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We determine the number of projectively inequivalent nonsingular plane cubic
curves over a finite field F, with a fixed number of points defined over F,. We count
these curves by counting elliptic curves over [, together with a rational point which
is annihilated by 3, up to a certain equivalence relation.  © 1987 Academic Press, Inc.

1. INTRODUCTION
We give a complete answer to the following question:

(1.1) QuesTioN. Given a finite field F, and an integer N >0; how many
projectively inequivalent nonsingular plane projective cubic curves are
there over F, that have exactly N points defined over F,?

Here F, denotes a finite field with ¢ elements. Two plane curves are said
to be projectively equivalent if there is a projective transformation of the
projective F -plane mapping the equation of one curve to the equation of
the other; see Hirschfeld [12].

This question has been studied from the point of view of combinatorics.
Partial answers have been obtained [1,4-6]. Oddly enough, the matter
had essentially been settled by Max Deuring in 1941. In his paper [8] he
determined which rings occur as rings of endomorphisms of elliptic curves
defined over a finite field. From this he deduced how many isomorphism
classes of elliptic curves over a finite field there are in a fixed isogeny class,
which implies a good deal of the answer to Question (1.1).

In this paper we explain how to obtain an answer to Question (1.1) from
Deuring’s results. There are two complications: there is a difference
between the notions of projective equivalence of curves in the sense of
Hirschfeld and isomorphism of abelian varieties in the sense of algebraic
geometry; we overcome this difficulty by studying the 3-torsion points on
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elliptic curves over finite fields. The second complication is the fact that
Deuring considers two elliptic curves to be isomorphic over F if they are,
in our sense, only isomorphic over F,, the algebraic closure of F,. For this
reason we will consult Waterhouse’s 1969 thesis [19] rather than Deuring’s
paper. : ’ o

Before we state the main result we introduce some notation: for every
AeZ o with 4=0 or 1 (mod 4) we denote by H(4) the Kronecker class
number of 4; the definition of the. Kronecker class number is given in Sec-
tion 2 and a small table of these numbers is given in Section 6. The Jacobi
symbol is denoted by (%) or (x/p) and is defined as follows: for xe Z and p
and odd prime

. if x=0 (mod p);
(—) = 1  if xisanonzerosquare (mod p);
-1 if xisnotasquare (mod p).

if x=+1 (mod 8);

X
(§>= 0 if x=0 (mod2);
—1 if x= 43 (mod 8)

The main result is the following: :
Let F, be a finite field of characteristic p. Let M(¢) denote the numbe
projectively inequivalent plane cubic curves over F, with exactly ¢ + 1
- points defined over F,. We have that :

M(t) = N(t) + Ns(t) + 3N; . 5(1) —&(2),
where

N(t)=H(>—4q)  if r<4qandp]s;
= H(—4p) it =0,
= if p=2and*=2q,
= . if p=3andf*=3q

1 ( -3 —4
hfere- ()5
12 p p
if =4dq
(—3) it =g | “and if ¢ is-a square;

=,1_’(:.£). “if =0
P, -

=0 , otherwise;

andif g is
not a square;
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- Ny()=N(1)
o

. ; 2y
N3x3(t)=H<t 9 q)

~if t=g+1 (mod 3);
" otherwise; o

if g=1 (mod3),p)t
andt=q+1 (mod9);
if gisasquare, p#3

na=2()

otherwise;

if (t=tyort=t,)and ty#1,;

if t=ty=t and p=2;

otherwise.

The numbers #, and ¢, are defined as follows:
to is only defined if g=1 (mod 3):

1, = the unique solution € Z to

t=q+1 (mod?9)

plt

*+3x>=4q forsome xeZ

()

if p#1 (mod3).

t; is only defined if g=1 or 4 (mod 12):

1, = the unique solution te Z to- -

t=q+1 (mod9)

plt

P +4x2=4q forsome xeZ

-2 (¥)ve

"if p# 1 (mod 4).

if p=1 (mod3),

if p=1 (mod4);
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The paper is organized as follows: In Section 2 we give the definitions of
class numbers of complex quadratic orders, in terms of which the main
result is formulated. In Section 3 we give some definitions and facts concer-
ning elliptic curves over finite fields; for the proofs we usually refer to the
literature. In Section 4 we compute the number of isomorphism classes of
elliptic curves over a finite fields in a fixed isogeny class. For most of the
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proofs we refer to the thesis of Waterhouse [19]. In this section we also
compute the number of elliptic curves in a fixed isogeny class that have
their n-torsion points rational over the field of definition. For the
definitions of all this see Section 3.

In Section 5 we obtain a one-to-one correspondence between equlvalence
classes of nonsingular plane cubic curves in the sense of Hirschfeld and
elliptic curves furnished with an embedding in the projective plane modulo
a certain equivalence relation. In this section we deduce the main result: a
formula for the number of projectively inequivalent nonsingular plane
cubics over F, with a fixed number of F -rational points.

By counting F -rational points on the modular curves X(1) and X,(3) we
obtain a formula for the total number of projectively inequivalent non-
singular cubic curves over F_; our formula for the total number of curves
agrees with the one given by Hirschfeld [12, p. 315] column N.

Finally, in Section 6, we give a table of Kronecker class numbers and as
an illustration we count how many projectively inequivalent plane cubic
curves there are over F, with a given number of points over [, for some
small values of g.

We will use the following notations: for every n e Z and for every abelian
group A we denote by A[n] its n-torsion subgroup: A[n]=
{ae A:na=0}. By p, we denote the group of nth roots of unity in C. By ¢
we denote a primitive 3rd root of unity and by i a primitive 4th root of
unity.

2. CrASs NUMBERS

In this section we give the definitions of class numbers of complex
quadratic orders and of class numbers of the sets of binary quadratic forms
with discriminant 4eZ _,. Complex quadratic orders occur as rings of
endomorphisms of elliptic curves over finite fields. The set of isomorphism
classes of elliptic curves over [, which have a fixed complex quadratic
order ¢ as their ring of endomorphisms is a (usually principal)
homogeneous space over the class group of ¢. The study of binary
quadratic forms is very old; it was initiated by Gauss [10].

Let 4eZ _y with 4=0 or 1 (mod 4); by

A)={aX*+bXY+cY?’eZ[X, Y]:a>0 and b*>—dac=4)}

we denote the set of positive deﬁmte binary quadratic forms of discriminant
4 and by

A)={aX*+bXY +cY?e B(4): ged(a, b, c) =1}
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we denote the primitive forms of discriminant 4. The group SL,(Z) acts on
B(4) as follows: let f=aX>+bXY +cY*>e B(4) and let o = (7)€ SL,(Z);
we let

foo=a(pX+qY) +b(pX +qY)rX +5Y)+c(rX +sY)?

one checks easily that fooe B(4) and that SL,(Z) respects the subset of
primitive forms b(4).
It can be shown that there are only finitely many SL,(Z)-orbits in B(A4).

(2.1) DerFINtTioN. . We let CL(4)=B(4)/SLy(Z), the set of SL,(Z)-
orbits in B(4); similarly we let Cl(4)=b(4)/SLyZ). By H(4), the
Kronecker class number, we denote the cardinality of CL(4) and by A(4),
the (ordinary) class number we denote the cardinality of CI(4).

