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Abstract. It is shown that sometimes one can read off the structure of the minus class groups of
abelian number fields from certain Stickelberger elements; the question is raised whether one can
always determine the structure of these class groups from Stickelberger elements. Some numerical

and theoretical evidence for an affirmative answer is presented.

1. — Introduction

Ideal class groups of cyclotomic or abelian number fields have been a subject
of study for a long time [5,14]. The problem naturally falls apart in two. The
class groups of real abelian number field are still relatively poorly understood.
But about the other parts, the minus parts of the class groups of imaginary
abelian number fields, much more is known. For an imaginary abelian number
field K the minus class group C¢x of K is defined to be Cl [im(Clk+) where
K* is the maximal real subfield of K. The analytic class number formula gives
an expression for the cardinality of C¢% in terms of certain generalized Bernoulli
numbers which are defined in terms of the Galois group Gal(Q™"/Q). This
formula is quite practical and can be used to compute the cardinalities of minus
class groups of abelian fields of small conductor, see [7,12,16). More precise
results were recently obtained by B. Mazur and A. Wiles [9). They took the
action of the Galois group Gal(Q/Q) into account. They obtained formulas for
the cardinalities of certain eigenspaces for this action. Apart from their results
there does not appear to be a general way to describe the structure of the minus
class groups as abelian groups in similar terms. For instance, in the case of a
complex quadratic field K, there does not seem to be a way to tell, in terms of
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generalized Bernoulli numbers or Stickelberger elements what the structure of
Clk as an abelian group is.

In this paper we will discuss a way that might possibly lead to a procedure to
describe the structure of minus class groups of abelian number fields in terms
of Stickelberger elements. In the case of a complex quadratic field and an odd
prime p this leads to a necessary and sufficient criterion for the p-part of the class
group to be a cyclic group [8]. This criterion is élementary and solely in terms of
Gal(Q / Q). While for quadratic fields there are definitely more practical ways
to compute the structure of the class group, it seems that for abelian fields of
high degree our method is quite practical.

Section 2 contains a preliminary discussion of Fitting ideals. In section 3
we introduce our “Stickelberger ideal” and we pose the question whether it is
equal to a certain “Fitting ideal”. An affirmative answer to this question would
imply that one can completely describe the structure of the odd parts of the
minus class groups of abelian number fields in terms of Stickelberger elements.
One might even hope that this, in combination with an effective Cebotarev
Density Theorem, leads to an efficient way to determine this structure. Finally,
in section 4 we present some numerical examples indicating that the answer
to our question is affirmative. Another indication in this direction is the result
mentioned above, joint with Hendrik Lenstra, on quadratic fields. The details of
the proof will be published elsewhere.

I'would like to thank Serge Lang for stimulating discussions concerning this
work and the Department of Mathematics of the University of California at
Berkeley, where part of this research was done, for its hospitality.

After this paper was written I became aware of Kolyvagin's results [4,11] on
p-class groups of Q((, ). He gives a new proof of the theorem of Mazur and Wiles
and he gives in addition a description of the Galois module structure of these
groups in terms of certain higher “Stickelberger elements”. His results can easily
be generalized to abelian fields F for which p does not divide [F : Q). His paper
does, however, not seem to contain an explicit answer to questions (3.2) and
8.2).
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2. — Fitting ideals

For the definition and the basic properties of the R-Fitting ideals of finitely
generated R-modules A we refer to the books by Lang and Northcott [5,10] and
the appendix to the paper by Mazur and Wiles [9].

We let R denote a discrete valuation ring with uniformizing element . Any
finitely generated R-module is a finite product of copies of R and modules of
the form R/(x"). The R-Fitting ideal Fitp(A) of an R-module A measures the

“size” of A : if A admits R as a direct summand then Fitp(A) = 0 and when
A= @l R/(r™)then Fit Rr(A) = (™) where m = E,_l n;. The R-Fitting ideal
does, in general, not reveal the entire R-structure of the module. One has, for
Instance, that Fitg(R/(r?)) = Fitr(R/(%) x R/(r)) = (x?). We can, however,
recover the R-isomorphism class of a finitely generated R-module A from the
Fitting ideal of A with respect to a larger ring as follows. We let A = R[[T]] denote
the ring of power series with coefficients in R. We turn every R—module nto a
A-module by letting T act as zero on A.

