René Schoof Amsterdam, February 15, 2004
In this note we present a proof of the following result.

Theorem. (Gaschiitz) Let p be a prime number and let G be a finite p-group. Suppose
that we have G % Z/pZ. Then p divides the order of Out(G).

The main tool is the following. Let A be a normal and commutative subgroup of G. The
group G acts on both A and G/A by conjugation. The exact sequence of cohomology sets
associated to the exact sequence 0 — A — G — G /A — 0 is given by

0— ANZ(G) — Z(G) — {g € G : [g,G] C A}JA- HYG, A) > HYG,G).

Here ¢ sends g € G to the 1-cocycle G — A given by x — [g,z|. The map that sends
a l-cocycle f € HY(G,G) to the homomorphism ¢ : G — G given by x — f(x)z is a an
isomorphism of the cohomology set H'(G,G) with the pointed set of conjugacy classes of
End(G). Here two endomorphism ¢, ¢’ : G — G are called conjugate, when there exists
a € G for which ¢/'(z) = ap(x)a™! for all z € G.

The classes of the invertible homomorphisms in End(G, G) form the group Out(G)
of automorphisms of G modulo inner automorphisms. Since A is commutative, the set
H'(G, A) has a natural group structure. The restriction of the map ¢ to the subgroup
HY(G/A, A) of HY(G, A) is a group homomorphism H'(G/A, A) — Out(G), the image
of which is a commutative p-group. Since the cocycles = — [g, x| are trivial on A if and
only if g is contained in the centralizer Cent(A) = {g € G : gx = xg for all z € A} of A,
there is an exact sequence of groups

0— ANZ(G) — Z(G) —={g € Cent(A) : [¢,G] C A}/A-2s HY(G/A, A) - Out(G).

Proposition 1. Suppose that G is a finite p-group not isomorphic to Z/pZ, for which
#Out(G) is not divisible by p. Then we have the following.

(a) For every subgroup N C G of index p we have Z(N) ¢ Z(G). In particular, G is not
abelian.
(b) For every maximal abelian normal subgroup A of G we have H'(G /A, A) = 0.

Proof. (a) Let N C G be a subgroup of index p. In the sequence above we take A = Z(N).
Suppose that A C Z(G). Then H!(G/A, A) = Hom(G/A, A) and Cent(A4) = G. The map
d in the sequence induces an isomorphism {g € G : [¢,G] C A}/Z(G) — Hom(G/A, A).
It sends g € G to the homomorphism =z — [g,x]. However, ¢ is not surjective. For
let f: G/A — A be a non-trivial homomorphism with ker(f) = N/A. If ¢ € G has
the property that f(z) = [g,z] for all z € G, then g centralizes N. If ¢ € N, then
g€ Z(N)=AC Z(G), while if g ¢ N, the group G is generated by N and g, so that once
again g € Z(G). It follows that f is trivial. Contradiction.

(b) In the exact sequence above we take N = A to be a maximal abelian normal subgroup
of G. The centralizer Cent(A) is equal to A and the map h is surjective. Indeed, if
Co = Cent(A) were strictly larger than A, consider the decreasing sequence of groups
Ciy1 = [Ci, A] for i = 0,1,.... Let i be the largest index for which C; ¢ A and pick
x € C; — A. Then the group (A, z) is a normal commutative subgroup that is strictly
larger than A. Contradiction.

It follows from the exactness of the sequence that H*(G/A, A) = 0 as required.
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Proposition 2. Suppose that G is a finite p-group not isomorphic to Z/pZ, for which
#O0ut(G) is not divisible by p. Let A be a maximal commutative normal subgroup of G.
Then there exists a subgroup N C G of index p for which G = AN. Moreover, the group
N has the property that Z(N) ¢ A).

Proof. By Prop. 1(b) and the cohomological lemma below, we have that H7(H, A) = 0
for every subgroup H of G/A and every q € Z. In particular the group H?(G/A, A)
vanishes. This means that G is a semi-direct product of L by A, where L C G is a
subgroup isomorphic to G/A. Let N be a subgroup of G of index p containing L. Then
we have G = AN. If Z(N) C A), the group Z(N) centralizes both N and A so that
Z(N) C Z(G), which by Prop. 1(a) is not the case. Therefore Z(N) ¢ A) and the
proposition follows.

Proposition 3. Suppose that G is a finite p-group not isomorphic to Z/pZ, for which
#Out(Q) is not divisible by p. Then all maximal abelian normal subgroups of G are cyclic.

Proof. Let A be a maximal abelian normal subgroups of G. Let N C G be subgroup of
index p as in Proposition 2. We have that G = AN. The group B = AN N has index p
in A. Indeed, since [G : N] = p, the index is at most p and it cannot be equal to 1 because
then A C N, which is impossible. This leads to the following exact sequence.

