
BASICS OF ALGEBRAIC GEOMETRY:
A QUICK REVISION

MIKHAIL ZAIDENBERG

Abstract. These notes are preliminary to a lecture course on Affine Geometry.
Their aim is to refresh selected standard basics on affine and projective varieties.
Some pieces of the text are borrowed in different sources, see the list of references.
Some facts known in a quite general setting are exposed in rather simplified versions.
Certain results valid in any dimension are discussed just for surfaces. While using
transcendental tools, we restrict to the complex number field C even for facts avail-
able over more general fields. Certain important topics remain behind the scene,
e.g., abstract algebraic varieties, coherent sheaves, sheaf cohomology, schemes, Al-
banese map, canonical ring, classification of singularities, etc. The reader will not
find mentioning of the Hodge theory, Kähler differentials, Chern classes, projective
modules, stacks, birational rigidity, flatness, etc. We address to the literature for a
more extended and profound treatment, proofs, and solutions of exercises.
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Chapter I. AFFINE VARIETIES

1. Ideals

Throughout these notes k stands for an algebraically closed field of characteristic
zero. Let A be an integral domain over k, that is, a commutative algebra over k with
a unit element and without zero divisors (elements a, b ∈ A are called zero divisors if
a · b = 0, whereas a 6= 0 and b 6= 0). In particular, A has no nilpotent element, i.e.,
(a ∈ A, an = 0 for some n ∈ N) ⇒ (a = 0). Recall that A can be embedded into a
unique smallest field, called the fraction field of A, FracA :=

{
f
g
| g 6= 0, f, g ∈ A

}
.

Definitions 1.1. A subalgebra I ⊂ A is called an ideal if I is absorbing, that is,
i · a ∈ I ∀i ∈ I,∀a ∈ A. The radical of I is the ideal

√
I = {a ∈ A | an ∈ I, ∃n ∈ N} .

If
√
I = I, then I is called a radical ideal. An ideal I ⊂ A is called a prime ideal if

(ab ∈ I) ⇒ (a ∈ I or b ∈ I). Any prime ideal is a radical one. A proper ideal I ⊂ A
is called maximal if (I ⊂ J) ⇒ (J = I) for any proper ideal J ⊂ A. As usual, we let
(b1, . . . , bn) denote the ideal generated by b1, . . . , bn ∈ A, that is, the minimal ideal
which contains these elements.

Notation 1.2. We let An = An
k denote the affine n-space over k, and O(An) =

k[X1, . . . , Xn] the polynomial algebra over k in n variables.

Remark 1.3. Usually, OX stands for the structure sheaf of an algebraic variety X,
while the space of global sections of this sheaf is denoted by OX(X), or Γ(X,OX), or
else by H0(X,OX). Simplifying the notation we write O(X) for the algebra OX(X)
of global regular functions on X, that is, the structure ring or coordinate ring of X.

Example 1.4. If Y ⊂ An then I(Y ) := {p ∈ O(An) | p|Y = 0} is a radical ideal in
O(An). It is maximal if and only if Y is a singleton.

Definition 1.5. A module M over a commutative algebra A is said to be of finite
type if

∃b1, . . . , bk ∈M | ∀b ∈M, b =
k∑
i=1

aibi for some a1, . . . , ak ∈ A .

1.6 (Hilbert Basis Theorem). Any ideal I ⊂ O(An) is an O(An)-module of finite
type, i.e., I = (b1, . . . , bk) for some b1, . . . , bk ∈ I.

Definition 1.7. A ring R is called Noetherian if any ideal I ⊂ R is finitely generated.

Example 1.8. According to the Hilbert Basis Theorem, the polynomial ring O(An)
is Noetherian.
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Proposition 1.9. In a Noetherian ring R, any radical ideal I ⊂ R has a unique
decomposition (up to order) into prime ideals containing it. In other words, I =
P1 ∩ . . . ∩ Pk for some prime ideals Pi ⊂ R, i = 1, . . . , k.

2. Affine varieties

Definitions 2.1.

– A map f : An → Am, f = (f1, . . . , fm), is called regular or morphism if fi ∈
O(An) ∀i = 1, . . . ,m.

– If f is a morphism, then X = f−1(0) is called a Zariski closed subset (or an
affine algebraic set1) of An.

– The complement An \X is called a Zariski open subset of An.

Example 2.2. For any ideal I = (f1, . . . , fm) ⊂ O(An) the zero set of I,

V(I) := {x ∈ An | fi(x) = 0, i = 1, . . . ,m} = {x ∈ An | f(x) = 0 ∀f ∈ I} ,
is a Zariski closed subset of An.