PROPOSITION 2.1. — Let A and ny < ny < n3 < ... denote non-negative integers.
For the R-module

A=R'e él R/(x™)
one has that
FxtA(A)——{ZaT' €Aia;=0for0<i< A
=0

d . '
a; =0 (mod wz:‘m'-* "")for,\ <i<A+d}).

Proof : From [5, Ch. XIII,Cor.10.6] we see that FitA(R) = (T) and that
FitA(R/(x")) "= (T,n"). Since moreover {5,Ch.XI11,Prop.10.8] one has that
FitA(A ® B) = Fit, (A)Fit,(B) we conclude that

d
Fits(4) = (Y [J (T, 7™)

i=1

It is easy to see that this ideal is actually equal to the ideal in the statement of
the proposition. This proves Prop.(3.1).
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It follows at once that one can read off the invariants ) and n;,n2, ... from the
A-Fitting ideal of A = R* @ %, R/(7™). We conclude that the R-isomorphism
class of any finitely generated R-module A can be recovered from its A-Fitting
ideal. For instance one has that A is cyclic over R if and only if T' € Fitp(4).
More generally the number of R-generators of A is at least d if and only if
Fita(A) C (T, 7). It is easy to see that the R-ideal generated by the coefficients
of T* of the f(T) € Fita(A) is precisely the k-th Fitting ideal of A as defined in

(10].

8. — Minus class groups

In this section we will discuss minus class groups of imaginary abelian
number fields. We will study one p-part at the time. Let us therefore fix a prime
p which we will suppose to be odd. Let F be a finite abelian extension of Q
of degree prime to p. The Galois group Gal(F/Q) acts on the class group Clr
and in this way its p-part C{r, becomes a module over the ring Z,[A). Since p
does not divide #A, the group ring Z,[A] decomposes as a product of discrete
valuation rings. We have

Z,[A]) %Rx

where the product runs over the characters x : A — Q; upto Gal(ﬁ,, /9Qp)-
conjugacy. By R, we denote the ring Z,[im x] which is a finite extension of
Z,;itisa Z,[Al-module via § - z = x(é)z for 6 € A and z € R,. The above
isomorphism of rings is given by 6 +— (x(6)),.. Accordingly the p-class group of
F' is decomposed as a direct sum

Clpp, = QBC'EF,,()()

where Clrpy(x) denotes Clr, ®z,(a] Rx. When F is an imaginary field, the
characters of A come in two types : they are even or odd according as x assumes
the value 1 or —1 on complex conjugation. The sum over the even characters x of
the groups CCr,(x) is just C£p+ , where F't denotes the maximal real subfield
of F. The sum over the odd characters is the p-part of the minus class group of
F.
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A standard argument shows that the R, -module C¢r ,(x) does not depend on
F. We will therefore just write C¢(x) for C¢r,(x). When x is even, very little can
be said about C/(x) in general. For odd x there is a beautiful explicit formula
for the cardinality of C¢(x) :

THEOREM 3.1 (Mazur and Wiles). — Let p be an odd prime and let x :
Gal(@/Q) — @, be an odd character of conductor f not equal to the Teichmiller
character w. One has

#CU(x) = #Ry/(B1,x-1)
where B, ,-1 denotes a generalized Bernoulli number

f
By = Z ;x"l(z) € R,.

z=1
Proof : This is Theorem 2 of the introduction of [9].

We view x as a function on Z/fZ in the usual way : first we identify
Gal(Q((s)/Q) with (Z/fZ)* using the action on the f-th roots of unity; the
character on (Z/fZ)* is then extended by O to all of Z/fZ. The Teichmiiller
character w : Gal(@/Q) — Z; is given by the action of the Galois group on the
p-th roots of unity u,. It is determined by

o(¢)=¢“)  for o € Gal(Q/Q) and ¢ € p,.

