- 1. Sia \underline{D} la categoria dei domini e sia \underline{C} la categoria dei campi. I morfismi sono omomorfismi iniettivi di anelli.
 - (a) Controllare che \underline{D} e \underline{C} sono categorie.
 - (b) Far vedere che la costruzione del campo quoziente Q(R) di un dominio R definisce in modo naturale un funtore covariante $Q: \underline{D} \longrightarrow \underline{C}$.
 - (c) Sia $G: \underline{C} \longrightarrow \underline{D}$ il funtore dimenticante. Determinare il funtore aggiunto a sinistra di G.
 - (d) Far vedere che non esistono prodotti in \underline{D} e neppure in \underline{C} .
- 2. Sia G un gruppo. La categoria \underline{G} associata a G ha un oggetto solo: "*". I morfismi di * sono elementi $g \in G$. La composizione di morfismi è quella del gruppo G.
 - (a) Far vedere che si tratta di una categoria.
 - (b) Sia H un altro gruppo con categoria associata \underline{H} . Esibire una corrispondenza naturale fra gli omomorfismi $G \longrightarrow H$ ed i funtori $\underline{G} \longrightarrow \underline{H}$.
 - (c) Far vedere che la categoria \underline{Top}_G avente come oggetti spazi topologici con azione continua di G e come morfismi applicazioni continue G-equivarianti, è equivalente alla categoria di funtori covarianti $\underline{Fun}(\underline{G}, Top)$.
- 3. Sia X uno spazio topologico e sia $Y \subset X$ un sottospazio. Sia $\underline{Ap}(X)$ (rispettivamente Ap(Y)) la categoria dei aperti di X (rispettivamente di Y).
 - (a) Sia $U \subset X$ un insieme aperto. Controllare che $F(U) = Y \cap U$ definisce un funtore covariante $F : Ap(X) \longrightarrow Ap(Y)$.
 - (b) Supponiamo che Y sia aperto in X. Sia $G : \underline{Ap}(Y) \longrightarrow \underline{Ap}(X)$ il funtore dato da G(U) = U. Determinare il funtore aggiunto a destra di G.
- 4. Per uno spazio topologico Z, sia $\underline{Pref}(Z)$ la categoria dei prefasci di gruppi abeliani su Z. In altre parole, $\underline{Pref}(Z)$ è la categoria dei funtori contravarianti da $\underline{Aper}(Z)$ a Ab.
 - (a) Far vedere che Pref(Z) è una categoria abeliana.
 - (b) Sia X un spazio topologico e sia $Y \subset X$ un sottospazio. Far vedere che la formula $g(F)(U) = F(U \cap Y)$ definisce un funtore $g: \underline{Pref}(Y) \longrightarrow \underline{Pref}(X)$.
 - (c) Chi è il funtore $f: \underline{Pref}(X) \longrightarrow \underline{Pref}(Y)$ aggiunto a sinistra di g?
- 5. Sia $F : \underline{B} \longrightarrow \underline{A}$ un funtore dalla categoria \underline{B} alla categoria \underline{A} e sia $G : \underline{A} \longrightarrow \underline{B}$ un funtore aggiunto sinistro di F. In altre parole, per ogni oggetto X di \underline{A} e Y di \underline{B} abbiamo biezioni naturali

$$\theta_{X,Y} : \operatorname{Hom}_{\underline{A}}(G(X), Y) \longrightarrow \operatorname{Hom}_{\underline{A}}(X, F(Y)).$$

- (a) Con questi dati costruire una trasformazione naturale $\mathrm{id}_A \longrightarrow FG$.
- (b) Sia $G: \underline{A} \longrightarrow \underline{B}$ un secondo funtore aggiunto sinistro di \overline{F} . Dimostrare che G è isomorfo a G'.