2.3 (Hilbert Nullstellensatz). I(V(I)) =
√
I.

Corollary 2.4. There is a one-to-one correspondence

{radical ideals I ⊂ O(An)} ←→ {Zariski closed sets X ⊂ An}
given by X 7→ I(X) and I 7→ V(I).

Proposition 2.5. The Zariski open subsets of An form a topology on Ancalled the
Zariski topology. In particular, the union and the intersection of two Zariski open
subsets is again a Zariski open subset.

Definitions 2.6.

– An affine variety X is a Zariski closed subset in An such that I(X) is a prime
ideal.
• A Zariski closed subset X in An is called irreducible if the equality X =
X1 ∪ X2, where X1, X2 are Zariski closed subsets of X, implies that either
X = X1, or X = X2.

– The Zariski topology on X is the one induced by the Zariski topology on An.

Exercises 2.7. Let k = C, and let X ⊂ An be an affine variety. Show that

• O(X) := O(An)/I(X) is a finitely generated integral domain, consisting of
the traces on X of polynomials in n variables;
• any maximal ideal I of O(X) is of the form I = I(x)∩O(X) for a point x ∈ X;

1It became quite common to reserve the expression affine variety for irreducible Zariski closed
subsets of An. We adopt this terminology, although it creates some inconveniences, especially when
speaking about curves.
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• any nonempty Zariski open subset U ⊂ X is dense in X, and the intersection
of two such subsets is as well;
• the Zariski topology of X is not separated, unless X is a singleton;
• X ⊂ An

C = R2n is compact in the Hausdorff topology if and only if X is a sin-
gleton. Hint: use the maximum modulus principle for holomorphic functions;
• any Zariski closed subset X ′ ⊂ An admits a unique decomposition X ′ =
X1 ∪ . . . ∪ Xk into irreducible Zariski closed subsets (called the irreducible
components of X ′) such that (Xi ⊂ Xj) ⇒ (i = j);
• the Cartesian product Z = X × Y of two affine varieties is an affine variety,

and O(Z) ∼= O(X)⊗O(Y ) (here ”∼=” means an isomorphism of algebras);
• SL(n,C) is an affine variety.

Definition 2.8. An affine domain is a finitely generated integral domain (over k).

2.9. There is a one-to-one correspondence

{affine varieties} ←→ {affine domains}

given by X 7→ A = O(X) and A 7→ SpecmA, where SpecmA stands for the set of
maximal ideals of A equipped with a structure of an affine variety e.g. as follows. If
A is generated by a1, . . . , an ∈ A, then X = SpecmA := V(J(A)) ⊂ An, where

J(A) = {p ∈ O(An) | p(a1, . . . , an) = 0}

is the ideal of relations of A. In other words, A = O(X) = O(An)/J(A).

3. Dimension

Definitions 3.1.

– Given an affine variety X, the rational function field of X is the field of
fractions k(X) = FracO(X) of the structure algebra O(X).

– The elements f1, . . . , fd ∈ k(X) are said to be algebraically independent if

(p(f1, . . . , fd) = 0 for p ∈ k[X1, . . . , Xd])⇒ (p = 0) .

– The dimension dimX is the transcendence degree tr.deg k(X) of the field
extension k ⊂ k(X), that is, the maximal number of algebraically independent
elements f1, . . . , fd of k(X).

Example 3.2. An affine variety X is called a curve if dimX = 1, a surface if dimX =
2, and a d-fold if dimX = d ≥ 3. A plane curve C = {(x, y) ∈ A2 | p(x, y) = 0},
where p ∈ k[X, Y ], is irreducible if the polynomial p is. For instance, the affine cubic
C = {x(xy − 1) = 0} is reducible (that is, non-irreducible) and has two irreducible
components.
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4. Morphisms

Definitions 4.1. If X ⊂ An and Y ⊂ Am are affine varieties and F : An → Am is
a morphism (see Def. 2.1) such that F (X) ⊂ Y , then the map f = F |X : X → Y is
called a morphism from X to Y . The induced pull-back homomorphism f ∗ : O(Y )→
O(X), g 7→ g ◦ f , is called a comorphism. A morphism X → Y which admits an
inverse morphism Y → X is called an isomorphism. The varieties X and Y are said
to be isomorphic (notation: X ∼= Y ) if there exists an isomorphism X → Y . An
isomorphism X → X is called an automorphism. The automorphisms X → X form
a group denoted AutX and called the automorphism group of X.