It is well known that C¥(w) = 0.

The result of Mazur and Wiles does not, however, give any information on the
isomorphism class of C/(x) as an R,-module. In the remainder of this section
we will explain how one may get information on the R, -structure of C¢(x). We
recall that we have fixed an odd prime p and from now on we also fix an odd
character x : Gal(Q/Q) — Q; not equal to w. Its conductor will be denoted by
Fr-

Let F' denote the fixed field of ker(x) and let A denote the Galois group
Gal(F/Q). For every prime £ which does not divide f, we consider the extension
F(Ce) of F. We write G for Gal(F((¢)/F). Clearly G = Gal(Q(,)/Q) is a cyclic
group of order £ — 1. The p-part M of the class group of F((,) is a module over
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the group ring Z,[A ® G|. Its x-part M(x) = M xz,a] Ry is therefore a module
over the ring R, [G]. The ring R, [G] s isomorphic to R, [[T]]/((1+ T)*"! — 1) by
letting T' + 1 correspond to a generator of the cyclic group G. We see that M(x)
becomes in this way a A-module, the ring A = R, [[T]] acting via its quotient.

Let us note that M(x) is precisely the x-component of the p-class group of F"
where F' is the subextension of F((,) of maximal p-power degree over F. In the
above discussion one could therefore replace F((,) by F' and the Galois group
G by its p-part. As a result the ring R, [G] would be a local ring. We will choose
this approach in section 4.

Since the extension F((,) is totally ramified over F', the norm map M(x) —
C{(x) is a surjective A-morphism. It follows, more or less from the definition of
Fitting ideals, that

FitaM(x) C FitaCé(x).

Since y is not the Teichmiiller character w the Stickelberger elements

> (g @™
z€(Z/LfT)"
are integral i.e. they are in the ring R, [G]. Here 0. is determined by o,(¢) = ¢*
for ¢ € pe; by [0z] we denote the corresponding element in the group ring R, [G].
For a € R we denote by () the fractional part of a; it is determined by « = (a)
(mod Z) and 0 < (a) < 1. In terms of the isomorphism of rings above we see
that the Stickelberger elements are precisely
bdT)= 3 (g @D e A/ + D) -1
z€(X/LfT)

where ind,(z) denotes the index of z with respect to a primitive root mod £ : one
has z = ¢4 for z € (Z/€Z)*.

It follows or should follow from the work of Mazur and Wiles that the
Stickelberger elements are in the A/((1 + T)*"! — 1)-Fitting ideal of M(x).
Therefore, by a standard property of Fitting ideals [10,appendix form.4]

x,(T) € Fita M(x) C FitACl(x) (mod (1 +T)** —1).

In this way one constructs for each prime £ and each isomorphism R, [G] &
A/((1+T)"** —1) a power series in the ideal Fit, C¢(x) + ((1+T)*~! —1)A. For

THE STRUCTURE OF THE MINUS CLASS GROUPS 191

each integer n > 1 we define I§”) to be the ideal generated in A/((1+T)*" —1) by
the images of the Stickelberger elements ¢,.¢(T) for all primes £ = 1 (mod p™)
and all possible identifications of the rings R,[G/G?"] and A/((1+ T)*" —1):

I™(x) = (¢y,e(T) : £=1 (mod p")).

Finally we define the A-ideal I(x) :

I(x) = (I™() + (A +TP" —1)A).
n>1

As we already remarked the “Stickelberger ideal” I() is contained in the “Fitting
ideal” Fits C¢(x). Numerical experiments suggest that, given C¢(x), the only
restriction on the R,[G]-structure of the modules M(x) is the fact that the
norm map M(x) — C¥(x) is surjective and that the G-cohomology of M (x)
is as described in Lemma(4.1) below. One would therefore, apart from these
restrictions, expect “random” behavior of the R, [G]-isomorphism classes of
M(x) and of the Stickelberger elements. So one is tempted to ask the following
question :

Question 3.2. — Is I(x) = FitaoC¥(x) for characters x which are not powers of
the Teichmiiller character?

