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Abstract. We establish two criteria for certain local algebras to be complete
intersections. These criteria play an important role in A. Wiles’s proof that all
semi-stable elliptic curves over Q are modular.

Introduction
In this paper we discuss two results in commutative algebra that are used in
A. Wiles’s proof that all semi-stable elliptic curves over Q are modular [11].

We first fix some notation that is used throughout this paper. Let O
be a complete Noetherian local ring with maximal ideal mO and residue
field k = O/mO. Suppose that we have a commutative triangle of surjective
homomorphisms of complete Noetherian local O-algebras:

R
ϕ−→−→ T

πR ↘ ↙ πT

O.

Assume that T is a finite flat O-algebra, i.e., that T is finitely generated
and free as an O-module. In the applications in Wiles’s proof O is a discrete
valuation ring, R is a deformation ring, T is a Hecke algebra and πT is the
homomorphism associated to a certain eigenform.

We prove two distinct criteria, formulated as Criterion I and Crite-
rion II below, which give sufficient conditions to conclude that ϕ is an
isomorphism and that R and T are complete intersections. We say that
a local O-algebra that is finitely generated as an O-module is a complete
intersection over O if it is of the form

O[[X1, . . . , Xn]]/(f1, . . . , fn), with f1, . . . , fn ∈ O[[X1, . . . , Xn]].

We first state Criterion I. We put IR = kerπR and IT = kerπT . The
congruence ideal of T is defined to be the O-ideal ηT = πT AnnT (IT ).

Criterion I. Suppose that O is a complete discrete valuation ring and
that ηT 6= 0. Then

lengthO(IR/I
2
R) ≥ lengthO(O/ηT ).

Moreover, equality holds if and only if ϕ is an isomorphism between com-
plete intersections over O.
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Wiles used a slightly weaker form of this criterion, where T is assumed
to be Gorenstein, to show that certain “non-minimal” deformation rings
are isomorphic to Hecke algebras [4]. The present version, without the
Gorenstein condition, is due to H.W. Lenstra [6]. In Section 3 we give
an alternative argument for Criterion I that was found by the first and
the third author. Criterion I is an easy consequence of the following result,
which holds without any conditions on O or ηT .

Theorem. The map ϕ is an isomorphism between complete intersections
over O if and only if ϕFitR(IR) 6⊂ mOT .

Here FitR(IR) denotes the R-Fitting ideal of IR. Fitting ideals are instru-
mental in the proof of Criterion I. We recall their definition and basic
properties in Section 1.

A crucial special case of the theorem can already be found in a 1969
paper of H. Wiebe [10]; see also [1, Thm. 2.3.16]. More precisely, Wiebe’s
result covers the case that O = k is a field, and ϕ is the identity on R = T .
The statement is then that T is a complete intersection over k if and only
if the Fitting ideal of its maximal ideal is non-zero.

For the proof of Criterion I we need some properties of complete inter-
sections that go back to J.T. Tate [8]. In Section 2 we formulate Tate’s result
and prove it using Koszul complexes. These are discussed in Section 1. As a
consequence we find that complete intersections have the Gorenstein prop-
erty. The Gorenstein property does not occur in our proof of Criterion I,
but we briefly discuss its significance in our context at the end of Section 2.

In order to formulate Criterion II, assume that char(k) = p > 0, and
let n ≥ 1. The ring O[[S1, . . . , Sn]] is filtered by the ideals Jm, with m ≥ 0,
given by Jm = (ωm(S1), . . . , ωm(Sn)), where ωm(S) denotes the polynomial
(1 + S)pm − 1. Note that J0 = (S1, . . . , Sn).

Criterion II. Suppose that for every m > 0 there is a commutative dia-
gram of O-algebras

O[[S1, . . . , Sn]] −→ Rm
ϕm−→ Tmy y

R
ϕ−→−→ T

with the properties:
(i) there is a surjection of O-algebras O[[X1, . . . , Xn]] −→ Rm;
(ii) the map ϕm: Rm −→ Tm is surjective;
(iii) the vertical arrows induce isomorphisms

Rm/J0Rm
∼−→R and Tm/J0Tm

∼−→T.
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(iv) the quotient ring Tm/JmTm is finite flat over O[[S1, . . . , Sn]]/Jm;

Then ϕ: R −→ T is an isomorphism between complete intersections overO.

