and the group (⊕p∈BZ×⊕σR)0 /H ′ is actually isomorphic to Pic0

F and we
are done.

In practice this means that once we have computed somewhat more divisors (f) in H
than #B, we “reduce” the coefficient matrix. From the “reduced” matrix we can read
off the structure of the ideal class group as well approximations to the logarithms of the
absolute values of a set of units ε that generate the unit group O∗

F . This enables us to
compute the regulator RF .

This completes our description of Buchmann’s algorithm.
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It seems difficult to compute approximations to the numbers σ(ε) themselves from
approximations to their absolute values |σ(ε)|. If one wants to obtain such approxima-
tions, one should apply the algorithm above to the oriented Arakelov class group. The
computations are the same, but rather than real, one carries complex coordinates xσ along.
More precisely, we have that

P̃ic
0

F =
(
⊕

p∈B
Z×⊕

σ
F ∗

σ

)0

/H̃

for the discrete subgroup H̃ that consists of elements f ∈ F ∗ whose prime factorizations
involve only prime ideals p ∈ B. In this way one obtains approximations to σ(εi) for a
basis εi of the unit group O∗

F . In principle, once one has such approximations one may
solve the linear system σ(εi) =

∑
j λijσ(ωj) and compute λij ∈ Z so that εi =

∑
j λijωj

for 1 ≤ i ≤ r1 + r2 − 1. However, it is well known that the size of the coefficients λij

may grow doubly exponentially quickly in log|∆F | and it is therefore not reasonable to
ask for an efficient algorithm that computes a set of generators of the unit group as linear
combination of the basis ωk of the additive group OF .

What can be done efficiently, is to compute a so-called compact representation of a set
of generators of the unit group O∗

F . Briefly, this works as follows. Using the notation used
in the description of the Jump Algorithm of section 10, one finds for each fundamental
unit εj integers mij so that

∏
i v

mij

i is close to εj . The Arakelov divisors (OF , vi) are
equivalent to reduced divisors d(f−1

i ). While jumping towards the fundamental unit, one
keeps track of the principal ideals that are encountered on the way. For instance, if in
the process one computes the sum of the divisors (OF , vi) and (OF , vj) and reduces the
result by means of a shortest vector f , then the result is equivalent to the reduced divisor
d((ffifj)−1). The size of the elements fi, fj and f . . . etc. is bounded by (log|∆F |)O(1).
With a good strategy one can jump reasonably close to the unit. The number of jumps we
need to reach this point is also bounded by (log|∆F |)O(1). Using the approximations to the
fundamental units and to the vectors fi, fj , f . . . etc, we can approximate a small element
g ∈ F ∗, so that the difference between the divisor we jumped to and the fundamental unit
is equivalent to a divisor of the form (OF , g). Since g is small, we can compute it in time
bounded by log|∆F |O(1) from its the approximations of the various σ(g). From this we
easily obtain the fundamental unit εj .
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