When Y is a power of w the answer to the question would be negative because
I(x) C (T') while Fits(C¢€(x)) ¢ (T). In this case we have a modified question :

Question 3.2. — When i # 1 is I(w*) = Fit,Cl(w') N (T)?

An affirmative answer to Questions(3.2) and (3.2)’ would enable one to recover
the structure of the class groups C¢(x) from certain Stickelberger elements. For
X not equal to a power of the Teichmiiller character this is clear from Prop.(2.1).
For powers of w one can recover the isomorphism class of the p-group C¢(w*)
from the ideal FitAC¢(w*) (\(T) and the class number #C¥¢(w’). We recall that
Cé(w) =0. :

We have some results that suggest that. perhaps the answer to the questions
is always "yes". In the next section we will present some numerical examples
and some theoretical evidence. )
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4. — Examples

We recall that p denotes an odd prime, x an odd p-adic character of Gal(Q/Q)
and £ a prime which we suppose to be 1 (mod p). We let F denote the fixed field
of ker(x) and K the maximal p-power degree extension of F inside F({). The
x-part of the p-part of the class group of K is denoted by M(x). It is isomorphic
to the x-part of the p-part of the class group of F((,) as we observed earlier. We
let G = Gal(K/F) and A = Gal(F/Q). Clearly the Galois group of K over Q is
isomorphic to the direct product G x A. One can view x as a character of A. The
Z,[A]-algebra Z,[im x] will be denoted by R, and the powerseries ring R, [[T]]
will be denoted by A.

For the basic facts on cohomology of groups and of class field theory that we
will use see [2]. We first prove a useful lemma.

LEMMA 4.1. — When x is not the Teichmilller character w then the Tate coho-
mology groups of the G-module M(x) are isomorphic to R, /(p™) or 0 according
as x(£) =1 or not.

(Here p™ denotes the order of G.)

Proof : Because A and G have coprime order the action of A commutes with
G-cohomology. More precisely :
A9G, A = B9(G,A%)  for every Z[G x A] — module 4,
B9(G, A)(x) = HY(G,A(x))  for every Z,[G x A] — module A.

We compute the cohomology of M () by taking x-parts of the cohomology groups
of the G x A-modules that occur in the exact sequence

0——»0}'(—->UK——>CK——»C€K——v0.

Here O}, denotes the unit group of the ring of K-integers, Ck denotes the group
of idéle classes of K and Uk denotes the subgroup of idéles that have trivial
valuation at the finite primes of K.

By global class field theory we have that 84G,Cx) = HI*(G,Z) for all
g € 7 and therefore, since x # 1 that

(1) A9G,Ck)(x)=0 forallgel.
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Since x is odd and not equal to w we have that
() HYG,05)(x)=0 forallgel

We compute the cohomology of the idéle unit group Ux by means of local class
field theory. It is known [2] that

B9G,Uk) = ela,ﬁv(cv,o;)

where the sum runs over the primes v of F over £ and G, denotes the decompo-
sition group of any such v in G. We have, of course, that G, = G for every v. By
w we denote a prime of K over v and by O}, the ring of integers of the completion
K, of K at w. The Galois group of the local field K, over Q, is just Gy X Ay
where A, denotes the decomposition group of a prime v in F' over £. The group
A, C A acts trivially on the cohomology groups i 9(Gy,Z) and therefore, by lo-
cal class field theory, it acts trivially on the groups ﬁq(G.,, Kpr) e I?W”(G,,, 7)
as well. It follows from the long cohomology sequence of

0— 0, — K, —1—0
and the fact that gcd(#G.,, #4¢) = 1 that A, acts trivially on the cohomology
groups I?“(G.,, 0;).