Criterion II, with the additional condition that k be a finite field, first
appeared in the paper by R. Taylor and A. Wiles [9] with an improvement
due to G. Faltings. It is used by Wiles for the “minimal” deformation
problem [2]. In Section 4 we present a proof due to the second author.
It is independent of the proof of Criterion I. Our approach avoids the
original non-canonical limiting process, and it works for arbitrary complete
Noetherian local rings O.

1. Preliminaries.
In this section we first recall the definition and basic properties of Fitting
ideals. Then we do the same for Koszul complexes following [3]. For more
details see [5, Sections XIX.2, XXI.4].

Fitting ideals. Let A be a ring and let M be a finitely generated A-
module with generators m1, . . . ,mn. Let f : An−→−→M be the surjective A-
homomorphism defined by f(ei) = mi for i = 1, . . . , n. Here ei denotes the
ith standard basis vector of An. The Fitting ideal FitA(M) of M is the ideal
generated by the determinants det(v1, . . . , vn) for which the column vectors
v1, . . . , vn lie in ker f . Clearly, FitA(M) is already generated by the elements
det(v1, . . . , vn) with v1, . . . , vn in a fixed set of A-module generators of ker f .

The Fitting ideal does not depend on the choice of the generators mi.
To see this, let mn+1 =

∑n
i=1 αimi, with αi ∈ A, be an additional gener-

ator of M . The kernel of the surjective homomorphism ψ: An+1−→−→M
given by ψ(ei) = mi for i = 1, . . . , n + 1, is generated by the vector
(α1, . . . , αn,−1) and the vectors (v, 0) with v ∈ ker f . It follows at once
that the Fitting ideal does not change when we replace the generators
m1, . . . ,mn by m1, . . . ,mn,mn+1. Inductively, this implies that any two
generating sets m1, . . . ,mn and m′

1, . . . ,m
′
n′ give rise to the same Fitting

ideal as their union m1, . . . ,mn,m
′
1, . . . ,m

′
n′ .

The following proposition contains the properties of the Fitting ideal
that we will use.

Proposition 1.1. Let A be a ring and let M be a finitely generated A-
module. Then
(i) we have FitA(M) ⊂ AnnA(M);
(ii) for any A-algebra B we have FitB(M ⊗A B) = FitA(M) ·B;
(iii) for any ideal a ⊂ A we have FitA(A/a) = a;
(iv) for every A-module N we have FitA(M ×N) = FitA(M)FitA(N).

Proof. We sketch the proof. If v1, . . . , vn are in the kernel of An f−→M ,
then the matrix σ with columns v1, . . . , vn has the property that the com-
posite map An σ−→An f−→−→M is equal to zero. By multiplying first with the
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adjoint matrix of σ, we see that det(σ) · An ⊂ ker f . Since f is surjective,
this implies that det(σ) ∈ AnnA(M), and (i) follows. Part (ii) follows from
the fact that taking the tensor product with B is right exact. Part (iii) is
immediate from the definition if we take n = 1. We leave part (iv) to the
reader.

If A is a principal ideal domain, then, by the theory of elementary
divisors, every finitely generated A-module M is of the form

M ∼= A/a1 × . . .×A/as

for certain ideals ai ⊂ A. By (iii) and (iv), we see that FitA(M) = a1 · · · as.
If A is a discrete valuation ring with maximal ideal mA, then we see that

FitA(M) = m
lengthA(M)
A ,

with the convention that m∞
A = 0.

Example. Let O be any ring and let A = O[[X1, . . . , Xn]]/J with J =
(f1, . . . , fr) an ideal contained in I = (X1, . . . , Xn). We put IA = I/J .
Suppose that gij ∈ O[[X1, . . . , Xn]] satisfy

fi =
n∑

j=1

gijXj for i = 1, . . . , r.