Exercises 4.2. Show that

• any homomorphism O(Y )→ O(X) is a comorphism;
• the affine line A1 and the hyperbola H = {(x, y) ∈ A2 |xy − 1 = 0} are not

isomorphic;
• GL(n,C) is an affine variety. Hint : it can be given as

GL(n,C) = {(A, t) ∈M(n,C)× A1 ∼= An2+1 | t · detA = 1} ,

where M(n,C) is the vector space of square matrices of order n over C;
• AutA1 = Aff A1, and AutA1

∗
∼= Gm o (Z/2Z), where A1

∗ := A1 \ {0} and Gm

stands for the multiplicative group of the base field k.

Definitions 4.3.

– A morphism f : X → Y is called birational if the restriction f |U : U → V to
suitable Zariski open dense affine subsets U ⊂ X and V ⊂ Y is an isomor-
phism.

– A morphism f : X → Y is called finite if f ∗ : O(Y )→ O(X) is an embedding
which makes O(X) an f ∗O(Y )-module of finite type.

Exercises 4.4. Let k = C. Show that

• a birational morphism f : X → Y induces a pull-back isomorphism of rational

function fields f ∗ : k(Y )
∼=−→ k(X);

• any non-constant morphism A1 → A1 and A1
∗ → A1

∗ is finite, and any mor-
phism A1 → A1

∗ is constant;
• any finite morphism f : X → Y is quasi-finite, that is, any fiber f−1(y) of f

is finite. In fact, the cardinality of f−1(y) does not exceed the rank of O(X)
as an f ∗O(Y )-module (called the degree of f), and coincides with the degree
deg f for a generic point y ∈ Y ; deduce that dimX ≤ dimY ;
• if dimX = dimY , then any finite morphism X → Y is a closed map, in

particular, is surjective;
• give an example of a non-surjective finite morphism.

6



Proposition 4.5 (Noether normalization). Any affine variety X ⊂ An of dimen-
sion d admits a finite morphism X → Ad, which is the restriction to X of a linear
map An → Ad.

Definition 4.6. A morphism f : X → Y of affine varieties is called dominant if f(X)
is Zariski dense in Y .

Exercise 4.7. Consider the morphism f : A2 → A2 given by f(x, y) = (x, xy). Is it
finite? Is it dominant? Is it open? Is it closed? Describe the fibers of f .

Proposition 4.8. Let f : X → Y be a dominant morphism of affine varieties. Then
for any point y ∈ f(X), any irreducible component Z of f−1(x) is an affine variety
of dimension dimZ ≥ dimX − dimY , with the equality sign for the points y in a
Zariski dense open subset of Y .

Exercise 4.9 (Krull Theorem). Let X be an affine variety, and let f ∈ O(X) be a
nonconstant regular function on X. Show that any irreducible component of f−1(0)
has dimension dimX − 1.

Exercise 4.10. Show that for any automorphism F = (f1, . . . , fn) : An → An the
Jacobian determinant det(JacF ) is a nonzero constant.

Remark 4.11 (Jacobian Conjecture). The famous Jacobian Conjecture claims
that the converse is also true, that is, if a morphism F : An → An has a constant
nonzero Jacobian determinant, then F is an automorphism. The conjecture is open
for any n ≥ 2, see, e.g., [4], [36].

5. Normal varieties

Definition 5.1. Let A be a domain over k with the fraction field FracA. The integral
closure Ā of A is the domain

Ā = {f ∈ FracA | p(f) = 0 for some p(T ) = T n + a1T
n−1 + . . .+ an ∈ A[T ]} .

If Ā = A then A is called integrally closed.

Definitions 5.2. An affine variety X is called normal if O(X) is integrally closed in
FracO(X). For an affine domain A, the integral closure Ā is again an affine domain,
and the affine variety Xnorm := Specm Ā is called the normalization of X = SpecmA.
The identical embedding A ↪→ Ā leads to the normalization morphism ν : Xnorm → X,
where ν is finite and birational.

Proposition 5.3. Let f : X → Y be a morphism of affine varieties. If Y is normal,

then there exists a unique lift of f to a morphism f̃ : Xnorm → Y such that the following
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diagram is commutative:

(1)

Xnorm

	�
�
�
�
�

ν
@
@
@
@
@

f̃

R

X
f

- Y

6. Singularities

Definitions 6.1. Let X ⊂ An be an affine variety of dimension d > 0 given by a
system of equations

f1 = . . . = fm = 0, where fi ∈ k[X1, . . . , Xn], i = 1, . . . ,m .