Each of the groups H9(G,, O%) is cyclic of order #G, = p" and A/A;
permutes the sumands in the sum above. We conclude that forall g € Z

B9(G,Ux) 2 I/p"2[A/D,]  as A-modules.
Since x : A — @, is injective we find

3 I?’(G,Ux)()/() = {ORx/(P"), :2;1 igﬁg ; i

The lemma now follows from (1), (2), (3) and the long cohomology sequences
associated to the four term exact sequence above.
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COROLLARY 4.2. — If x # w and x(£) # 1 then there exists an exact sequence
0—V->V — M(x)—0

whereV is R, [G]-free of rank d = the minimal number of R, -generators of C£(x).

'Proof : Since x is odd and not equal to w, it follows from the proof of |
Lemma(4.1) that (G, 0%)(x) = 0. This implies that the canonical map |
Ct(x) — M(x) is injective and it follows easily that the module |

M(x)/( T — 1 )M(x) is isomorphic to = C{(x). (Here  denotes a genera-

tor of the cyclic group G.) Therefore there is, by Nakayama’s lemma, an exact .

sequence
0—A—V—Mx)—0

 where V is R,[G]-free of rank d. By Lemma(4.1) we have H%(G,M(x)) = 0. |
Therefore since G is a p-group and M(x) is finite we have that M(x) is a
cohomologically trivial G-module. Therefore A C V' is cohomologically trivial and ]
one can show that A is a projective R, [G]-module in a way similar to the proof 1
of Théoréme 8 of Chapitre IX of [13]. Since R,[G] is a local ring one concludes |

that A is free and since M() is finite it is free of rank d. This proves (4.2).

The following theorem can often be used to prove that C¢(x) is cyclic over 7,

R,.

THEOREM 4.3. — If there is a prime £ = 1 (mod p™) for which the Stickelberger |

element ¢, ((T) has Weierstrass degree 1 then C¢(x) is cyclic over R, and

I™(x) = FitaCl(x) (mod (1 +T)" —1) whenx #u',
I™(w*) = FitAClw') [ (T) (mod (1+T)P" —1)  fori#1.

Proof : In the proof we will write & for p raised to the length of the R, -module

C#(x). In other words we have that #CE(x) = #Ry/(h).
By Weierstrass’ Preparation Theorem we have that

& ek, o(T)=(T—0a)-unit  in A/(1+TP" ~1).
We have that, upto a unit,

@a= > GENT@=0-xO) ¥ (Gx7E@=xO-Dh

TE(Z/LfT)* z€(Z/f2)*
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If x(€) = 1 this implies that a = 0. By Stickelberger’s Theorem {16] we see
that T kills M(x) i.e. the module M(x) is G-invariant. Therefore the zero-th Tate
cohomology group is M(x)/p"™M(x). By Lemma(4.1) this group is cyclic over R,,.
This implies that the class group C/(x) is also cyclic over R, and therefore its
A/((1 + T)*" — 1)-Fitting ideal is equal to (T, k). Since the constant terms of
all Stickelberger elements are either 0 or a unit times h, we clearly have that
I™(x) C FitaCl(x) (mod (1 + T)?" —1). Since T € I™(x) we are now done
when x is a power of w. In all other cases there e:dstsaprih:e £ =1 (mod p")
for which x(£') # 1. By (4) the Stickelberger element ¢, »(T') has constant term
equal to a unit times h which shows that k € Stick'™(x) as required.

If x(¢) # 1 we have by Lemma(4.1) that M(x) is a cohomologically trivial
G-module. In the notation of Corollary(4.2) we let f = det(o). The Fitting ideal
Fit,6)(M(x)) I8 generated by f. Stnce M(x)/TM(x) & CE(x) we see that
f(0) = unit * h. By Stickelberger’s theorem M(x) is annihilated by ¢, «(T) =
unit*(T—e). Since R, [G]/(T—a) is cyclic, the ideals between (T—a) and R, are
linearly ordered. The smallest ideal strictly larger than (T —a) is (T —a, ap™™1).
The R, [G]-annihilator is one of the ideals between (T — o) and R,. If it were not
equal to (T — ) then (T — a,ap™™!) C Anng 6)(M(x)). It follows easily that
(1+Ty " —1lls M (x) and hence that the subgroup H = GP"™" acts trivially
on M(x). This implies that the H-cohomology groups of M(x) are non-trivial,
contradicting the cohomological triviality of M(x).