Then the Fitting ideal FitA(IA) contains the determinants, taken modulo J ,
of the n×n submatrices of the matrix (gij). Actually, it can be shown that
these determinants generate FitA(IA) by applying Proposition 1.3 below
with i = 1 to the sequence X1, . . . , Xn in O[[X1, . . . , Xn]]. This will not be
used in the sequel. By a different argument, we will obtain a special case
in Proposition 2.1.

Koszul complexes. Let A be a ring, let V = An and let f = (f1, . . . , fn) ∈
V . For any A-module M and m ≥ 0 we set

Km(f,M) = HomA(
∧m

AV,M).

For ϕ ∈ Km(f,M) we define dϕ ∈ Km−1(f,M) by dϕ(x) = ϕ(f ∧x). Since
d2 = 0, we obtain a complex K•(f,M), which we call the Koszul complex
of f on M :

0 −→ Kn(f,M) d−→ . . .
d−→ K1(f,M) d−→ K0(f,M) −→ 0.

Note that K•(f,M) = K•(f,A) ⊗A M and that Km(f,A) is a free A-
module of rank

(
n
m

)
. The m-th homology group of K•(f,M) is denoted by

Hm(f,M). We have H0(f,M) = M/IM , where I is the A-ideal generated
by the fi.
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Lemma 1.2. The homology groups Hm(f,M) are annihilated by I.

Proof. Let ϕ ∈ Km(f,M) with dϕ = 0. For each generator fi of I we
must show that there is ψ ∈ Km+1(f,M) with dψ = fiϕ. To see this, write
V = Aei×V ′ where ei is the ith standard basis vector of V over A, and V ′

is generated by the other standard basis vectors. Then every x ∈
∧m+1

V

can be written as x = ei∧x′+x′′ for unique x′ ∈
∧m

V ′ and x′′ ∈
∧m+1

V ′.
Now define ψ ∈ Km+1(f,M) by ψ(x) = ϕ(x′). From dϕ = 0 one deduces
that dψ = fiϕ, as required.

We say that a sequence of elements p1, . . . , pn in A is M -regular, if for
i = 1, . . . , n the multiplication by pi on M/(p1, . . . , pi−1)M is an injective
map. The following proposition can also be found in [1, Thm. 1.6.16].

Proposition 1.3. Let f = (f1, . . . , fn) ∈ An and let M be an A-module.
If the A-ideal I generated by f1, . . . , fn contains an M -regular sequence of
length n, then Hi(f,M) = 0 for i ≥ 1.

Proof. Let p1, . . . , pn ∈ A be an M -regular sequence in I. For any integer j
with 0 ≤ j ≤ n we claim that Hi(f,M/(p1, . . . , pj)M) = 0 for all i ≥ j+1.
For j = n this is trivial, and for j = 0 this is the content of the proposition.
We prove the claim by induction on j, decreasing j by 1 in each step.

Assume that the claim holds for some integer j with 1 ≤ j ≤ n. We
put M ′ = M/(p1, . . . , pj−1)M . Since the sequence p1, . . . , pn is M -regular,
there is an exact sequence

0 −→ M ′ pj−→ M ′ −→ M ′/pjM
′ −→ 0.

For each m we apply the exact functor HomA(
∧m

V,−). This gives us a
short exact sequence of complexes

0 −→ K•(f,M ′)
pj−→K•(f,M ′) −→ K•(f,M ′/pjM

′) −→ 0.

By Lemma 1.2 the homology groups of K•(f,M ′) are annihilated by I and
therefore by pi. This implies that the long exact homology sequence breaks
up into short exact sequences. For every i ≥ 1 we obtain an exact sequence

0 −→ Hi(f,M ′) −→ Hi(f,M ′/pjM
′) −→ Hi−1(f,M ′) −→ 0.

The induction hypothesis implies that the middle group is zero for i ≥ j+1.
This implies that Hi(f,M ′) = 0 for i ≥ j, which is the claim for j − 1.
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2. Complete intersections.
This section is devoted to the proof of the following result, which goes back
to Tate [8].