– A point x ∈ X is called simple (or smooth, or regular, or non-singular) if

r := rk(Jac (f1, . . . , fm)(x)) = n− d =: codim AnX ,

and singular if r < n− d.
– The Zariski tangent space TxX of X at x is the kernel ker dF (x) of the differ-

ential dF (x) : An → Am at x of the morphism F = (f1, . . . , fm) : An → Am.
(Recall that the matrix of dF (x) is the Jacobian matrix Jac (f1, . . . , fm)(x).)

– Let X ⊂ A2 be an affine curve over C passing through the origin. The local
ring C{x, y} of convergent power series in two variables being factorial, there
is a unique factorization of the defining polynomial p ∈ C[x, y] of C into
irreducible factors in C{x, y}. These factors define local analytic branches of
C at the origin. If p is irreducible in C{x, y}, then one says that (C, 0) is
unibranch.

– X is called smooth (or regular, or non-singular) if any point x ∈ X is.

Exercises 6.2. Let k = C. Show that

• if x ∈ X is a simple point, then dimTxX = d, otherwise dimTxX > d;
• a point x ∈ X is smooth if and only if X is a smooth submanifold of An = R2n

in a neighborhood of x in X. Hint : apply the Implicit Function Theorem;
• letting O(X, x) ⊂ FracO(X) be the local ring of all rational functions on X

regular at x, and mx be the maximal ideal of functions in O(X, x) vanishing
in x, one has TxX ∼= (mx/m

2
x)
∗.

Remark 6.3. There are several other equivalent definitions of a smooth point; see,
e.g., [9], [22].

Proposition 6.4. The set singX of all singular points of an affine variety X is a
proper Zariski closed subset of X. Hence its complement regX = X \ singX is a
Zariski dense open subset of X.

Exercises 6.5. Let k = C. Show that
8



• the Neil parabola (or a cuspidal cubic) Γ2,3 = {(x, y) ∈ A2 |x3 − y2 = 0} has
a unique singular point, namely, the origin 0 ∈ Γ2,3 (such a singular point is
called an ordinary cusp);
• (Γ2,3, 0) is unibranch;
• (Γ2,3)norm

∼= A1. Hint : the morphism

ν : A1 → Γ2,3, T 7→ (T 2, T 3)

is birational, because the pull-back comorphism ν∗ : O(Γ2,3) → O(A1) = C[t]
identifies O(Γ2,3) with the subalgebra C[T 2, T 3] ⊂ C[T ], where both rings have
C(T ) as their fields of fractions;
• the nodal cubic C = {(x, y) ∈ A2 |x2 − y2(y − 1) = 0} has a unique singular

point 0 ∈ C (the origin) with two smooth local branches at 0 which meet
transversally at 0 (such a singular point is called a node, or an ordinary double
point);
• Cnorm

∼= A1;
• any normal affine curve is smooth.
• Consider the Veronese cone Vd = A2/µd = SpecmO(A2)µd , d > 1, where

µd = {(x, y) 7→ (ζx, ζy) | ζd = 1} ,
and O(A2)µd ⊂ O(A2) is the subalgebra of µd-invariants. Show that Vd is a
normal affine surface with a unique singular point 0̄ ∈ Vd (the image of the
origin; such an isolated singular point (Vd, 0̄) is called a quotient singularity).
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Chapter II. PROJECTIVE VARIETIES

7. Homogeneous ideals

Definition 7.1. The n-dimensional projective space Pn = Pn(k) over k is the set of
equivalence classes of (n+ 1)-tuples of elements of k, not all zero, with respect to the
equivalence relation

(a0, . . . , an) ∼ (b0, . . . , bn)⇔ ∃λ ∈ k∗ | bi = λai ∀i = 0, . . . , n .

An element p = (p0 : · · · : pn) ∈ Pn is called a point, pi’s are homogeneous coordinates
of p. A zero set in Pn of a homogeneous polynomial f ∈ k[x0, ..., xn] of degree d is
well defined, since f(λp0, . . . , λpn) = λdf(p0, . . . , pn).

Definition 7.2. The ideal I ⊂ k[x0, . . . , xn] is called homogeneous, if I is generated
by homogeneous polynomials.