We conclude that Anng [6;(M(x)) = (T — @) and hence that f is a multiple
of T — a. Since, upto units, we have that f(0) = ¢,,¢(0) = h = a we conclude
that f = (T ~ a) * unit. It follows that both M(x) and C£(x) are cyclic R,-
modules. As in the previous case we have that Fitg (g)C¥(x) = (T, k) and the
obvious inclusion I™™(x) C Fit4C€(x) (mod (1+ T)P" — 1). To prove the other
inclusion we choose another isomorphism '

R,[G] = R,[[T])/(1 +T)" - 1)

by replacing T+1 by (T+1)2. We see that (T+1)?~1—a = T?+2T—a € I™(x).
It follows at once that T and a = unit * k are in I(™)(x) as required.

The following Corollary says that if the Stickelberger ideal I(x) is very large,
the answers to questions (3.2) and (3.2) are affirmative.
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COROLLARY 4.4. — If there is a power series in I(x) of Welerstrass degree 1
then )
I(x) = FitACl(x) whenx #w',

I(w') = FitaClw') [ ((T) fori#1.

Proof : If there is a power series in ¢, , of Weierstrass degree 1 then there
must be a prime £ = 1 (mod p) for which ¢, ¢(T) has Weierstrass degree 1. It
follows from the previous Theorem that C¥(x) is cyclic over R, and hence that
FitoC¢(x) = (T, h) in the notation of the proof of Theorem(4.3). It is obvious
that I(x) C FitaC¢(x) and the other inclucion follows by arguments similar to
the ones employed in the proof of Theorem(4.3). This proves (4.4).

THEOREM 4.5. — If x is quadratic, not equal to the character of conductor 3,
and C{(x) is a non-trivial cyclic group then

I(x) = FitaC(x).

Proof': 1t is easy to see that x cannot be a power of the Teichmiiller character.
In [8] it is shown that for each n > 1 there exist primes £ = 1 (mod p™) for which
&x,¢(T) has its linear coefficient not divisible by p. As in the proof of Theorem
(4.3) one concludes that T € I™)(x) for every n > 1.1t follows that I() contains
T. The Theorem therefore follows from the previous Corollary.

In [8] it is shown that the set of primes £ = 1 (mod p™) for which the
linear coefficient of ¢, ¢(T') is not divisible by p has positive Cebotarev density.
Moreover, the two subsets of primes for which in addition x(£) = 1 or x(¢) # 1
respectively each have positive density.

Remark 4.6 : If x is not a power of the Teichmiiller character and C£4(x) = 0
then the answer to questions (3.2) is affirmative. This follows easily from the fact
that there is a prime ¢ congruent to 1 (mod p) for which x(¢) # 1. By (1) the
Stickelberger element ¢, (T') has constant term a unit. We conclude that both
the Fitting and the Stickelberger ideal are the unit ideal. I do not have such a
oorhplete result in the case where y is a power of the Teichmiiller character. See
example(4.6) for some numerical results.
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We proceed by presenting some numerical evidence for a positive answer to
Questions (3.2) and (3.2)". The calculations involved are quite straightforward
and not too lengthy.

EXAMPLE 4.7. — p-parts of the class groups of Q(C)-

It is known that all w'-eigenspaces of the p-parts of the class groups of Q((,)
are cyclic whenever p < 150000 cf [14,15]. It would follow from Vandiver's
conjecture that these eigenspaces are in fact always cyclic llG,Cor.iO.lSl. An
affirmative answer to Question(3.2)’ combined with this conjecture would imply
that for each prime p and each odd i # 1 (mod p — 1) there exists a prime ¢
for which the linear coefficient of ¢, ,e(T) is not zero mod p. A little calculation
shows that this boils down to the following : :

For an odd prime p and even i satisfying 2 < i < p — 3 does there exist a
prime £ = 1 (mod p) for which

-1

D inde(z)Bi(z) # 0 (mod p) ?