Proposition 2.1. Let O be a complete Noetherian local ring. Let A be
a finite flat O-algebra of the form A = O[[X1, . . . , Xn]]/(f1, . . . , fn) with
(f1, . . . , fn) ⊂ (X1, . . . , Xn). Write fi =

∑n
j=1 gijXj , let d be the image of

det(gij) in A, and let IA be the A-ideal IA = (X1, . . . , Xn)/(f1, . . . , fn).
Then we have
(i) FitA(IA) = AnnA(IA) = (d);
(ii) the A-ideal (d) is a direct O-summand of A of O-rank 1.

Proof. Let P = O[[X1, . . . , Xn]], and let f be the vector (f1, . . . , fn) ∈
Pn. Multiplication by the matrix (gij) gives an P -linear map Pn −→ Pn

sending the vector X = (X1, . . . , Xn) to f . It induces a morphism of Koszul
complexes

K•(f, P ) −→ K•(X,P ).

Since A is finitely generated as an O-module, the P -ideal (f1, . . . , fn) con-
tains a monic polynomial pi ∈ O[Xi] for each i. The sequence p1, . . . , pn is
O[X1, . . . , Xn]-regular and by exactness of completion it is also P -regular.
By Proposition 1.3 the homology groups of both Koszul complexes vanish
and we obtain the following commutative diagram with exact rows

0 −→ P
(f1,...,fn)−→ Pn −→ · · · −→ Pn (f1,...,fn)−→ P −→ A −→ 0

det(gij)

y y (gij)

y ∥∥∥ yπA

0 −→ P
(X1,...,Xn)−→ Pn −→ · · · −→ Pn (X1,...,Xn)−→ P −→ O −→ 0.

Here πA is the O-algebra map A −→ O with kernel IA. We now tensor
the whole diagram on the right with the P -module A. Since the rows are
P -free resolutions of A and O, the homology groups of the rows become
TorP

j (A,A) and TorP
j (O, A) respectively. Hence, we obtain a commutative

diagram with exact rows:

0 −→ TorP
n (A,A) −→ A

0−→ An

πA∗

y d

y y
0 −→ TorP

n (O, A) −→ A
(X1,...,Xn)−→ An.

It follows that TorP
n (O, A) ∼= AnnA(IA). In order to determine this Tor-

group and the image of πA∗, we tensor the P -resolutionK•(f, P ) of A on the
left with the P -module map πA: A −→ O. This gives a map between two
complexes with homology groups TorP

j (A,A) and TorP
j (O, A) respectively.
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Since one can compute Tor-functors using resolutions of either argument
[5, Chap. XX, Prop. 8.2′], the same map πA∗ then makes the following
diagram with exact rows commute:

0 −→ TorP
n (A,A) −→ A

0−→ An

πA∗

y πA

y y(πA,...,πA)

0 −→ TorP
n (O, A) −→ O 0−→ On.

In particular we see that πA∗ is surjective, so that (d) = AnnA(IA) and (d)
is free of rank 1 as an O-module. On the other hand, we have

(d) ⊂ FitA(IA) ⊂ AnnA(IA),

and therefore equality holds everywhere. By applying what we have already
proved to the complete intersection A⊗O k over k we see that d⊗ 1 6= 0 in
A ⊗O k, so that d 6∈ mOA. By Nakayama’s lemma we can therefore make
the element d part of an O-basis of A, so that the inclusion (d) ⊂ A splits
as an O-linear map. This proves the proposition.

Corollary 2.2. If in the situation of Proposition 2.1 the ring O is a field,
then (d) is the unique minimal non-zero ideal of A.

Proof. Proposition 2.1 says that (d) has dimension 1 over O = k, so (d)
contains no smaller non-zero ideals. On the other hand, every minimal ideal
a is annihilated by the maximal ideal IA of A, and by Proposition 2.1 we
have AnnA(IA) = (d), so a ⊂ (d).

Corollary 2.3. Let A be a finite flat O-algebra with a section πA :
A −→ O and let IA = kerπA. If A is a complete intersection over O,
then FitA(IA) = AnnA(IA), and this ideal is a non-zero direct O-summand
of A.