0—B—A—Z/pZ — 0.

By Proposition 2, there exists ( € Z(N) of order p modulo Z(N) N A. We let H denote
the subgroup of Z(N)/(Z(N) N A) generated by (. Then H acts on A by conjugation.
Its action on both B and Z/pZ is trivial. Since all H-cohomology groups of Z/pZ have
order p and since FAI‘I(H, A) = 0 for all g € Z, we have that H°(H,B) = B/BP has order p.
This implies that B is a cyclic group, isomorphic to Z/p™Z, say.

If A were not cyclic, then we have that A = (Z/p™Z) x (Z/pZ) and ¢ acts on A as
multiplication by a matrix of the form

1 =z
(0 1)

Here the coordinates in the first row are in Z/p™Z, while those in the second row are
in Z/pZ. An explicit computation shows that the norm map A — A is multiplication by

the matrix .
p sp(p— 1z
0 0 ’

It follows that fAIO(H, A) = Z/p™Z modulo the subgroup generated by p and ip(p — 1)z.

Since ﬁO(H, A) = 0, this implies that p = 2 and that = generates Z/p™Z. Since (
has order p = 2 modulo A, its square acts as the identity on A and hence 2x is trivial
modulo p™. It follows that #B < 2 and hence that #A < 4. Since Cent(A) = A,
the natural map G/A — Aut(A) is injective, and hence we have #G < 8. However, G
cannot have order < 8. Indeed, GG is not commutative and both non-commutative groups
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of order 8 contain an element of order 4. The subgroup A generated by this element is
a maximal normal, commutative subgroup. The group G/A acts on it by multiplication
by —1. Therefore H9(G/A, A) # 0 in both cases, contradicting Prop. 1(b).

This proves the claim.

Proof of the Theorem. Suppose that G is a finite p-group not isomorphic to Z/pZ, for
which #O0ut(G) is not divisible by p. We will derive a contradiction.

Let A be any maximal commutative, normal subgroup of G. By Proposition 3 it is
cyclic. Since G is not commutative and since the natural homomorphism G/A — Aut(A)
is injective, we have #A > p so that A is isomorphic to Z/p™™1Z for some m > 1. Let N
be the maximal normal subgroup constructed in the proof of Prop. 2 . Let ( € Z(N) — A
be an element of order p modulo A and let H be the subgroup of G/A generated by (. By
Prop. 1 and the Lemma below, the group H?(H, A) vanishes. It follows that the group
(A, () is a semidirect product of H by A. This means that there exists o € A so that («
has order p. Since ¢ and hence (« act trivially on the index p subgroup B = AN N of A,
the element (a acts on A as multiplication by 1 4+ Ap™ for some \ € Z.

The group A’ = (B, (a) is therefore commutative. To see that it is normal, we first
note that B is a normal subgroup of G. So, it suffices to see that g(Ca)g~! € A’ for
every g € G. Writing ¢ = an with n € N and a € A, this is equal to anan=ta™! =
aCnan~ta=!. Since the action of G on A/B is trivial, the last expression is congruent
to alaa™' = Caa™*"" = (a (mod B). The first congruence follows from the fact that
C—lac _ al—Apm )

However, since B is not trivial, the group A’ is not cyclic. This contradicts Proposi-
tion 3. This proves the Theorem.

Lemma. Let p be a prime number and let G be a finite p-group. Let M be a finite G-
module of p-power order. Then the Tate cohomology group H(G, M) vanishes for some
q € Z if and only if we have H1(H, M) = 0 for every subgroup H of G and every q € Z.

Proof. We proceed by induction. If the order of G is p, the group G is cyclic and its
cohomology is periodic with period 2. Since M is finite, its Herbrand quotient is trivial.
Therefore all cohomology groups H?(G, M) vanish. This proves the theorem when #G = p.

If the order of G is larger than p, then we choose a normal subgroup N C G, that is
neither trivial or equal to G. By shifting the dimension, we may assume that H'(G, M)
vanishes. Since the inflation map H'(G/N, MN) — H'(G, M) is injective, the cohomology
group H'(G/N, M™) vanishes. By induction we have that H4(G/N, MN) = 0 for all ¢ € Z.
In particular H?(G /N, M™) vanishes and it follows from the execat sequence of lower terms
of the Hochschild-Serre spectral sequence, that H*(N, M)/N vanishes. Tt follows that the
cohomology group H'(N, M) itself vanishes. By induction this implies that H 1N, M) for
all g € Z.

The fact that both the groups H4(G /N, M¥) = 0 and the groups H%(N, M) vanish
for ¢ > 1, implies that the Hochschild-Serre spectral sequence degenerates. Therefore we
have H1(G, M) = 0 for all ¢ > 1. By dimension shifting, one concludes that H(G, M) =0
for all ¢ € Z as required.