z=1

(Here Bi(t) denotes the k-th Bernoulli polynomial and ind, the index with
respect to some primitive root mod £.) «

By Theorem(4.3) an affirmative answer to this question would imply that the
first Stickelberger ideal I")(w) is equal to Fit, C¢(w*) (Y(T) modulo (1 + TY —1
for i # 1 (modp — 1). It would, independently of the, truth of Vandiver’s
conjecture, also imply that the w'-eigenspaces of the p-part of the class group of
Q(¢p) are cyclic groups. Our criterion is similar to Washington'’s [16,Prop 8.19]
but it appears to be independent

For a few primes p and characters w* we checked the above. In all cases
considered there appeared to exist a prime £ = 1 (mod p) for which the
linear coefficient of the Stickelberger element $wi o(T) is not zero mod p for
all : simultaneously. We list the first few odd primes p and the corresponding
smallest such £. Often, but not always, £ is just the smallest prime congruent
to 1 (mod p).
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P ¢ p ¢ P £

5 11 41 83 83 167
7 29 43 947 89 1069
11 23 47 283 97 1553
13 79 53 107 101 809
17 137 59 709 103 1031
19 191 61 1709 107 857
23 139 67 269 109 2399
29 59 71 569 113 1583
31 311 73 439 127 509
37 149 79 317 131 263

EXAMPLE 4.8. — Various fields of prime conductor.

In [7] D.H. Lehmer and J. Masley computed the minus class numbers of the
cyclotomic fields Q((y) for the primes f < 509. In many cases one can determine
the structure of these class groups as abelian groups by exploiting the action of
Gal(Q(¢s)/Q). In some cases the action of this Galois group does not help very
much. For instance, when x is an odd character of degree d and p is a prime
congruent to 1 (mod d) dividing #C¢(x) more than once it is not immediately
clear how to decide whether C¥(x) is cyclic over R, or not. In these cases we
were always able to find an auxiliary prime ¢ for which the Weierstrass degree
of ¢.¢(T) is equal to 1. We conclude from Theorem(4.3) that in all these cases
the group C¥(x) is cyclic over R,.

Below we list the results in a small table. In the column "g — x(g9)" we list a
primitive root g mod f and the value of the character x(g) mod p.

f p?  degx g x(9) ¢

139 477 46 2+~ -9 283

281 412 40 3~17 83

443 277 26 2+ 7

461 52 4 23 11 -
491 11 10 2~6 -

491 112 10 2+-7 23
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Mutatis mutandis everything we said above also holds in the case f = 443. In
this case, however, “cyclic” means cyclic over the ring Z3[(3] which is of degree
3 over Z;. The character  is given by a = x(g) which mod 3 is determined by
o® +a® —a+1=0. The class group involved is cyclic over this ring, but as an
abelian group it is isomorphic to Z/9Z x Z/9Z x Z /9Z.

ExaMPLE 4.9. — p-class groups of quadratic Sfields.

Sofar we encountered only cyclic class groups in our examples. There are
heuristics on the statistical behavior of the structure of class groups of number
fields that suggest that non-cyclic groups C{(x) are rare [3]. Probably any
character x for which the minimal number of R -generators of C¢(x) is merely
moderately large will have a large conductor.

The only examples we present are quadratic characters X. In this case C¢(x)
is for each odd prime p just the p-part of the class group of the quadratic field
@kerx Thanks to the effortsvof D. Shanks and others many examples of class
groups of complex quadratic fields and small primes p are known for which the p-
rank is somewhat large. We computed for some quadratic characters x and some
odd primes p several Stickelberger elements #x,¢(T). In the table for a fixed prime
£ a few Stickelberger elements are listed, each made with a different primitive
root mod £. For computational convenience we chose in all our examples the
conductor f to be prime. We computed the Fitting ideals from the structure
of the p-class groups which we took from Buell's tables (1]. We found that the
Stickelberger elements generate the A-Fitting ideal modulo ((1 + T)P - 1) for
certain small powers p”. When the exact power of p dividing £ — 1 is p", the
Stickelberger element was computed modulo ((1 + T)*" — 1,p"T).
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3299

134059

classgroup
3x9

Ix9
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14
163

487
811
1297
1459
1621
1783
169
487

811

34

34

34

34

35

34

34

34

34

34

éx,4(T)

27+ 15T + 49T +. ..
27+ 48T + 61T +...
27+ 24T + 7072 +...

