7. Proving the following two claims solves the question.
Claim 1: The R-module K := Homgz(R, Q/Z) is an injective R-module.

Let N and M be any R-modules with the injective R-homomorphism ¢ : N — M. Let
B : N — K be an R-homomorphism. To prove the claim, we must show that 3 extends to
M. There is a natural map of Z-modules ¢ : K — Q/Z such that ¢(¢) = ¢(1) for every
p € K. Let 8 := ¢ o . Since Q/Z is an injective Z-module, there exists an extension
~" of B to M as Z-module homomorphism. Now, we define the desired homomorphism
~v: M — K of R-modules by sending m to the map ¢ defined by ¢(1) = v(rm). It is easy
to see that this is an R-homomorphism. We have ¢o3 = 4" 0i and ¢o~y =+, which implies
that ¢ o 3 = ¢ o yoi. Now, to say that § = = o, we should show that for any R-module
A and for every Z-homomorphism A — Q/Z, there exists an unique R-homomorphism
A — K. This is true because, consider the map

g : Homz (A, Q/Z) — Hompg(A,Homz (R, Q/Z)

defined by g(y) = é, where 6, is defined on A as 6,(a) = a(,, q) Where the map a(,, o) is
defined on R as g, 4)(A) = ¢(Aa). The map g is an isomorphism. Hence, claim 1 follows.

Claim 2: The R- module K is isomorphic to R as R-modules.

Let {90, 91,----, gn} be the elements of the group G. Every element r of R can be written
uniquely in the form r = apgo + a191 + ... + ang, where a; € F,,. Consider the map

fR— K,

where for any r = aggo + a191 + ... + ang, in R the map f is defined by f(r) = ¢, where
for any arbitrary element ' = bogg + b191 + ... + bng, of R the map ¢, is defined on R by
or(r') =34 _gbrap-1/p. It is easy to see that the map is an F,-homomorphism. But we
should also check that the actions of G on R and on K are compatible so that the map f
is an R-homomorphism. We define the action of G on K for every g € G and every ¢ € K
as,

g-¢(z) = p(gz)

for every x € R. Thus, to prove the claim, you should prove that for every ¢ € G and
r € R, we have f(gr) = g.f(r). Then, you should also check that f is both surjective and
injective.

9. (= )Suppose Spec(R) is disconnected. Then, there exists A C Spec(R) which is clopen.
This means that both A and A¢ := Spec(R) — A are closed subsets of Spec(R). Then,
there exist ideals I and J in R such that

A=V(I)={P € Spec(R): I C P},
A¢=V(J)={P € Spec(R): J C P}.

We have V(I) U V(J) = Spec(R). This implies that V(I.J) = Spec(R). This means that
the ideal I.J is contained in every prime ideal of R and hence in the nilradical of R. We
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also have V(I) NV (J) = 0. This implies that V(I 4+ J) = ). Since every ideal in R, which
is not equal to R, is contained in a maximal ideal, we have I + J = R.

Then there exist x € I and y € J such that z+y = 1. Since xy is in the nilradical of R,
there exists a positive integer n such that (xy)™ = 0. Let I’ be the ideal generated by the
element 2™ and J’ be the ideal generated by the element y™. Then, we have I' + J = R.
This is because,  +y = 1 implies that (z + y)?" = 1 and if we expand (z + y)?", we see
that

2n 2n 2n
2n _ _2n 2n—1 n,n 2n—1 2n
(x+y) "=z +(1)x y+...+(n)xy +...—|—<2n_1>:1:y +y

This shows that 1 € I’ 4+ J’. Thus, I’+.J' = R. We also have I'J' =0 as (zy)"” = 0. Now,
there exist e € I’ and €’ € J such that e + ¢ = 1. Since I'J" = 0, we also have ee’ = 0.
Then, the equalities

e=ele+e)=e*+ee =e

show that e is an idempotent element of R.
Claim: R =eR x (1 —e)R.
Let b € eRN (1 — e)R. Then, there exist r € R such that b = er and r’ € R such that

b= (1-e)r’. We have er = (1 — e)r/, we multiply both sides by e and we see that
b=er =0. For any r € R, we can write r = er 4+ (1 — e)r. Hence we proved the claim.

(«<=)Suppose R is isomorphic to the product A x B. Any ideal F of A x B is a prime
ideal if and only if ' = P x {0} for a prime ideal P of A or £ = {0} x @ for a prime ideal
Q of B. Let I = A x {0} and J = {0} x B. Then, Spec(R) is the disjoint union of V(I)
and V' (J). Hence, Spec(R) is disconnected.



