1. (5-Lemma) If

is a commutative diagram of modules with exact rows, show that if β_1 and β_2 are isomorphisms, α_1 is an epimorphism, and α_2 is a monomorphism, then γ is an isomorphism. This is often applied when A_1 , B_1 , A_5 and B_5 are zero (short 5-lemma).

2. Suppose that the following diagram

is a commutative diagram of modules with exact columns and exact middle row. Show that if either $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ or $0 \longrightarrow A'' \longrightarrow B'' \longrightarrow C'' \longrightarrow 0$ is exact, then both are.

3. Let $\alpha: F \longrightarrow G$ be a map of complexes and $M(\alpha)$ be the mapping cone of α . Show that the natural inclusion makes G into a subcomplex of $M(\alpha)$ and $M(\alpha)/G \cong F[-1]$, so that there is a short exact sequence

$$0 \longrightarrow G \longrightarrow M(\alpha) \longrightarrow F[-1] \longrightarrow 0$$

of complexes.

- 4. Show that the following are equivalent.
 - (i) B is an injective R-module.
 - (ii) $\operatorname{Hom}_R(-,B)$ is an exact functor.
 - (iii) $\operatorname{Ext}_R^i(A, B)$ vanishes for all $i \neq 0$ and all A.
 - (iv) $\operatorname{Ext}_R^1(A,B)$ vanishes for all A.

- 5. Show that the following are equivalent for every R-module B.
 - (i) B is flat.
 - (ii) $\operatorname{Tor}_n^R(A,B) = 0$ for all $n \neq 0$ and all A. (iii) $\operatorname{Tor}_1^R(A,B) = 0$ for all A.
- 6. Show that if $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is exact and both B and C are flat, then A is also flat.
- 7. Show that the following are equivalent for every R-module B.
 - (i) B is a flat R-module.
 - (ii) $B^* = \operatorname{Hom}_{\mathbf{Z}}(B, \mathbf{Q}/\mathbf{Z})$ is an injective R-module. (iii) $I \otimes_R B \cong IB$ for every ideal I of R.

 - (iv) $\operatorname{Tor}_{1}^{R}(R/I, B) = 0$ for every ideal I of R.