45T + 20177 + 120T° + 47T* + .
144T + 75T? + 99T + 167T* + . |
72T + 183T2 + 127°% + T1T* + ..

27 + 42T + 58T2 +...
27 + 21T + 70T2% +...
27+ 51T +25T% +...

27+ 75T + 24T% + 62T3 +. ..
27 + 78T 4 27T% + 28T + ...
27 4 39T + 78T% + 59T + ...

27 +489T + 12872 + ...
27 4+ 609T + 6272 + ...
27 4 6697 + 395T2 +...
127 +21T% +19T% + ...
6T + 24T% + 41T +...
3T + 66T +43T°% +...
39T + 3772 +...

60T + 55T% + ...

30T +67T2 + ...

36T +43T% +4T% +...
18T + 6772 + 21T +...

- 9T +55T2% ...

81 + 45T + 94T2 + ...
81 + 1447 4 10972 + ...
814 72T + 70T +. ..
54T + 3573 + ...
27T + 54T2 4+ 5573 + ...
54T + 1773 + ...

f
351751

3321607

12451

classgroup
9 x 27

IxIxIx7T

5x5

£
163

487

811

1297

1458

163

487

811

1297

1459

1621

1783

251

34

34

34

34

35

34

34

34

34

53

#x.4(T)

243 + 45T + 57T?% + 56T + ...

243 + 63T + 39T% + 287 +...

243+ 72T + 12T? + 1173 + ...

243 + 90T + 9972 + 57T° + 20T +...
243 + 45T + 13577 + 13273 + 2337 + ...
243 + 144T + 180T + 48T3 + 23T4 + . ..
63T + 1272 + 80T* + ...

72T + 66T2 + 2173 4 5673 + ...

36T + 4872 + 36T3 + 14T + ...

243 +9T2 4+ 28T% + ...

243 + 6372 + 5373 + ...

243 + 36T2 4 46T% + ...

603T + 608T2 + ...

666T + 35072 + ...

3337 + 55172 + ...

567 + 9T + 27T? + 51T + 60T* + 3T5 + 1
567 + 18T + 3672 + 30T + 60T* + 30T* +
567 + 63T + 54T + 42T° + 6T+ + 1275 +
5172 4+ 12573 + ...

19572 + 23273 + ...

23172 43573 + ...

36T + 3672 +38T3 +...

18T + 45T + 1673 + ...

9T +9T% + 1173 + ...

567 + 2772 + 9T 4 5274 + ...
567 + 27T2 + 7273 + 10T +. ..
567 + 27T2 + 6372 + 4T4 + . ..

567 + 171T + 25272 + 399T° + 8667 + ..
567 + 450T + 31572 + 34873 + 31774 + ..
567 + 225T + 38772 + 33613 + 17T4 + ...
63T + 45T2 + 66T2 + 63T* + 5275 + ...
72T + 54T2 + 15T + 72T* + 77T° + ...
36T + 45T2 + 57T2 + 45T* + 1075 + ...
63T + 4272 + 7073 + . ..

72T + 33T?% + 2673 + . ..

36T + 6012 + 773 + ...

25+ 90T + 12172 + ...
254+ 45T + 1972 + . ..
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f classgroup V4 p" Ay t(T)
63499 Tx7 197 7 14T + 47T% 4+ 327% + . ..
7T 4+ 10T? + 4873 +...
272231 11 x 33 727 112 11T +8T%+...
66T + 4612 + ...
1016083 13 x 13 677 132 13T + 151T% + ...
917 +15T% 4 ...

Manuscrit recu le 28 septembre 1989

* p. 185 supported by the Netherlands Organization of Scientific Research.
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