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In this note we present a proof of the following result.

Theorem. (Gaschütz) Let p be a prime number and let G be a finite p-group. Suppose
that we have G 6∼= Z/pZ. Then p divides the order of Out(G).

The main tool is the following. Let A be a normal and commutative subgroup of G. The
group G acts on both A and G/A by conjugation. The exact sequence of cohomology sets
associated to the exact sequence 0 −→ A −→ G −→ G/A −→ 0 is given by

0 −→ A ∩ Z(G) −→ Z(G) −→ {g ∈ G : [g,G] ⊂ A}/A δ−→H1(G, A) ε−→H1(G, G).

Here δ sends g ∈ G to the 1-cocycle G −→ A given by x 7→ [g, x]. The map that sends
a 1-cocycle f ∈ H1(G, G) to the homomorphism ϕ : G → G given by x 7→ f(x)x is a an
isomorphism of the cohomology set H1(G, G) with the pointed set of conjugacy classes of
End(G). Here two endomorphism ϕ, ϕ′ : G −→ G are called conjugate, when there exists
a ∈ G for which ϕ′(x) = aϕ(x)a−1 for all x ∈ G.

The classes of the invertible homomorphisms in End(G, G) form the group Out(G)
of automorphisms of G modulo inner automorphisms. Since A is commutative, the set
H1(G, A) has a natural group structure. The restriction of the map ε to the subgroup
H1(G/A,A) of H1(G, A) is a group homomorphism H1(G/A,A) −→ Out(G), the image
of which is a commutative p-group. Since the cocycles x 7→ [g, x] are trivial on A if and
only if g is contained in the centralizer Cent(A) = {g ∈ G : gx = xg for all x ∈ A} of A,
there is an exact sequence of groups

0 → A ∩ Z(G) −→ Z(G) h−→{g ∈ Cent(A) : [g,G] ⊂ A}/A δ−→H1(G/A,A) ε−→Out(G).

Proposition 1. Suppose that G is a finite p-group not isomorphic to Z/pZ, for which
#Out(G) is not divisible by p. Then we have the following.

(a) For every subgroup N ⊂ G of index p we have Z(N) 6⊂ Z(G). In particular, G is not
abelian.

(b) For every maximal abelian normal subgroup A of G we have H1(G/A,A) = 0.

Proof. (a) Let N ⊂ G be a subgroup of index p. In the sequence above we take A = Z(N).
Suppose that A ⊂ Z(G). Then H1(G/A,A) = Hom(G/A,A) and Cent(A) = G. The map
δ in the sequence induces an isomorphism {g ∈ G : [g,G] ⊂ A}/Z(G) −→ Hom(G/A,A).
It sends g ∈ G to the homomorphism x 7→ [g, x]. However, δ is not surjective. For
let f : G/A −→ A be a non-trivial homomorphism with ker(f) = N/A. If g ∈ G has
the property that f(x) = [g, x] for all x ∈ G, then g centralizes N . If g ∈ N , then
g ∈ Z(N) = A ⊂ Z(G), while if g 6∈ N , the group G is generated by N and g, so that once
again g ∈ Z(G). It follows that f is trivial. Contradiction.
(b) In the exact sequence above we take N = A to be a maximal abelian normal subgroup
of G. The centralizer Cent(A) is equal to A and the map h is surjective. Indeed, if
C0 = Cent(A) were strictly larger than A, consider the decreasing sequence of groups
Ci+1 = [Ci, A] for i = 0, 1, . . .. Let i be the largest index for which Ci 6⊂ A and pick
x ∈ Ci − A. Then the group 〈A, x〉 is a normal commutative subgroup that is strictly
larger than A. Contradiction.

It follows from the exactness of the sequence that H1(G/A,A) = 0 as required.
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Proposition 2. Suppose that G is a finite p-group not isomorphic to Z/pZ, for which
#Out(G) is not divisible by p. Let A be a maximal commutative normal subgroup of G.
Then there exists a subgroup N ⊂ G of index p for which G = AN . Moreover, the group
N has the property that Z(N) 6⊂ A).

Proof. By Prop. 1(b) and the cohomological lemma below, we have that Ĥq(H,A) = 0
for every subgroup H of G/A and every q ∈ Z. In particular the group H2(G/A,A)
vanishes. This means that G is a semi-direct product of L by A, where L ⊂ G is a
subgroup isomorphic to G/A. Let N be a subgroup of G of index p containing L. Then
we have G = AN . If Z(N) ⊂ A), the group Z(N) centralizes both N and A so that
Z(N) ⊂ Z(G), which by Prop. 1(a) is not the case. Therefore Z(N) 6⊂ A) and the
proposition follows.

Proposition 3. Suppose that G is a finite p-group not isomorphic to Z/pZ, for which
#Out(G) is not divisible by p. Then all maximal abelian normal subgroups of G are cyclic.

Proof. Let A be a maximal abelian normal subgroups of G. Let N ⊂ G be subgroup of
index p as in Proposition 2. We have that G = AN . The group B = A ∩ N has index p
in A. Indeed, since [G : N ] = p, the index is at most p and it cannot be equal to 1 because
then A ⊂ N , which is impossible. This leads to the following exact sequence.