Exercise 7.3. Let k[x0, . . . , xn]d ⊂ k[x0, . . . , xn] be the subspace of all homogeneous
polynomials in n + 1 variables of degree d. Show that an ideal I ⊂ k[x0, . . . , xn] is
homogeneous if and only if it is graded, that is,

I =
∞⊕
i=0

Id. where Id = I ∩ k[x0, . . . , xn]d .

Definition 7.4. A subset Z ⊂ Pn is called Zariski closed (or a projective algebraic
set) if Z is the zero set of a homogeneous ideal I ⊂ k[x0, . . . , xn].

Remark 7.5. This same homogeneous ideal I defines an affine Zariski closed set

X̂ = V(I) ⊂ An+1 called the affine cone over X. The cone X̂ is saturated by the

lines in X̂ passing through the origin 0 ∈ An+1.

Exercises 7.6. Show that

• the sum, product and intersection of homogeneous ideals is again a homoge-
neous ideal, and the same for the radical of an ideal;
• if a homogeneous ideal I is not prime, then there are homogeneous polynomials
f, g such that fg ∈ I but f, g 6∈ I;
• the Zariski topology is well defined on Pn;
• any Zariski closed set in Pn admits a unique decomposition into irreducible

components.

Exercise 7.7. Let k = C. Show that any Zariski closed subset X in Pn is compact
in the Hausdorff topology. Hint : show first that this is true for X = Pn.

Remark 7.8. Abstract algebraic geometry studies abstract algebraic varieties ob-
tained by gluing together affine charts via local isomorphisms. An analog of compact
or projective variety in abstract algebraic geometry is proper or complete variety.

Definitions 7.9.
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– A projective variety X ⊂ Pn is a Zariski closed set in Pn defined by a homo-
geneous prime ideal.

– X is called linearly degenerate if X ⊂ H, where H ∼= Pn−1 is a linear hyper-
plane in Pn. Replacing the ambient projective space Pn by the linear span
〈X〉 ∼= Pk of X, where k ≤ n, one may assume that X is linearly non-
degenerate.

Exercise 7.10. Show that any projective variety is irreducible.

8. Morphisms of projective varieties

The affine space An embeds into the projective space Pn e.g. as follows:

An ↪→ Pn, (p1, . . . , pn) 7→ (1 : p1 : · · · : pn) .

On the other hand, Pn can be covered by n + 1 affine charts, Pn = U0 ∪ · · · ∪ Un,
where Ui = {p = (p0 : · · · : pn) ∈ Pn | pi 6= 0} ∼= An.

Exercise 8.1. Given a projective variety X ⊂ Pn, show that X is covered by the
affine varieties Xi = X ∩ Ui, i = 0, . . . , n.

Definitions 8.2. Let X ⊂ Pn be a linearly non-degenerate projective variety.

– We let dimX = max0≤i≤n{dimXi}, where the Xi are as in 8.1.
– A point x ∈ X is called singular (resp., simple or regular) if x is a singular

(resp., simple) point of Xi for some i.
– X is called normal if the Xi are normal for all i = 0, . . . , n.
– A map f : X → Y of projective varieties X ⊂ Pn and Y ⊂ Pm is called regular

or morphism if f−1(Yj) is a Zariski open set in X for any j ∈ {0, . . . ,m},
and the restriction f |Xi∩f−1(Yj) : Xi ∩ f−1(Yj) → Yj is a morphism for any
i ∈ {0, . . . , n} and j ∈ {0, . . . ,m}.

– A morphism f : X → Y of projective varieties is called
– dominant if f(X) contains a Zariski open dense subset of Y ;
– birational if it is generically one-to-one, that is, restricts to a bijection of

some Zariski open dense subsets;
– finite if f is quasi-finite, that is, if f−1(y) is a finite set for any y ∈ Y ;
– isomorphism if it admits an inverse morphism;
– embedding if f is an isomorphism of X onto the image f(X) ⊂ Y .

– A function f on X is called rational (resp., regular) if f |Xi
is a rational (resp.,

regular) function for any i = 0, . . . , n. The rational functions on X form a
field denoted k(X) 2

2Attention: sometimes k(X) is also applied for the Kodaira dimension of X. In these notes we
use κ(X) for the Kodaira dimension.
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Proposition 8.3. The set singX of singular points of a projective variety X is a
proper Zariski closed subset of X. If X is normal, then every irreducible component
of singX has codimension at least 2 in X.

Theorem 8.4 (Noether normalization). For a projective variety X ⊂ Pn of di-
mension d the following hold.

(a) There is a finite morphism X → Pd, which is the restriction to X of a linear
projection Pn 99K Pd with center at a linear subspace Pk ⊂ Pn disjoint with
X, where k + d = n− 1.