Proof. Suppose that A = O[[X1, . . . , Xn]]/(f1, . . . , fn). Since O is a com-
plete local ring, we can replace each variable Xi by Xi − πA(Xi). This
ensures that (f1, . . . , fn) ⊂ (X1, . . . , Xn). The result then follows from
Proposition 2.1.

We conclude this section with some remarks that will not be used in the
rest of this paper.

The Gorenstein condition. Let A be a finite flat O-algebra. Then the
O-linear dual A∨ = HomO(A,O) of A has an A-module structure given
by (af)(x) = f(ax) for f ∈ A∨ and a, x ∈ A. The algebra A is called
Gorenstein over O if A∨ is a free A-module of rank 1.
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It follows from Proposition 2.1 (ii) that for A of the form

O[[X1, . . . , Xn]]/(f1, . . . , fn) with (f1, . . . , fn) ⊂ (X1, . . . , Xn),

there exists an O-linear map t: A −→ O with t(d) = 1. This homomor-
phism t generates A∨ as an A-module, so that A is Gorenstein over O.
To see this when O is a field, one notes that (d) 6⊂ AnnA(t), so that
AnnA(t) = 0 by Corollary 2.2. With Nakayama’s lemma the general case
then follows as well.

In general, suppose that A is Gorenstein, so there exists an A-module
isomorphism s: A∨ ∼−→A. Assume further that there is a section πA: A −→
O and put IA = kerπA. Then the image of the composite map

O ∼= O∨ π∨A−→ A∨
∼−→
s

A

is AnnA(IA). To see this, one notes that the image of π∨A is

O · πA = {f ∈ A∨ : f(IA) = 0},

and that

f(IA) = 0 ⇐⇒ IA · f = 0 ⇐⇒ s(f) ∈ AnnA(IA).

Applying πA, we see that the congruence ideal ηA = πA AnnA(IA) is equal
to the O-ideal generated by πA ◦ s ◦ π∨A(1). It is this property that Wiles
uses to define the congruence ideal in the Gorenstein case.

More general complete intersections. The statement that finite com-
plete intersection algebras are Gorenstein holds over much more general
base rings, and it also holds if there is no section A −→ O. Moreover, one
can omit the flatness condition on A in Proposition 2.1, because it follows
from the other assumptions. More precisely, if O is any ring and the ring
A = O[X1, . . . , Xn]/(f1, . . . , fn) is finitely generated as an O-module, then
one can show with Koszul complexes that A is projective as an O-module
[3]. An argument of Tate [7, appendix] then implies that A∨ is free of
rank 1 over A. For Noetherian O the class of finite O-algebras of the form
O[[X1, . . . , Xn]]/(f1, . . . , fn) is a subclass of the class of finite algebras of
the form O[X1, . . . , Xn]/(f1, . . . , fn); see [3]. In particular, these algebras
are also projective and Gorenstein over O.
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3. Proof of Criterion I
In this section we first prove the theorem in the introduction and then
show Criterion I. Using Nakayama’s lemma we first show that the question
whether ϕ is an isomorphism reduces to the case that O is a field.

Lemma 3.1. Let f : A −→ B be a surjective homomorphism of Noethe-
rian local O-algebras for which B is finite flat over O. Suppose that the
induced map f : A ⊗O k −→ B ⊗O k is an isomorphism. Then f is an
isomorphism.

Proof. By applying Nakayama’s lemma to B as an O-module we see that f
is surjective. Since B is O-free, (ker f)⊗O k is the kernel of f , which is zero.
The ring A is Noetherian, so ker f is finitely generated as an A-module.
Since mO is contained in the maximal ideal of A we can apply Nakayama’s
lemma to the A-module ker f and conclude that ker f = 0.

Now we give the proof of the theorem stated in the introduction. Re-
call that we have a commutative triangle of surjective homomorphisms of
complete Noetherian local O-algebras with T finite and flat over O:

R
ϕ−→−→ T

πR ↘ ↙ πT

O.

We let IR = kerπR and IT = kerπT .

Theorem. The map ϕ is an isomorphism between complete intersections
over O if and only if ϕFitR(IR) 6⊂ mOT .