(2.2) PrOPOSITION. Let A€ Z _, congruent to 0 or 1 (mod 4). We have
| 4
Lh (;) = H(4),
d

where d runs over deZ .., for which d*| 4 and A/d*=0 or 1 (mod 4).

Proof. Sort the quadratic forms aX?+bXY + cY? in B(d4) according to
ged(a, b, c). We have a one-to-one correspondence between the sets
{feB(4): ged(a, b, c)=d}/SLy(Z) and {feB(4/d*). ged(a, b, c)=1}/
SL,(Z). This proves the proposition.

A complex quadratic order O is a subring of finite index in the ring of
integers in a complex quadratic number field. There is upto conjugation a
unique embedding ¢ 5 C. For a € 0 we let T(«)=a + & and N(a) = ad; here
« denotes the complex conjugate of a. Both T(«) and N(«) are elements in
Z. By 4(0) we denote the discriminant of @; see [2].

Let K be a complex quadratic number field. By ¢,,, we denote the ring
of integers in K. For every ke Z _, the ring 0,,, has precisely one subring
O of index k. The discriminant of this order equals 4(0),,,,) k> This implies
that complex quadratic orders are characterized by their discriminants: by
((4) we shall denote the complex quadratic order of discriminant 4. If « is
an algebraic number for which ¢ = Z[«] is a complex quadratic order then
4(0) equals the discriminant of the minimum polynomial of a. For more
facts concerning complex quadratic orders see [2]. '

(2.3) DerFINITION. Let '@ be a complex quadratic order; by CI(0) we
denote the class group of ¢: it is the group of invertible @-ideals modulo
invertible principal ¢-ideals. The class group is a finite group and its order,
the class number of ¢, will be denoted by h(0).
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We have in fact that h((9) h(4(0)) in the sense of Definition (2.1).

(2.4) PROPOSITION Let O be a complex quadratic order. We have that

Y WO)=H(4(0))
‘_DC(O’C@max ‘
Proof. For every order (' Wlth Oc0 <c0,,, we have that A)('(O’)=
A(0)/[0":0]% Since h(O')=h(4(0!)) the result follows immediately from
Proposition (2.2).

The definitions of H(4) 'and h(4) given above are not very suitable for
computation; below we give another, less natural deﬁn1t1on which is
suitable for actual computation.

(2.5) PrROPOSITION. Let A€Z _ congruent to 0 or 1 (mod 4). Put
E(A): {(a,b,c)eZ* a>0,b*—4dac=4, |b| ’<a<c,"
and b0 whenever a= |b| or a = ¢
b(4)={(a, b, c)e B(4): gcd(a, b, ¢)=1},
We have that |

H(A)=#B(4) and  h(4)= #b(4).

Proof. 1In every SL,(Z)-orbit of B(4) or b(4) there exists one and only
one quadratic form aX?>+bXY+cY? for which |b|<a<c, and b>0
whenever a = |b| or a=c. Such a form is called reduced. Identifying aX 2
bXY +cY? with (a, b, c)e Z* gives the required result.

We see that (a, b, ¢)e B(4) implies that 4a”<4ac=|d4|+b*<|4| + a?
and hence a<./|4|/3. From this we get at once that B(4) is a finite set.
Our answer to Question (1.1) involves the numbers H(4). It should be
stressed that H(4) and h(4) should be considered to be easily computable
numbers, For a given field F, it is much quicker to compute the class num-
bers H(1>—4q) for te Z, t* <4q and apply Theorem (2.5) than to compute
all inequivalent cubic curves and count their F -rational points like
De Groote and Hirschfeld did for ¢ <13 in [6].

At the end of this paper we give a small table of the numbers H(4) for
|4] <200. This table can be computed by hand in a few minutes and suf-
fices to give an answer to Question (1.1) for all fields F, with ¢ <49. Larger
tables of h(4) and H(4) have been computed; for instance Buell computed
h(4) for all 4 with |4] <25x10% see [3]. Using Proposition. (2.2) one
obtains easily the numbers H(4) from this table.
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3. ELuipTic CURVES OVER FINITE FIELDS

In this section we state some basic properties of elliptic curves over finite
fields. For proofs, more properties and references to the literature see [17].

(3.1) DEFINITION.  Let K be a field; an elliptic curve E over K is a projec-
tive nonsingular algebraic curve of genus one defined over K furnished with
a point 0 on E which is defined over K.

Let K denote an algebraic closure of K; by E(K) we denote the set of
points on E defined over K. This set is in a natural geometric way an
abelian group with 0 as the zero-element. The set E(K) of points on E that
are defined over X is a subgroup of E(K); see [17].

(3.2) DEFINITION. A morphism of elliptic curves over K: E, -/ E, is an
algebraic map defined over K that respects the group law; in particular
f(0;)=0,. An isomorphism is a morphism that has a two-sided inverse.
For any elliptic curve E over K the morphisms E -/ E form a ring, the
ring of K-endomorphisms of E; this ring will be denoted by End(E). The
units of this ring are called the K-automorphisms of E. We will denote the
group of K-automorphisms by Aut(E).

Every elliptic curve E over K is isomorphic to a curve given by an
equation

Y’Z+a XYZ+a,YZ* =X+ a,X*Z + a,XZ*+ asZ° (a,€K) (1)

in P2; the point 0 is the point at infinity (0:1:0). This follows from the
Riemann—Roch theorem.
We have the usual formulaire

b,=a3+4a,,
by,=a a5+ 2a,,
bg= a3+ 4aq,
by=ajas—a,a;a,+4aas+ a,a’ —a,
cy=b3—24b,,
c¢= —b3+36b,b,—216b,
A= —b3bgy—8b;—27b%+9b,b,bs,
j=ci/a.
A curve given by Eq. (1) is an elliptic curve if and only if the

discriminant 4 is not zero. The j-invariant of an elliptic curve E depends
only on its isomorphism class: two elliptic curves over K have the same
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Jj-invariant if and only if they are isomorphic over K. This is in general not
true over K: there may be non-isomorphic curves over K that are
isomorphic over K.

Two values of j deserve special attention: they are the values 0 and 1728.
The elliptic curves whose j-invariants assume these values correspond to
the harmonic curves if j = 1728 and to the equianharmonic curves if j=0 in
the sense of Hirschfeld [12]. If the characteristic of K is 2 or 3 we have that
0=1728 and the elliptic curves over K with j-invariants equal to 0= 1728
correspond to the superharmonic curves in Hirschfeld’s book. It is easy to
write down an equation of a curve with j-invariant equal to 0 or 1728. If
char(K) # 3 the curve given by Y2 — ¥ = X* has j-invariant equal to 0 and if
char(K) #2 the curve given by the equation Y*>=X*— X has j-invariant
equal to 1728. '

Next we restrict ourselves to elliptic curves over finite fields. Let F, be a
finite field with ¢ elements and let p = char(F,). By Q, , we denote the uni-
que quaternion algebra over Q which is only ramified at p and co. The
maximal orders in @, , are non-commutative rings of rank four over Z;
see [8, 91.

Let E be an elliptic curve over F,. The rings End, ( ) E) and End; [E) are
either complex quadratic orders or max1mal orders in Q.- It may happen
that End; (E) is complex quadratic and End; q( ) is not. We define a norm
and a trace on End; (E) as follows: let a € End; ME); either xe Z or Z[«] is
a complex quadratlc order; we choose an embeddmg of Z[a] in C and we
let T(a) =a+ & and N(a)=ad; both T(a) and N(a) are in Z.