(b) There exists a (unique) normal projective variety Xnorm and a finite birational
morphism ν : Xnorm → X such that any morphism f : X → Y , where Y
is normal, admits a unique lift to a morphism f̄ : Xnorm → Y closing the
commutative diagram (1).

Exercises 8.5. Let X, Y be projective varieties over C. Show that

• any normal projective curve is smooth;
• any morphism f : X → Y is a proper and closed map;
• the image f(X) ⊂ Y is a projective subvariety of Y ;
• any dominant (resp., birational) morphism X → Y is surjective, and any

regular function on X is constant;
• the projection X ×Z → Z, where Z is a complex affine variety, is proper and

closed in the Zariski topology;
• C(X) = FracO(U) for any Zariski open dense affine subset U ⊂ X;
• a morphism f : X → Y is birational if and only if the pull-back comorphism
f ∗ : C(Y )→ C(X) is an isomorphism (cf. 4.4);
• the Cartesian product X × Y is a projective variety. Hint : use the (linearly

non-degenerate) Segre embedding

Pn × Pm ↪→ Pnm+n+m, ((a0 : · · · : an), (b0 : · · · : bm)) 7→ (· · · : aibj : · · · ) ;

• the image of the Segre embedding P1 × P1 → P3,

((a0 : a1), (b0 : b1)) 7→ (x0 : x1 : x2 : x3) = (a0b0 : a0b1 : a1b0 : a1b1) ,

is the smooth quadric Q = {x0x3 − x1x2 = 0} ⊂ P3;
• a point P on the plane projective curve

C = {(x : y : z) ∈ P2 | f(x, y, z) = 0} ,

where f ∈ C[x, y, z]\{0} is an irreducible homogeneous polynomial, is singular
if and only if ∂f/∂x(P ) = ∂f/∂y(P ) = ∂f/∂z(P ) = 0;
• for a simple point P ∈ C, show that the tangent line to C at P has the

homogeneous equation

x∂f/∂x(P ) + y∂f/∂y(P ) + z∂f/∂z(P ) = 0 ;
12



• the plane Weierstrass cubic

(2) y2z − (x3 + g2xz
2 + g3z

3) = 0, where g2, g3 ∈ C ,

is nonsingular if and only if the polynomial p(x) = x3+g2x+g3 has no multiple
root;
• find the line tangent to this curve at the point P = (0 : 0 : 1) ∈ P2;
• give an example of two isomorphic projective varieties with non-isomorphic

affine cones. Hint : use the Veronese embedding vd : Pn ↪→ PNd given by the
degree d monomials in n+ 1 variables. For instance,

v2 : P2 ↪→ P5, (x0 : x1 : x2) 7→ (x2
0 : x2

1 : x2
2 : x0x1 : x0x2 : x1x2) ;

• any morphism F : Pn → Pm can be given as F = (f0 : . . . : fm), where the
fi are homogeneous forms in n + 1 variables of the same degree d, such that
f0(x) = . . . = fm(x) = 0 only if x = 0;
• the automorphism group AutPn is the linear group PGL (n+ 1, k) = GL (n+

1, k)/T, where T ∼= Gm is the subgroup of scalar matrices.

Theorem 8.6. Let f : X → Y be a birational morphism of normal projective varieties
over C.

(a) (Zariski Main Theorem) For any point y ∈ Y the fiber f−1(y) is connected.
In particular, dim f−1(y) > 0 unless f−1(y) is a singleton.

(b) (Purity Theorem) The exceptional locus of f ,

E = E(f) :=
⋃

dim f−1(y)>0

f−1(y) ,

is Zariski closed in X, and if y0 ∈ f(E) is a smooth point of Y , then E has
codimension 1 in X near the points of the fiber f−1(y0). If Y is smooth, then
E is a projective hypersurface.

Exercises 8.7.

• Deduce that any birational morphism between smooth projective curves is an
isomorphism.
• Let C be the nodal cubic in P2 given by equation x2z−y2(y− z) = 0 (cf. 6.5).

Verify that the normalization morphism ν : P1 → C is birational, and that the
fiber ν−1(P ) over the point P = (0 : 0 : 1) ∈ C consists of two points, hence
is disconnected. Conclude that the normality assumption in the Zariski Main
Theorem is important.
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Theorem 8.8 (Stein factorization). Let f : X → Y be a morphism of projective

varieties over C. Then there exist a projective variety Ỹ and a commutative diagram

(3)

X

	�
�
�
�
�

f̃
@
@
@
@
@

f

R

Ỹ
g

- Y

where f̃ : X → Ỹ is a morphism with connected fibers, and g : Ỹ → Y is a finite
morphism.