Proof. In order to show “only if”, we note that by Corollary 2.3, FitT (IT )
is a non-zero direct O-summand of T and in particular

ϕFitR(IR) = FitT (IT ) 6⊂ mOT.

To show “if”, suppose first that O = k is a field. Since R is complete
and Noetherian, we can write R = k[[X1, . . . , Xn]]/JR where JR is a
k[[X1, . . . , Xn]]-ideal. Since T is a finite dimensional k-vector space, we
can do this in such a way that the elements ϕ(Xi mod JR) generate IT as
a k-vector space. The kernel JT of the composite map

k[[X1, . . . , Xn]]−→−→R ϕ−→−→T

is contained in the ideal I = (X1, . . . , Xn). We assume that ϕFitR(IR) 6=
0, which means that there are polynomials gij ∈ k[[X1, . . . , Xn]] so that∑

j gijXj ∈ JR for i = 1, . . . , n and det(gij) 6∈ JT .
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Since the elements Xi generate I/JT as a k-vector space, the mono-
mials XiXj generate I2/IJT as a k-vector space. This implies that every
element of the quotient ring k[[X1, . . . , Xn]]/IJT is represented by a poly-
nomial of total degree at most 2. Therefore, we can, for i = 1, . . . , n, find
polynomials pi and qi of total degree at most 2, so that

pi ≡
∑

j

gijXj (mod IJT ),

qi ≡ X3
i (mod IJT ).

We now let the polynomials f1, . . . , fn be

fi = X3
i − qi + pi for i = 1, . . . , n.

Note first that fi ∈ IJT + JR ⊂ JT and that fi =
∑

j GijXj with Gij ≡
gij mod JT .

The k-algebra B = k[X1, . . . , Xn]/(f1, . . . , fn) has finite dimension as
a k-vector space, because every element in B is represented by a poly-
nomial of degree at most 2 in each variable. Therefore, B is Artinian
and it is a finite product of local Artinian rings. Hence, the completion
B̂ = k[[X1, . . . , Xn]]/(f1, . . . , fn) of B at (X1, . . . , Xn) is a factor of B, so
it is also finite dimensional over k. By Corollary 2.2 the B̂-ideal generated
by det(Gij) is the unique minimal non-zero ideal of B̂. Since det(Gij) ≡
det(gij) 6≡ 0 (mod JT ), this minimal ideal does not map to 0 in T . It follows
that the map B̂ −→ T is an isomorphism. Thus, T is a complete intersec-
tion over k, and JT = (f1, . . . , fn) ⊂ IJT + JR. By Nakayama’s lemma we
must have JT = JR so that ϕ is an isomorphism. This completes the proof
in the case that O = k.

We now prove the “if” part for general O. The map πR: R −→ O is
an O-split surjection, so the induced map R⊗O k −→ k has kernel IR⊗O k.
Since Fitk(IR ⊗O k) is the image in R ⊗O k of FitR(IR), the case that we
proved already implies that the map R⊗O k −→ T ⊗O k is an isomorphism
between complete intersections over k. Lemma 3.1 implies that ϕ is an
isomorphism. Moreover, we can lift any k-algebra isomorphism

k[[X1, . . . , Xn]]/(f1, . . . , fn) ∼−→T ⊗O k.

to a surjective O-algebra homomorphism ψ: O[[X1, . . . , Xn]] −→ T . The
kernel of ψ contains lifts f̃i of the elements fi, and by Lemma 3.1 the
induced map

O[[X1, . . . , Xn]]/(f̃1, . . . , f̃n)−→−→T.

is an isomorphism. This proves the theorem.
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Proof of Criterion I. First we show the inequality. By Proposition 1.1 (i)
we have FitR(IR) ⊂ AnnR(IR). Since the map IR

ϕ−→ IT is surjective, we
have ϕAnnR(IR) ⊂ AnnT (IT ). Hence we see that

πR Fit(IR) = πTϕFitR(IR) ⊂ πT AnnT (IT ) = ηT = m
lengthO(O/ηT )
O .