The elliptic curves E with j-invariant equal to 0 or 1728 are special: the
curves E with j=0 have Z[{] as a subring of Endﬁq(E) and the curves E
with j=1728 have Z[i] as a subring of End; e,(E). This can easily be seen
from the equations given above. In Section 4 we will see that “most” ellip-
tic curves have an endomorphism ring whose group of units is { +1}. That
is, usually Aut; (E) {id, —id}; if Z[{] or Z[i] is a subring of End;q(E),
there are more automorphlsms and this aifects our computations.

(3.3) DerINITION.  An elliptic curve E over F, is called supersingular if
Endﬁq(E) is non-commutative.

We see that the supersingularity of a curve E depends only on E over E,
that is, on its j-invariant. We will say that j is supersingular if there is a
supersingular curve E with j-invariant equal to j; in this case every elliptic
curve with j-invariant equal to j is supersingular. If p = char(F ) equals 2 or
3 the supersingular curves are precisely the ones with their j-invariants
equal to 0=1728. In general we have that j =0 is supersingular if and only
if p # 1 (mod 3) and that j=1728 is supersingular if and only if p # 1
(mod 4). If j=0 is not supersingular the curves with j-invariant equal to 0
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are precisely the curves with vEnd,Fq(E)=Z[C]~.; If j=1728 is not super-
singular the curves with j-invariant equal to 1728 are precisely the curves
with Endg (E)=Z[i]; see [8,9,17].

Next we describe the structure of E(F,) as an abelian group.

(3.4) PrROPOSITION.  Let F, be a finite field of characteristic p; let E be an
elliptic curve over F,. ‘ ‘
(i) The group E(F,) is a torsion group.
(i) If pln then E(F Jn1=Z/nZ ® Z/nZ as an abelian group.
(i) If n is a power of p we have that

if .E is supersingular;

E(ﬂ: )n]= {Z/ 7 otherwise.

Proof. (i) This is clear since E(F a)= U E(F x
(i1) and (iii)) See [17].

(3.5) DEFINITION.  Let E be an elliptic curve over F,. The Frobenius
endomorphism ¢ € End (E ) is the endomorphism of E that ‘acts on E(F,) by
raising the coordmates "of the points to the gth power: in terms of Eq. (1)
we have that ¢(x:y:z)=(x?:y7:29).

Note that the kernel of ¢—leEnqu(E) acting on E(Fq) is precisely
E(F,).

(3.6) ProPoOSITION.  Let E be an elliptic curve over F,. Let ¢ denote its
Frobenius endomorphism in End, (E). Let p denote the characteristic of F,.

(1) The endomorphism ¢ satisfies a unique equatwn ¢*—tp+q=0in
End r(E); here te Z < End, (E) :

(i) |1<2/q.

(i) # (IFq)—N(¢—1)=q+lf't. _

(iv) plt if and only if E is supersingular.

Proof. See [17].

The integer ¢ is T(¢), the trace of the Frobenius endomorphism.

(3.7) PROPOSITION. Let E be an elliptic curve over F,; let p be the

characteristic of F,. Let neZ 5, with p | n and let t denote the trace of the
Frobenius endomorphism ¢ of E. The following are equivalent:.
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(i) E(F)[n]cEF,). :
(i) n*lg+1—t,n|lqg— landelther¢elor

" (0( 4q>cEnd (E).
n

Proof. The canomcal map End (E)/n Enqu'(E)c; E_nd(E(‘[T:q)[n]) is
injective; see [16] :
We see that (i) is equivalent to

¢;eEnd (E).
If ¢ € Z this is clearly equivalent to
n’lg+1—t and nlg—1

since g=¢* and g+ 1 —t=(¢— 1) If $¢ Z we compute
-1 1—1¢
()

- n

2

- 2 g¢- {—t
T(qs 1) t=2_q-1 q+

n n n

()5 ()
n n n n

so (i) is.equivalent to

1— -1 2-4
g+ ! and -q—e Z and 0O ! 7)< End; (E),
n2 n ‘ 2 ‘ Fq

and

which is precisely (ii). This proves the proposition.

4. ISOGENY CLASSES OF ELLIPTIC CURVES
Let F, be a finite field of characteristic p.
N
(4.1) DeriNiTioN.  Two elliptic curves over F, are called isogenous over
F, if they have the same number of points deﬁned over F,. By I(t) we
denote the isogeny class of elliptic curves that have exactly ¢ + 1 — ¢ points
defined over F,. By N(z) we denote the number of F -isomorphism classes
in I(t). :
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Our definition agrees with the usual one; see [16].

(4.2) THEOREM. For every integer te Z, the number N(t) is not zero if
and only if one of the following holds:
(i) pltand’<dg;
(i) . the degree [F:F,] is odd and one of the following holds
(1) t=0;
(2) t=+./2q and p=2;
(3) t==x./3qand p=3; »
(i) the degree [IF,,;[FP] is even and one of the following holds
(1) t=12\/qg;
(2) t=+./qand p # 1 (mod 3);
(3) t=0andp £ 1 (mod 4).

Proof. See Waterhouse’s thesis [19, Theorem (4.1)].

The following theorem describes which rings occur as rings of
F,-endomorpisms of elliptic curves defined over F,.

(4.3) THEOREM. Let te Z be one of the numbers listed in Theorem (4.2).
The set 1(t) is not empty and the following rings are precisely the ones that
occur as rings of T -endomorphisms of some elliptic curve in I(t): '

(i) if plt: all complex quadratic orders containing O(t* — 4q);
(i) if t= +2./q: all maximal orders in Q, ,;
(i) ifp|t and t+# iZ\/;]: all complex quadratic orders O with

C0(P-49)cO0  and  pf[0,:0].

Proof. See Waterhouse’s thesis [19, Theorem (4.2)].

The curves E in (i) and (ii) have all their endomorphisms defined over
F,, that is End[Fq(E) = Endlfq(E).
For future reference we list the unit groups of the maximal orders in

Q. ,- These groups are the groups of Fq-automo-rphisms of supersingular
elliptic curves. '

(4.4) PropoSITION. (i) Up to isomorphism there is exactly one maximal
order in Q, ,; its group of units is isomorphic to SL,(F,). If E is a super-
singular elliptic curve over T, then the action of Autg (E) on the 3-torsion
points of E gives the isomorphism with SL,(F,).
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(i) Up to isomorphism there is-éxactly one maximal order in Q, 3;
its group of units is isomorhic to a semidirect product of Z/3Z by Z/AZ, the
action of Z/AZ on Z/3Z being the non-trivial one.

(i) If p#2,3 then the group of units of a maximal order inQ, i
either pi,, py or pg. If E is a supersingular curve over F, then End; (E) is a
maximal order O in Q, ,. If the j-invariant of E equals 0 then (9*‘= Ug if the
J-invariant of E equals 1728 then O* = u,. In all other cases O* = u,.

Proof. See Tate [17, p. 182] or Deuring [8, Sect.’5].

Deuring gives in [8] normal forms for elliptic curves and an explicit
description of the automorphisms. We will use Proposmon (44) in
Section 5.

Next we count the number of F_-isomorphism classes of elliptic curves
within a fixed F -isogeny class with a given endomorphism ring.