Remark 8.9. An analogous fact holds also for morphisms of affine varieties.

9. Projective closure of an affine variety

Definition 9.1. If F ∈ k[x0, . . . , xn] is homogeneous of degree d, we de-homogenize
(with respect to x0) F by setting f(x1, . . . , xn) = F (1, x1, . . . , xn).

Exercises 9.2. Let X ⊂ An be an affine variety, X̄ ⊂ Pn its projective (Zariski)
closure under the embedding An ⊂ Pn. Show that

• the ideal I( ̂̄X) ⊂ k[x0. . . . , xn] of the normal cone ̂̄X ⊂ An+1 over X̄ is homo-
geneous, generated by the homogenization of the elements of I(X);
• for k = C, X̄ coincides with the closure of X in Pn with respect to the usual

Hausdorff topology of Pn;
• X̄ = X ∪ ∂X, where ∂X = H0 ∩ X̄ is the hyperplane section of X̄ by the

hyperplane at infinity H0 = {x0 = 0};
• the boundary ∂X is nonempty unless X is a singleton. Hint : consider the

‘hyperbola’ H = V(ft − 1) ⊂ A1 × X, where f ∈ O(X) is a nonconstant
regular function. Observe that the image of the projection of H to A1 is A1

∗.
Conclude;
• dimZ = dim X̄ − 1 = dimX − 1 for every irreducible component Z of ∂X.

Hint : use Krull Theorem 4.9;
• for k = C, the boundary ∂X of X is connected provided that dimX ≥ 2. Hint :

use the Lefschetz Hyperplane Section Theorem, see [26, Ch. I, §7]. (Note that
A1
∗ = A1 \ {0} admits a projective completion A1

∗ ↪→ P1 with a disconnected
boundary. Hence the assumption dimX ≥ 2 is important.);
• the variety A2

C \ {0} is not affine.

10. Divisors and the Picard group

Definitions 10.1. Let X be a normal affine or projective variety.

– A prime divisor of X is an irreducible closed subvariety of codimension 1.
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– A Weil divisor D on X is a finite formal Z-linear combination of prime divi-
sors, i.e., D =

∑
i niDi, where ni ∈ Z and the Di are prime divisors in X. We

let suppD =
∑

ni>0Di. Note that suppD = ∅ if and only if D = 0.
– We let DivX (or also WDivX) be the free Abelian group (a lattice) generated

by all prime divisors on X.
– A divisor D =

∑
i niDi of X is called effective if ni ≥ 0 ∀i, and reduced if

ni = 1 ∀i. The effective divisors form a convex cone EffX in the lattice DivX.
– A principal divisor D on X is the divisor of a rational function f ∈ k(X),

that is, D = div f := div0 f − div∞ f , where div0 f =
∑

imiZi and div∞ f =∑
j njYj are effective divisors such that f vanishes to order mi along Zi, 1/f

vanishes to order nj along Yj, and f has no zero or pole outside suppD.
– We let PrincX be the subgroup of principal divisors in the group DivX.
– The quotient ClX = DivX/PrincX is called the divisor class group.
– Two divisors D,D′ ∈ DivX are called linearly equivalent, written D ∼ D′, if
D−D′ = div f is a principal divisor, where f ∈ k(X). The class of D in ClX
consists of all divisors D′ on X linearly equivalent to D.

– A Cartier divisor is a locally principal divisor. Such a divisor D can be given
by a data {Ui, fi} so that D|Ui

= div fi, where:
(1) {Ui} is a Zariski open cover of X;
(2) fi ∈ k(X)∗ are nonzero rational functions on X;
(3) fi/fj ∈ O(Ui ∩Uj) are invertible regular functions on Ui ∩Uj. (The data

({Ui}, fi/fj) form a Čech cocycle on X, see Definition 13.1.)
– The Cartier divisors form a subgroup CDivX ⊂ DivX.
– The Picard group PicX is the quotient PicX = CDivX/PrincX ⊂ ClX.
– Let ϕ : X → Y be a dominant morphism of affine (resp., projective) varieties.

If D ∈ CDiv Y is given by the data (Ui, fi), then the pull-back ϕ∗D ∈ CDivX
is given by the data (ϕ−1(Ui), ϕ

∗(fi)).