Viewing O as an R-algebra via πR: R −→ O we have IR ⊗R O = IR/I
2
R.

By Proposition 1.1 (ii) this implies that

πR FitR(IR) = FitO(IR/I
2
R) = m

lengthO(IR/I2
R)

O ,

and it follows that lengthO(IR/I
2
R) ≥ lengthO(O/ηT ). Moreover, if ϕ is

an isomorphism between complete intersections, then by Corollary 2.3 we
have ϕFitR(IR) = AnnT (IT ), and therefore the two lengths are equal.

To show the converse, assume that the two lengths are equal, so that
πR FitR(IR) = πT AnnT (IT ). We first show that IT ∩AnnT (IT ) = 0. Since
ηT 6= 0 there is an element y ∈ AnnT (IT ) for which πT (y) 6= 0. For any
element x ∈ IT ∩AnnT (IT ) we clearly have

xy = 0 and x(y − πT (y)) = 0.

But then πT (y)x = 0, and since T is free as a module over the discrete val-
uation ring O this implies that x = 0. This shows that IT ∩AnnT (IT ) = 0.

It follows that the map πT : AnnT (IT ) −→ ηT is an isomorphism. Since

πTϕFitR(IR) = πR FitR(IR) = πT AnnT (IT ),

we conclude that ϕFitR(IR) = AnnT (IT ). This non-zero O-submodule of
T cannot be contained in mOT because T/AnnT (IT ) injects canonically to
EndO(IT ), which is torsion free as an O-module. By the theorem this can
only happen if ϕ is an isomorphism of complete intersections. This proves
Criterion I.

Remark. If T is Gorenstein over O (see the end of Section 2), or if O is a
complete discrete valuation ring, then it is not hard to show that AnnT (IT )
is a non-zero direct O-summand of T . By Corollary 2.3 the condition
ϕFitR(IR) 6⊂ mOT in the theorem can then be replaced by ϕFitR(IR) =
AnnT (IT ). This may fail for other O and T . For instance, let k be a field,
and let O = k[ε] with ε2 = 0. The ring T = O[[X,Y ]]/(X2, Y 2, XY −
εX − εY ), with IT = (X,Y ), is a finite flat O-algebra with FitT (IT ) =
AnnT (IT ) = (εX, εY ), but T is not a complete intersection over O.
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4. Proof of Criterion II
In this section we prove Criterion II. Just as in Section 3, we first give the
argument over a field, and then apply Nakayama’s lemma.

Lemma 4.1. Let k be a field and let n ≥ 1. Suppose we have k-algebra
homomorphisms

k[[S1, . . . , Sn]] −→ k[[X1, . . . , Xn]]
f−→−→ A

with f surjective, and suppose that the k-algebraA/(S1, . . . , Sn)A has finite
dimension d as a vector space over k. Assume that for some N > nn−1dn,
the induced map

k[[S1, . . . , Sn]]/(SN
1 , . . . , S

N
n )

g−→ A/(SN
1 , . . . , S

N
n )A

is injective. Then f induces an isomorphism of k-algebras

k[[X1, . . . , Xn]]/(S1, . . . , Sn) ∼−→ A/(S1, . . . , Sn)A.

Proof. The ring k[[X1, . . . , Xn]] is a local ring with maximal ideal

I = (X1, . . . , Xn).

Since A/(S1, . . . , Sn)A has length d as a module over k[[X1, . . . , Xn]] it is
annihilated by Id. Writing J = ker f this means that

Id ⊂ J + (S1, . . . , Sn),

where (S1, . . . , Sn) denotes the ideal of k[[X1, . . . , Xn]] generated by the
Si. We will show that J ⊂ Id+1 by assuming that we can find α ∈ J with
α 6∈ Id+1, and deriving a contradiction. Consider the multiplication by α
map:

0 −→ ker −→ k[[X1, . . . , Xn]]/IndN

α−→ k[[X1, . . . , Xn]]/IndN −→ cok −→ 0.

Since k[[X1, . . . , Xn]]/IndN has finite dimension over k, we have

dimk(ker) = dimk(cok).