(4.5) THEOREM. (i) Let O be a complex quadratic order that occurs as
the endomorphism ring of an elliptic curve over F, in I(t). Let f denote the
residue class degree of p in O; so f=2 if (4(0 )/p) —1 and f =1 otherwise.
The number of [ -isomorphism classes of curves E in I(t) with End[Fq(E) =0
equals f - h(0).

(i) Let O be a maximal order in Q. , that occurs as the
endomorphism ring of an elliptic curve over T, in I(t). The number of curves
E in I(t) with Enqu(E) = () equals 1 6r 2. It equals 1 if the prime over p in O
is principal and 2 otherwise.

Proof. This is Theorem (4.5) of Waterhouse [19]. There is a slight
error in Theorem (4.5) as stated in [19]. The error is in the deduction of
this theorem from the results of Chap.5 of [19]. In fact, if ¢ is com-
mutative, the set of isomorphism classes of elliptic curves with
endomorphism ring equal to ¢ need not be a principal homogeneous space
over the class group of @. There may be more orbits and it follows in fact
from Theorem (5.3) of [19] that there are two orbits exactly when O is
commutative and p is inert in ¢ over Z. In all other cases there is one orbit.
This proves Theorem (4.5).

(4.6) THEOREM. Let te Z; the number N(t) assumes the values

N(t)=H(t*—4q) if *<4qandp]t,
= H(—4p) if t=0 P
=1 if #=2qandp=2 and if g is

o, not a square;
=1 if *=3qandp=3
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i(ro-(5)2(5) ¢
=—|p+6—-4|—)-3(—])) if *=4
TR 5 5 if q
-3 , '
=1_(-—I-)—) S if t*=gq { andif qis a square;
—4\ . . .
) 4
=0 otherwise.

Proof. In view of Theorem (4.2) we already know the values of ¢ for

which N(r)=0. Let therefore E be an elliptic curve over F, with g+ 1—1¢
points over F,. We will use Theorem (4.3) to figure out which rings occur
as rings of endomorphisms of elliptic curves in I(z) and then apply
Theorem (4.5) to count the curves in I(¢) that have a given endomorphism
ring. _ ,
First we consider the case where p | t. According to Theorem (4.3)(i) all .
complex quadratic orders @ containing @(t>—4q) occur as the
endomorphism ring of an elliptic curve in I(¢). Since the discriminants of ¢
and O(#*—4q) differ by a square and since ((¢*—4q)/p) =1 we conclude
from Theorem (4.5)(i) that exactly A(0) elliptic curves in I(z) have O as
their ring of F -endomorphisms. We find that

NO= Y hO)=H(—4g)
0(2 - 49) < € < Omax
by Proposition (2.4).

Next we consider the cases where the curves in I(¢) are supersingular,
that is, the cases where p|t. First we consider the case where End[Fq(E) is
commutative; from Theorem (4.2) and Theorem (4.3)(iii) it follows that
t*=0, g, 2q, or 3¢ in this case. Since all computations look very much alike
in these cases, we will do just one as an example: suppose ¢ = \/5; so gisa
square and according to Theorem (4.2)(iii)) we have that N(z)=0 if and
only if p=1 (mod3). Suppose that p #1 (mod3). We have that
t* —4g = —3q; the maximal order containing ¢(—3q) is O(—3) and the
only order O with O(—3¢q) <0 < O(—3) that has p | [0(-3):0] is O(-3)
itself. By Theorem (4.3)(ii) we must have that the ring of
F,-endomorphisms of E equals O(—3)=Z[{]. The class number h(—3)
equals 1 and in the notation of Theorem (4.5)(i) we have that f=2 if
(=3/p)=—1and f=1if (=3/p)=0. Since I(t)= if p=1 (mod 3) we
conclude from Theorem (4.5)(i) that '

N(t)=#I(t)=1- <T3>

The other cases where ¢ # iZ\/ZI- can be checked in an analogous way.
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Finally we consider the cases where ¢ = 4_-2\/5, In these cases the curves
in I(¢) have a noncommutative-endomorphism ring viz. a maximal order in
Q. ,- By Theorem (4.5)(ii) the total number of curves in I(¢) equals the
number of maximal orders in Q,, , in which the prime over p is principal
plus twice the number of the other maximal orders. This is precisely the
class number of Q,, ,; its value is {5(p+6—4(—3/p)—3(—4/p)), see
[8, pp. 199-200]. This proves Theorem (4.6). A

We have now counted the number of isomorphism classes of elliptic cur-
ves over F, with a given number of points defined over F_. In the rest of
this SCCthIl we will count elliptic curves in I(t) which have some special
properties. We will need these results in Section 5.

(4.7) DeFINITION. - For every neZ ., let

N,(t)= # {F ~isomorphism classes of elliptic curves E in 1(1)
with n| # E(F )},

N, «(t)= # {F -isomorphism classes of elliptic curves E in I(¢)
with E(F,)[n]=Z/nZ ®Z/nZ}.

We clearly have that

N(t)=N(@t) if t=q+1 (modn),

=0 otherwise;

N

because all curves E in I(r) have #E(F,)=q+1—1t.

In the rest bf this section we will compute the values of N, ,(¢): the
number of F -isomorphism classes of elliptic curves in I(t) which have
exactly n* points in E(F,)[n].

(4.8) LEMMA. Let teZ.

(i) If t*=gq, 2q, or 3q then every curve E in I(t) has E(F,) cyclic.
() If ©» = 4q then every curve E in I(t) has E(F,) =
Z/(\/E%— 1) Z@Z/(\/ai— 1)Z;we have the minus signs if t=2./q and the
plus signs if t= —2\/5 | |
(i) If ¢# —1 (mod 4) every curve E in I1(0) has E(F,) cyclic. If
g= —1 (mod 4) then exactly h(—4p) curves in I(0) have E(F,) cyclic; the
other h(—p) curves have E(F,)=7/((q+1)/2) Z&® Z/2Z.

Proof. Suppose 1 =ag with «=0, 1, 2, or 3; let E be an elliptic curve
over [, in I(z) which has E(F,)[n] = Z/nZ @ Z/nZ; this implies that p | n by
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Proposition (3.4)(iii). From Proposition (3.7) we see that n?|g+1—¢ and
n|q—1; this implies that n|{4 — a. If « =3 this implies that n=1. If 2 =2 we
must have that p=2 and the fact that p | n implies that n=1. If « =1 and
n=13 we see that 9|g+ 1+ \/c—] which is impossible; we conclude that n=1.
If «a=0 we have that n|4; if ¢ # —1 (mod4) we conclude from

n?|g+1—¢ that n=1; 1fq —1 (mod4) we see from n|g—1 that n=1
or 2.

Suppose that g= —1 (mod 4) and let E be an elhptxc curve in 1(0).
From the fact that ¢ is not a square and Theorem (4.3) we conclude
that the possible endomorphism rings for E are O(—4p) and O(—p).
Since O(—q)cO(—p) and O(—gq) ¢ O(—4p) we conclude from
Proposition (3.7) that E(F J[2]1< E(F,) if and only if End, ( )=0(—p).
Since p ramifies in both O(—p) and O(—4p), Theorem (4. 5)(1) implies that
exactly A(—p) curves have ()(—p) as their endomorphism ring; by the
above discussion these curves E have EF,)=Z/((¢+1)2) Z&Z/2Z. The
other h(—4p) curves in 1(0) have E(F,) cyclic. '

Finally suppose that r=2,/q and that E is an elliptic curve in
I(t). The Frobenius endomorphism ¢ of E equals \/EEZ. We have

that #E(F,) = g+1—1 = (\/g—1)> Proposition (3.7) implies that
E(Fq) [\/c} — 1] < E(F,); since both sets have the same cardinality we have

that »
=EF)Va-1122/(J/q-1) 207/ J9-1)Z.