0 −→ B −→ A −→ Z/pZ −→ 0.

By Proposition 2, there exists ζ ∈ Z(N) of order p modulo Z(N) ∩ A. We let H denote
the subgroup of Z(N)/(Z(N) ∩ A) generated by ζ. Then H acts on A by conjugation.
Its action on both B and Z/pZ is trivial. Since all H-cohomology groups of Z/pZ have
order p and since Ĥq(H,A) = 0 for all q ∈ Z, we have that Ĥ0(H,B) = B/Bp has order p.
This implies that B is a cyclic group, isomorphic to Z/pmZ, say.

If A were not cyclic, then we have that A ∼= (Z/pmZ) × (Z/pZ) and ζ acts on A as
multiplication by a matrix of the form (

1 x
0 1

)
.

Here the coordinates in the first row are in Z/pmZ, while those in the second row are
in Z/pZ. An explicit computation shows that the norm map A −→ A is multiplication by
the matrix (

p 1
2p(p− 1)x

0 0

)
.

It follows that Ĥ0(H,A) = Z/pmZ modulo the subgroup generated by p and 1
2p(p− 1)x.

Since Ĥ0(H,A) = 0, this implies that p = 2 and that x generates Z/pmZ. Since ζ
has order p = 2 modulo A, its square acts as the identity on A and hence 2x is trivial
modulo pm. It follows that #B ≤ 2 and hence that #A ≤ 4. Since Cent(A) = A,
the natural map G/A ↪→ Aut(A) is injective, and hence we have #G ≤ 8. However, G
cannot have order ≤ 8. Indeed, G is not commutative and both non-commutative groups
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of order 8 contain an element of order 4. The subgroup A generated by this element is
a maximal normal, commutative subgroup. The group G/A acts on it by multiplication
by −1. Therefore Ĥ0(G/A,A) 6= 0 in both cases, contradicting Prop. 1(b).

This proves the claim.

Proof of the Theorem. Suppose that G is a finite p-group not isomorphic to Z/pZ, for
which #Out(G) is not divisible by p. We will derive a contradiction.

Let A be any maximal commutative, normal subgroup of G. By Proposition 3 it is
cyclic. Since G is not commutative and since the natural homomorphism G/A ↪→ Aut(A)
is injective, we have #A > p so that A is isomorphic to Z/pm+1Z for some m ≥ 1. Let N
be the maximal normal subgroup constructed in the proof of Prop. 2 . Let ζ ∈ Z(N)−A
be an element of order p modulo A and let H be the subgroup of G/A generated by ζ. By
Prop. 1 and the Lemma below, the group H2(H,A) vanishes. It follows that the group
〈A, ζ〉 is a semidirect product of H by A. This means that there exists α ∈ A so that ζα
has order p. Since ζ and hence ζα act trivially on the index p subgroup B = A ∩N of A,
the element ζα acts on A as multiplication by 1 + λpm for some λ ∈ Z.

The group A′ = 〈B, ζα〉 is therefore commutative. To see that it is normal, we first
note that B is a normal subgroup of G. So, it suffices to see that g(ζα)g−1 ∈ A′ for
every g ∈ G. Writing g = an with n ∈ N and a ∈ A, this is equal to anζαn−1a−1 =
aζnαn−1a−1. Since the action of G on A/B is trivial, the last expression is congruent
to aζαa−1 ≡ ζαa−λpm ≡ ζa (mod B). The first congruence follows from the fact that
ζ−1aζ = a1−λpm

.
However, since B is not trivial, the group A′ is not cyclic. This contradicts Proposi-

tion 3. This proves the Theorem.

Lemma. Let p be a prime number and let G be a finite p-group. Let M be a finite G-
module of p-power order. Then the Tate cohomology group Ĥq(G, M) vanishes for some
q ∈ Z if and only if we have Ĥq(H,M) = 0 for every subgroup H of G and every q ∈ Z.

Proof. We proceed by induction. If the order of G is p, the group G is cyclic and its
cohomology is periodic with period 2. Since M is finite, its Herbrand quotient is trivial.
Therefore all cohomology groups Ĥq(G, M) vanish. This proves the theorem when #G = p.

If the order of G is larger than p, then we choose a normal subgroup N ⊂ G, that is
neither trivial or equal to G. By shifting the dimension, we may assume that H1(G, M)
vanishes. Since the inflation map H1(G/N,MN ) ↪→ H1(G, M) is injective, the cohomology
group H1(G/N,MN ) vanishes. By induction we have that Ĥq(G/N,MN ) = 0 for all q ∈ Z.
In particular H2(G/N,MN ) vanishes and it follows from the execat sequence of lower terms
of the Hochschild-Serre spectral sequence, that H1(N,M)G/N vanishes. It follows that the
cohomology group H1(N,M) itself vanishes. By induction this implies that Ĥq(N,M) for
all q ∈ Z.

The fact that both the groups Hq(G/N,MN ) = 0 and the groups Hq(N,M) vanish
for q ≥ 1, implies that the Hochschild-Serre spectral sequence degenerates. Therefore we
have Hq(G, M) = 0 for all q ≥ 1. By dimension shifting, one concludes that Ĥq(G, M) = 0
for all q ∈ Z as required.
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