We give estimates for these two dimensions. We have inclusions of ideals
in the ring k[[X1, . . . , Xn]],

IndN ⊂ (J + (S1, . . . , Sn))nN ⊂ J + (SN
1 , . . . , S

N
n ),
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so the cokernel cok = k[[X1, . . . , Xn]]/(IndN +(α)) now maps surjectively to
the quotient ring k[[X1, . . . , Xn]]/(J+(SN

1 , . . . , S
N
n )) = A/(SN

1 , . . . , S
N
n )A.

Since g is injective this gives

dimk cok ≥ dimk A/(SN
1 , . . . , S

N
n )A

≥ dimk k[[S1, . . . , Sn]]/(SN
1 , . . . , S

N
n )

= Nn.

On the other hand, since α 6∈ Id+1, we have ker ⊂ IndN−d/IndN , so
that the dimk(ker) is at most the number of monomials of degree δ with
ndN − d ≤ δ < ndN . For such a monomial we have at most ndN choices
for the exponent of each of the variables X1, . . . , Xn−1, and then at most
d choices for the exponent of Xn. Therefore

dimk ker ≤ d(ndN)n−1.

Combining the two estimates we see that Nn ≤ d(ndN)n−1, which contra-
dicts the assumption that N > nn−1dn. This proves that J ⊂ Id+1.

To finish the proof of the lemma, consider the inclusions

Id ⊂ J + (S1, . . . , Sn) ⊂ Id+1 + (S1, . . . , Sn).

By Nakayama’s lemma we see that Id ⊂ (S1, . . . , Sn), so that

ker f = J ⊂ Id+1 ⊂ (S1, . . . , Sn).

Since f induces an isomorphism k[[X1, . . . , Xn]]/J ∼−→A, the lemma fol-
lows.

We now return to the setting in which Criterion II is formulated: we
let O be a complete Noetherian local ring and suppose that its residue
field k has characteristic p > 0. Let n ≥ 1 and for m ≥ 0 let Jm be
the O[[S1, . . . , Sn]]-ideal (ωm(S1), . . . , ωm(Sn)), where ωm(S) denotes the
polynomial (1 + S)pm − 1.

Corollary 4.2. Suppose we have O-algebra homomorphisms

O[[S1, . . . , Sn]] −→ O[[X1, . . . , Xn]]
f−→−→ A

with f surjective, and A/(S1, . . . , Sn)A free of rank d > 0 over O. If, for
some m with pm > nn−1dn the quotient ring A/JmA is free as a module
over O[[S1, . . . , Sn]]/Jm, then the induced map

h: O[[X1, . . . , Xn]]/(S1, . . . , Sn) −→ A/(S1, . . . , Sn)A

is an isomorphism between complete intersections over O.
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Proof. Taking everything modulo mO we see that for the k-algebra A =
A⊗Ok, the quotient ring A/(Spm

1 , . . . , Spm

n )A is a non-zero free module over
k[[S1, . . . , Sn]]/(Spm

1 , . . . , Spm

n ). By Lemma 4.1 we see that h is an isomor-
phism modulo mO, and Lemma 3.1 then implies that h is an isomorphism.
In particular we see that O[[X1, . . . , Xn]]/(S1, . . . , Sn) is finitely generated
as an O-module, so that it is a complete intersection. This shows 4.2.

Proof of Criterion II. Let d denote the O-rank of T , and let m be so
large that pm > nn−1dn. By property (i) there is a surjection

O[[X1, . . . , Xn]]−→−→Rm.

We now lift the homomorphism O[[S1, . . . , Sn]] −→ Rm to an O-algebra
homomorphism O[[S1, . . . , Sn]] −→ O[[X1, . . . , Xn]] and we apply Corol-
lary 4.2 with A = Tm. We conclude that the composite map

O[[X1, . . . , Xn]]/(S1, . . . , Sn)
−→−→ Rm/(S1, . . . , Sn)Rm −→−→ Tm/(S1, . . . , Sn)Tm

is an isomorphism between complete intersections. It follows from property
(iii) that ϕ is an isomorphism between complete intersections as well.
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