The proof for t= —2,/q is analogous. This proves Lemma (4.8).

(4.9) THEOREM. Suppose that neZ ., is odd and that teZ satisfies
*<dq.

(i) Ifplt,q=1(modn)and t=q+1 (mod n?) then

t*—4
Nolt)= H(2);

(i) if /g=1 (modn) then N, (2/q)=N(2/q);
(iii) if /g= ~1 (mod n) then N,,,(—2./q) = N(=2./q)

In all other cases N, ,(t)=0.

Proof. Suppose that P} 1. According to Proposition (3.7) the number
N,,X,,( ) equals 0 whenever n*fg+1—t or njq—1. Let us assume that
n’|q+1—t and that n|g— 1. By Proposition (3 7) a curve E in I(¢) has

E(F,)[n]=Z/nZ ® Z/nZ if and only if

(9(’ _4q>cEnd (E);

n
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this implies that

Nol)= ¥ (m' H( n“")

4G 4q)/n2) <0< Cmax

by Proposmon (2. 4) This proves (ii). : o o

Next suppose that p|t. From Theorem (4.2), Lemma (4.8) and the fact
that n is odd we see that N, ,(f) is not zero except when t=2\/(;E2
(mod n) or t= —2\/;:--—2 (mod n). In these cases all curves in I(z) have
that E(F,)[n]=Z/nZ ®Z/nZ. This proves the theorem.

5. NONSINGULAR PrANe CUBICS OVER FINITE FIFLDS

In this section we will compute the number of equivalence classes of non-
singular plane cubic curves over a ﬁmte field F, with a given number of
points defined over F,. The main result 1 is glven in Theorem (5.2). '

(5 1) LEMMA Let q be a power of a prime p.

iy If p =1 (mod 3) there is exactly one solution

7 t=qg+1 (mod9)
teZ to{t*+3x*=4q  forsome xeZ
plt.

(i) If p=1(mod4) and g=1 (mod 3) there is exactly one solution

t=q+1 (mod9)
teZ to{t*+4x*=4q  forsome xeZ
Aplt.

Proof. The proof of this lemma is an exercise in elementary number
theory and is left to the reader.

If g=1 (mod 3) we define ¢,€ Z as follows:

= the unique Solution in Lemma (5.1)(i) if p=1 (mod 3)
;2(*/7;>\/5 | if p#1 (mod3).

If g=1 or 4 (mod 12) we define ¢, € Z as follows:

t, = the unique solution in Lemma (5.1)(ii)v 1f p=1 (mod 4)

=2<_3\/_5)\/Z,‘ it p#1 (modd)



NONSINGULAR PLANE CUBIC CURVES 199

(5.2) THEOREM. Let F, be a finite field of characteristic p; let M(t)
denote the number of projectively inequivalent nonsingular plane cubic curves
that have exactly q+ 1t points defined over F,. We have

| M(1) = N(t) + N3(t) + 3N3, 5(t) —e(2),

where ‘ | | . |

Coe(ty=2 if (t=tgort=t)andty#t,,
=3 if t=ty=tjandp=2,
=4 if t=ty=t,and p+#2,

=) otherwise.

We will give a proof of Theorem (5.2) after Lemma (5.6).

Remark. The definitions of ¢, and ¢, are given above; the values of N(¢),
Ni(¢) and N,,;(¢) are given in Theorem (4.6), Definition (4.7), and .
Theorem (4.9). These values are easily computable, their computation
involves the calculation of certain class numbers, a table of which is given
in Section 6. e o
(5.3) ExamMpLE. Nonsingular plane cubics over F,. It follows from
Theorem (4.6) and Theorem (5.2) that M(¢) and N(t) equal zero whenever
[t] > 4. o

o qHl—t P—dg N1 Ny1) Nyt e(t)

M(t)
4 1 1 0 0 0 1
3 2 ~7 1 0 0 0 |
2 3 ‘ 2 2 0 0 4
1 4 —15 2. 0 0 0o 2
0 5 1 0 0 0 1
—1 6 —15 2 2 0 0 4
-2 7 2 0 0 0 2
-3 8 -7 | 0 0 0 1
—4 9 1 1 1 3 2

To obtain the entries of this table: use Theorem (4.6) to obtain the values
of N(t); a table of class numbers is given in Section 6; we have that
H(-7)=1 and H(—15)=2. The value of N,(r) follows easily from
Definition (4.7). Theorem (4.9) gives the values of N, ;(¢) and we get the
values of ¢() from the fact that t,=¢, = —4 in this case.

The table is in agreement with the one given in [6].
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- Before we give: a proof of Theorem (5.2) we translate the notion of
projective equivalence of nonsmgular plane cubic curves into something
concerning elliptic curves.

A projective equivalence class of nonsingular plane cubic curves is the
same as an equivalence class of closed immersions i: E s P? defined over
F,, where E is an elliptic curve and i(E) is of degree 3. Here we call two
closed immersions i,: E; - P? and i,: E, - P? equivalent if there is a com-
mutative diagram

E, < p?

2J ¢1 ZJ $2

15}
E, <25 P?

with ¢, and ¢, isomorphisms of schemes.

The one-to-one correspondence between these equlvalence classes follows
from the fact that every nonsingular plane cubic curve over F, has a point
defined over F, by [17] and the fact that the group of automorphisms of
P2 over F, as a scheme is precisely PGL,(F,), see [11, IL7.1.1].

Note that if i: Es P? is a closed immersion defined over F, of an elliptic
curve E, there is a one-to-one correspondence between E(F,) and the
F -rational points of i(E). Instead of counting nonsingular plane cubics up
to projective equivalence with a given number of points defined over [, we
will count elliptic curves E over F, furnished with a closed immersion
i: Ec P? of degree 3 according to # E(F,) upto our notion of equivalence

Let E be an elliptic curve over F, and let i Eg| P? be a closed immersion
over [, of degree 3. The sheaf 1*6"( ) is a very ample invertible sheaf Z(D);
we have that D is a divisor of degree 3 see Hartshorne [11,116.1.3,
1V.3.3.2, and 1V.3.3.3]. All sheaves and divisors are defined over [, : the
only fact one uses to associate a divisor of degree 3 to the immersion i is
the theorem of Riemann-Roch which is valid over any base field.

(5.4) PrOPOSITION. Let F, be a finite field. There is a one-to-one
correspondence between the following two sets

projective equivalence classes of nonsingular plane cubic curves X
defined over T,

and:

isombrphism classes of pairs (E, P), where E is an elliptic curve
defined over F, and P an Autg (E)-orbit of E(F,) [3].

Moreover, if a plane cubic curve X corresponds to a pair (E, P), the number
of ¥ -rational points of X equals-# E(F ). .
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Here, we call two pairs (E,, P,) and (E,, P,) isomorphic if there is an
isomorphism f: E; 3 E, of elliptic curves (Definition (3.2)) mapping the
orbit P, to P,.

Proof. By the above discussion we have a one-to-one correspondence
between “equivalence classes of plane nonsingular cubi¢c curves” and
“closed immersions of degree 3 of elliptic curves in P? upto a certain
equivalence.” A plane cubic corresponding to an immersion i: E g P? has as
many points defined over F, as E."To any closed immersion i: E g P? of
degree 3 over F, we can associate a divisor D of degree 3; this divisor is
defined over F, and only its class is determined by i, see [11, 11.6.1.3]. It
follows from [11, I1.7.1(b)] that the divisor classes of degree 3 of E that
are defined over F, or the [ -divisor classes of degree 3 for short, up to
action of the group of automorphisms of E as a scheme over [, are in one-
to-one correspondence with the equivalence classes of closed immersions
i Eg P? as defined above.

The group of automorphisms of E as a scheme over F, is generated by
the group of translations by points in E(F,) and by the group Aut, (E) the
automorphisms of E as an elliptic curve (Deﬁnltlon (3.2)). The lF -d1v1sor
classes of degree 3 of E up to translations by E(F,) are in one-to-one
correspondence with E(F,)/3E(F,) via D+ D —3(0). Here 0 denotes the
zero-clement of E and we identify E(F,) with the group of F -divisor classes
of degree 0 via P+ (P)— (0). :

From the above we conclude that projective equivalence classes of plane
cubic curves correspond one-to-one with pairs (E, x) where E is an elliptic
curve and x € E(F,)/3E(F,), up to action of Autqu(E).

We have that E(F,)[3] and E(F,)/3E(F,) are isomorphic Auth(E)-
modules. This is obvious if # E(F,)[3]is 1 or 3; if #E(F,)[3]=9 con-
sider the Gal(F,/F,)-cohomology sequence of the exact sequence

0- E(F,)[3]- EF,) > EF,) -
we get
E(F,)/3E(F,) =~ H'(Gal(F,/F,), E(F,) [3])
~Hom(Z, E(F,) [3]) = E(F,) [3]

as Aut; (E)-modules.

It follows that the pairs (E, x) from above correspond one-to-one with
pairs (E, P) where P is an Aut,Fq(E)-orbit of E([F,,)[3]. This proves
Proposition (5.4).

In the proof of Theorem (5.2) we need to know the number of Autg (E)-
orbits of E(F,) [3].

(5.5) PROPOSITION. Let E be an elliptic curve over a finite field F, of
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characteristic p; let j denote the j-invariant of E. The number of Autg (E)-
orbits of E(F,) [3] equals :

1 if #EF,)[3]=1

2 f #EF,)[31=3

2 if #EF,)[3]=9 p=2andj=0=1728
3 if #EF,)[3]=9, p#2andje{0,1728)}
5 if #EF,)[31=9andj¢{0,1728}

Proof. Note that always —1eAutg (E) and that Aut; (E)= {+1}
whenever j#0 or 1728; this follows from Proposition (4.4). Suppose that
p=2, that the j-invariant of E is 0 and that #E(F,) [3]=9; then by
Proposition (3.7) we must have that F,cF; since E is supersingular we
have by Lemma (4.8) that E 61(12\/&) and by the: remark after
Theorem (4.3) that E has all its automorp‘hisms defined over F,. By
Proposition (4.4)(i) we have that Aut; (E) L,(F5); this group acts trans-
itively on E(F,) [3]— {0} so Aut; (E) has two orbits in E(F,).

Ifp#2,je {0 1728} and E(F,) [3] 9 then either j is supersingular and
by Lemma (4.8) the curve E is in I(+2,/g), or j is not supersingular; in
both cases all endomorphisms are defined over F, and it follows from
Proposition (4.4)(iii) and the remarks after Definition (3.3) that
Aut; (E)= ¢ if j=0 and that Aut[Fq(E) = 4 if j=1728. In both cases there
are three Autqu(E)-orbits in E(F,) [3].

All other statements are clear.

(5.6) LemMA. Let [, be a finite field.

(i) There is at most one elliptic curve E with j=0 and
#E(F,) [3]1=9. There is exactly one if gnd only if g=1 (mod 3) and this
curve has the trace of its Frobenius endomorphism equal to t,.

(i) There is at most one elliptic curve E with j=1728 and
#E(F,) [3]1=9. There is egcactly one if and only if q=1 or 4 (mod 12) and
this curve has the trace of its Frobenius endomorphism equal to t,.

Proof. (i) If there is an elliptic curve E over [, with #E(F,) [3]=9 it
follows from Proposmon (3.7) that g=1 (mod 3) Suppose, on the other
hand, ‘that g=1 (mod 3). If p £ 1 (mod 3) then every curve E with j-in-
variant equal to O is supersingular. Lemma (4.8) implies that a curve E
with j=0 and #E(F,) [3]=9 must be in I(2(\/g/3)./q) and there is, in

fact, exactly one in I(2 \/_ /3)\/11 ). If p=1 (mod 3), let E denote a curve
with j-invariant equal to 0. We have EndFy(E)=@(—3)=Z[C]. Let ¢
denote the trace of the Frobenius endomorphism of E. We have that p ¢
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and that 1>+ 3x?=4q for some xeZ Proposition (3.7) implies that
#E(F,) [31=9 if and only if t=¢g+1-(mod9). The result now follows
from Lemma (5.1) and the fact that the class number of ¢(—3) is one.

(ii) If there is an elliptic curve E over F, with’ #E( ,)[31=9 and
j-invariant equal to 1728, it follows from Propos1t10n (3 7) that g=1
(mod3). If p#1 (mod4) the curve E is supersingular -and by
Lemma (4.8) we must have that E e I( +2\/c}) and that ¢ is a square. Since
p#3 this implies that g=1 or 4 (mod 12). The rest of the proof is
analogous to the proof of (i). :

This proves the lemma.

Proof of Theorem (5.2). It follows from Proposition (5.4) that M(¢)
equals the number of isomorphism classes of pairs (E, P) where E is an
elliptic curve with #E(F,)=¢g+1—t and P is an Auth(E)-orbit of
E(F,) [3]. If E does not have nine 3-torsion points over F, or if the j-in-
variant of E is not in {0, 1728} it follows from Proposition (5.5) that we
have 1, 2, or 5 of pairs (E, P) according as # E(F,)=1,3, or 9. So, if there
is no curve in I(¢) with je {0, 1728} and #E(F,) [3]=9, we have that

M(t) = # {curves Ein I(t) with # E(F,) [3]=1}
+2# {curves Ein I(r) with # E(F,) [3]1=3}
+ 5# {curves E in I(¢) with #E([Fq) [31=9}

= (V(0) = N5(1)+ 2(N5(1) = Ns (1) + SNs.5(0)
= N(t) + N5(t) + 3N5,.5(1). '

From Lemma (5.6) we see that this formula for M(t) holds whenever
t¢ {to, t,}. If t=1, or ¢, there are curves in I(t) with je {0, 1728} and 9
rational 3-torsion points and there are less than five orbits. It follows from
Proposition (5.5), Lemma (5.6), and the definition of ¢ that M(z)=
N(t)+ N,(t) + 3N;,.5(t) — &(2) for every teZ. This proves Theorem (5.2).

Remark. From the proof of Theorem (5.2) we see at once that M(¢) #0
if and only if N(¢)#0 and we conclude that Theorem (4. 2) is also vahd
with N(¢) replaced by M(t).

We finish this section by calculating the total number of projectively
inequivalent nonsingular plane cubic curves over a finite field F,. By
Proposition (5.4) this number equals

isomorphic classes of pairs (E, P), where E'is an elliptic}
curve over F, and P an Aut (E)-orbit of E(F,) [3] ’
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which equals
# {isomorphism classes of elliptic curves E over F )

isomorphism classes of pairs (E, P), where E is an elliptic }
curve over [, and P a non-zero Autqu(E )-orbit of E(F,) [3]

We compute the cardinality of these sets by counting the F -rational points
on the moduli spaces X(1) and X,(3); see [7].

The curve X(1) is simply the projective line: the j-line with a “cusp”
which we call .

(5.7) ProrosiTION.  Let F, be a finite field. The number of isomorphism
classes of elliptic curves over F, equals

_3\ (-4
2q+3+2(7>+<—q—>.
(Here p=char(F,), g=p* and (x/q) = (x/p)*.)

Proof. Let jeF; there exists a curve E over F, with j-invariant equal to
Js see [7, V1.1.6]. The number of curves over F, that have their j-invariant
equal to j equals #H'(Gal(F,/F,), Autz (E)); see [7, VL3.1]. Here the
cohomology is in the sense of [14, p. 131]. If j is not 0 or 1728 we have
that H'(Gal(F,/F,), Aut@q(E));Hom(Z {+1})=2)2z; if j=0 and
p¢{2,3} we get from Proposition (4.4)(iii) and the remarks after
Definition (3.3) that Autg (E) = pe and if j=1728 and p ¢ {2, 3} we get that
Aut; (E)=p,. A standard computation shows that if p¢ {2, 3} we have
that

If p=2 or 3 one can use the fact that the curves with j-invariant equal to
0= 1728 are precisely the supersingular curves, that is, the curves that have
the trace of the Frobenius endomorphism divisible by p. Theorem (4.6)
gives a formula for the number of supersingular curves over F,. Alter-
natively one can use Lemma (4.4)(i) and (ii) and an explicit description
of the action of Autg (E) as given in [8]. For example, suppose p=2
and F,<F,: in this case all endomorphisms of E are defined over F,
and the group Autﬁq(E) is Gal(F,/F, )-invariant; the pointed set
H'(Gal(F,/ F,) Autﬁq(E )) 1s canonically isomorphic to the set of conjugacy
classes of Autﬁq(E) =~ SL,(F;). There are seven conjugacy classes in SL,(F;).
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The result is the followmg if pe {2 3} and the J-invariant of E equals
= 1728 then

o —3\ [—4\
- #H' (Gal(F,/F), Autg (E))=5+2 (—q—) +(—‘}——) (2)
The number of isomorphismr classés of elliptic curves over F, equals
Y. #H'(Gal(F,/F,), Autg (E));
o #je X(1)(Fy) o

here E; denotes an elliptic curve over F, with j-invariant equal to j. By the
above this sum equals

20¢—-2) if p¢{2,3}
29-1) if pe{2,3}.

The result now follows from formulas (1) and (2).

Y #H'Gal(F,/F,), Aut; (E)) + {

je{0,1728}

(5.8) ProrosiTION. Let F,, be a finite field; the number of isomorphism
classes of pairs (E, P), where E is an elliptic curve over F, and Pe E(F,) a
point of order 3 equals

g—1 if g#1 (mod3),
g+1 if g=1 (mod3).

(Here two pairs (E,, P,) and (E,, P,) are called isomorphic if there is an
isomorphism of elliptic curves E, —» E, mapping P, to P,.)

Proof. Let p denote the characteristic of F,. We first consider the case
where p=3. In this case the supersingular curves E do not have points of
order 3 in E(F,). If 3 f ¢ it holds that the curves E in I(t) have a point of
order 3 if and only if the curves in I(—t) do not. Since # E(F,)[3]<3 by
Proposition (3.4)(iii) and since (E, P) is isomorphic to (E, — P) for every
elliptic curve E and every Pe E(F,) [3] of order 3 we conclude that the
number of isomorphism classes (E P) over F, equals half the number of
non-supersingular curves, so it equals q—l by Proposition (5.7) and
formula (2).

Next we consider the case where p # 3. In this case the modular curve
X,(3) is a nonsingular projective curve defined over F, which admits a
canonical morphism of degree 4 to X(1) which is also defined over F,. This
morphism is ramified over j=0, 1728, and oo; there are two points over
J =00, the so-called cusps; one has ramification index 1 and the other has
ramification index 3; both points are clearly defined over F,. If p#2
exactly the same thing happens over j = 0: the point with ramification index
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3 corresponds to the pair (E, P), where E is an elliptic curve over F, with
J-invariant equal to 0 and hence Z[{] c Endﬁq(E ) and where P is a point of
order 3 annihilated by {—1. If p#2, there are two points over j=1728
each with ramification index equal to 2. If p=2 we have that 0=1728; in
this case there is only one point in X,(3) over j=0; it has ramification
index 4. The Hurwitz formula for the genus shows that the genus of X(3)
is equal to 0. Since X,(3) has points over F,,, it is isomorphic to P* over F,.
For all this see [15]. , ; :

To every point x e X,(3)(F,) which is not a cusp, there is a pair (E, P)
defined over F, see [7, VL 3 2]. The number of non-isomorphic pairs
corresponding to x equals :

# H'(Gal(F,/F,), Autg (£, P)));

here Autﬁq((E, P)) denotes the group of F -automorphisms of E that leave

P fixed. If j ¢ {0, 1728} we have for every curve E with jinvariant equal
to j and PeE(F,) a point of order 3 that Autg(E)={+1} and
Aut; ((E P))= {1} If j=1728 and p¢ {2,3} we have that Autz (E) S py
and 1t is easy to see that also in this case Aut; ((E P))={1}. We conclude
that to every point xeX 1(3)(F,) not over j=0 or o there corresponds
exactly one isomorphism class of pairs (E, P). Since #X,(3)(F,)=g+1,
we conclude that the number of isomorphism classes of pairs (E, P) equals

1 if p=2
Y #H(Gal(F /[F Aut@[/((E,P)))+(q+1)—2—{2 it pA2.

j-invariant
of Eis0

Here the sum runs over the F -isomorphism classes (E, P), where the
J-invariant of E equals 0. It remains to evaluate this sum.

First, suppose that p=2; in this case there is exactly one pomt in

X, (3)(F,) over j=0.1If g is not a square it follows from Theorem (4.6) that
there is only one supersingular curve E over F, with a point of order 3.
From Lemma (4.8) we see.that # E(F,) [3] =3 and we conclude that upto
isomorphism there is only one pair (E, P) over F, with j-invariant of E
equal to 0. If ¢ is a square it follows from Theorem (4.6) that there are 3
supersingular curves E over F, with a point of order 3. Two of them are in

-(\/a/3)\/(}) and these curves have E(F,)[3] cyclic; the other is in
12(/9/3)/q) and has E(F,) [3]1=Z/3Z@®Z/3Z by Lemma (4.8). This
curve has all its endomorphisms defined over [,; this implies by
Proposition (4.4)(i) that Auth(E )= Autgq(E )= SL,(F,) and this group acts
transitively on the points of E(F,) of order 3. We conclude that in this case

there are exactly 3 1somorphlsm classes corresponding to the unique point
in X,(3)(F,) over j=0.
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- Next, suppose that p # 2. In this case there are two points over j=0. One
has ramification index 1 and the other ramification index 3. Suppose (E, P)
corresponds to the point x with ramification index 1: we have that
Z[{] cEnd; (E) and Pe E(F,) is not annihilated by { — 1. Since p #2, we
have that AutIF (E) 5 ug and one shows easily that Aute ((E; P)) = {1}. This
implies that the H' is trivial and that exactly one 1som0rphlsm class of
pairs (E, P) corresponds to x. Finally, suppose that (E, P) corresponds to
the point x over j=0 that has ramification index equal to 3. If g= —1
(mod 3) then E is supersingular and it follows from’ Proposition (4.4)(iii)
that Autg (E)=p,; since P is annihilated by {—1 it follows that
Aut; ((E, P)) p3. We have that Aut, ((E, P))= {1} and a standard com-
putatlon shows that H'(Gal(F,/F, ) "Aut; i ((E, P))) = H\Z, u;)=0. If

g=1 (mod 3) we have that Aut; ((E, P))= AutF ((E, P))= p; with trivial
action of Gal(F,/F,). We have that H\(Z, u3)"=*Z/3Z. We conclude that
there are exactly 3+(——3/q) isomorphism classes over [, of pairs (E, P)

corresponding to points in X,;(3)(F,) over j=0. This proves the -
proposition.

(5.9) CoroLLARY. Let F, be a finite field.

i N(t)=2q+3+2<—:]—3>+<;4>.

teZ q

(ii »
ZM(t)=3q+(T> if g=—1 (mod?3),

teZ

—4
=3q+2+<—q—> if ¢q=0  (mod3),

=3q+6+(_74> if g=1 (mod3)

Proof. The sum Y, N(t) equals the number of F -isomorphism classes
of elliptic curves over F, and the sum ), M(¢) equals the number of
F-isomorphism classes of pairs (E, P) with E an elliptic curve over F, and
P a point in E(F,) [3]. The result follows from Propositions (5.7) and
(5.8).

The formulas we obtain are in agreement with the ones given by
Hirschfeld for every finite field F, in [12, p.315] columns n, and N
or [13].



TABLE II

Cubic Curves over [Fq.

W
(=2

t g+1—t £-4g H(P—-4q) N(t) Ni(t) Nya() &) M(t)
8 9 1 1 1 3 2
7 - 10 T -5 2 2 2
6 11 0 0
5 12 -39 4 4 4 -8
4 13 2 2
3 14 -55 4 4 4
2 15 0 0 0
1 16 ~-63 5 5 5
0 17 1 1
-1 18 -63 5 5 5 1 13
=2 19 0 0
-3 20 -55 4 4 4
-4 21 2 2 4
-5 22 -39 4 4 4
-6 23 0 0
-7 24 -15 2 2 2 4
-8 25 1 1
> 37 54

TABLE III
Cubic Curves over [

! g+1—t  —4q H(P—4q) N(@t) Ny(t1) Niy(t) e(r)  M(2)

10 16 1 1
9 17 -19 1 1 I

8 18 -36 3 3 1 2 T
7 19 -51 2 2 2
6 20 -64 4 4 4
5 21 2 4
4 22 -84 4 4 4
3 23 -91 2 2 2
2 24 -96 6 6 12
1 25 -99 3 3 3
0 26 0 0
-1 27 -99 3 3 1 9
-2 28 -96 6 5 6
-3 29 -91 2 2 2
—4 30 -84 4 4 8
-5 31 2 2
-6 32 64 4 4 4
-7 33 -51 2 2 4
-8 34 -36 3 6 6
-9 35 -19 1 1 3
-10 36 1 1 2 3

o0
L
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TABLE IV

Cubic Curves over [F,;

~

q+l—t =4 H(-4q) N1 Ny(t) Nys(n) e(t) M)

10 18 -8 1 1 1 2
9 19 1 1

8 20 44 4 4 4

7 21 -59 3 3 3 6

6 22 0 0

5 23 83 3 3 3

4 24 -92 6 6 6 12

3 25 0 0

2 26 104 6 6 6

1 27 -107 3 3 3 6

0 28 2 2
-1 29 -107 3 3 3
-2 30 -104 6 6 6 12
-3 31 0 0
4 32 ) 6 6 6
-5 33 -83 3 3 3 6
L6 34 : 0 0
-7 35 -59 3 3 3
-8 36 44 4 4 4 8
-9 37 1 1
-10 38 -8 1 1 1
Y 56 82

End; (E)=0(-63) and one has Endg (E)=0(—7); the latter curve has
nine 3-torsion points in E(F,) [3].

In Table IIT we have that t;= —10 and ¢, =8. There are precisely three
curves E with E(F,)[3] of order 9. One has #E(F,)=18 and
End[Fq(E')=Z[i]; one has # E(F,)=27 and End[Fq(E)=(9(——11); the last
one is supersingular; it has # E(F,) =36 and E(F,)~ Z/6Z & Z/6Z; its ring
of F,-endomorphisms is the maximal order in Q ;.
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6. CLASS NUMBERS AND EXAMPLES

In this section we give a table of Kronecker class numbers as defined in
Section 2 (see Table I). ,

Finally we compute the function M(t) for some small fields F,. By
Proposition (3.6)(ii) and the remark after the proof of Theorem (5.2) we’
have that M(t) =0 whenever |f| > 2\/:1. We use Theorem (4.6) and Table I
to compute N(¢). The value of N(¢) follows easily from the value of &
the number N,(¢) equals N(z) if t=¢q+ 1 (mod 3) and N,(t) equals O other-
wise. We compute N, ;(¢) using Theorem (4.9) and the table of class
numbers. The values of M(t) follow easily from Theorem (5.2). The values
of 3, N(t) and Y, M(t) that we obtain are in agreement with the ones
given in Corollary (5.9). In Table IT ¢{,=¢,=8 and hence ¢8)=3. In
I(—1) there are 5 isomorphism classes of curves E; four of them have

TABLE 1
-4 H(4) -4 H(4) -y H(4) -4 H(4)
3 1 52 2 103 5 152 6
4 1 55 4 104 6 155 4
7 1 56 4 107 3 156 8
8 1 59 3 108 6 159 10
11 1 60 4 111 8 160 6
12 2 63 5 112 4 163 1
15 2 64 4 115 2 164 8
16 2 67 1 116 6 167 11
19 1 68 4 119 10 168 4
20 2 7 7 120 4 171 5
23 3 72 3 123 2 172 4
24 2 75 3 124 6 175 7
27 2 76 4 127 5 176 10
28 2 79 5 128 7 179 5
31 3 80 6 131 5 180 6
32 3 83 3 132 4 183 8
35 2 84 4 135 8 184 4
36 3 87 6 136 4 187 2
39 - 4 88 2 139 3 188 10
40 2 9t 2 140 8 191 13
43 1 92 6 143 10 192 8
44 4 95 8 144 8 195 4
47 5 96 6 147 3 196 5
48 4 99 3 148 2 199 9
51 2 100 3 151 7 200 7