Exercises 10.2. Show that

• two collections {Ui, fi} and {Vj, gj} define the same Cartier divisor on X if
and only if the functions fig

−1
j ∈ O(Ui ∩ Vj) are invertible for all i, j;

• if X is smooth, then any Weil divisor on X is Cartier, and so, PicX = ClX;
• the line V(x, y) on the quadric cone X = V(xy − z2) in A3 is a Weil divisor,

which is not Cartier. Deduce that ClX 6= (0), and compute this group;
• for the parabola C = V(y − x2) ⊂ A2 we have ClC = (0);
• for the elliptic cubic E = V(y2 − x(x2 − 1)) ⊂ A2 every divisor D is linearly

equivalent to 0 or to P for a suitable point P ∈ E;
• for a normal affine variety X the algebra O(X) is factorial, or a UFD (a unique

factorization domain), if and only if ClX = (0);
• the Picard group PicPn ∼= Z is freely generated by the class of a hyperplane

denoted byO(1) = OPn(1). Thus, PicPn = {O(k)}k∈Z, whereO(k) = O(1)⊗k;
15



• any morphism f : X → Y of affine (resp., projective) varieties induces a group
homomorphism f ∗ : PicY → PicX. Hint : use the following lemma.

Lemma 10.3 (Moving Lemma). For any Cartier divisor D on Y and any point
y ∈ suppD there exists a Cartier divisor D′ ∼ D on Y such that y 6∈ suppD′.

11. Intersections

There exist several alternative approaches to the intersection theory on algebraic
varieties; see [11]. We prefer the homological one. In this section X is a smooth pro-
jective variety over C of dimension n (thus, X is a smooth manifold of real dimension
2n).

Definitions 11.1 (Intersection pairing). For a k-dimensional closed subvariety Y
of X we let [Y ] be the class of Y in H2k(X,Z).

– The intersection of homology classes defines a bilinear mapH2k(X,Z)×H2l(X,Z)→
H2(k+l−n)(X,Z).

– In particular, we have a bilinear intersection pairing H2k(X,Z)×H2(n−k)(X,Z)→
Z = H0(X,Z).

– For an (n−k)-dimensional closed subvariety Z of X we define the intersection
index Y · Z via Y · Z := [Y ] · [Z] ∈ Z = H0(X,Z).

– If n = 2k, then the self-intersection index Y 2 = Y · Y ∈ Z is well defined.
– The natural homomorphism PicX → H2n−2(X,Z) allows to define an n-

polylinear form (PicX)n → Z, (D1, . . . , Dn) 7→ D1 · . . . ·Dn ∈ Z.
– The degree of a k-dimensional subvariety Y ⊂ Pn is deg Y = Y · Hk, where
H ⊂ Pn is a hyperplane.

Definition 11.2 (Multiplicity of a point on a divisor). Let D be a prime
(Cartier) divisor on X, let P ∈ suppD, and let f ∈ O(U) be a regular function
that defines D in a neighborhood U of P , that is, I(D ∩ U) = (f). The multiplicity
multP (D) of P in D (or of D in P ) is the positive integer k such that f ∈ mk

P \mk+1
P ,

where mP stands for the maximal ideal of the local ring O(X,P ).

Definition 11.3 (Local intersection index). Let now X be a smooth projective
surface, let C1 and C2 be two distinct curves on X, and let P be an isolated point
of the intersection C1 ∩ C2. One can find an affine neighborhood U of P in X and
regular functions f1 and f2 on U such that I(Ci ∩ U) = (fi), i = 1, 2. Regarding

the fi as elements of the local ring O(X,P ), the radical
√

(f1, f2) coincides with the
maximal ideal mP ⊂ O(X,P ). It follows that the quotient O(X,P )/(f1, f2) is a finite-
dimensional vector space. The local intersection multiplicity, or the local intersection
index (C1 · C2)P of P in C1 ∩ C2 is dimO(X,P )/(f1, f2). For example, if C1 and C2

cross transversely at P (that is, f1 and f2 form a system of local parameters at P ),
then (f1, f2) = mP , and so, (C1 · C2)P = 1.

Exercises 11.4.
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• Assume that Y and Z as in 11.1 of complementary dimensions k and n − k
meet transversally and at smooth points of both Y and Z only. Show that
Y · Z counts the number of intersection points card(Y ∩ Z). Conclude that
Y ·Z ≥ 0. Hint : use the fact that any complex manifold, viewed as a smooth
real manifold, is orientable.
• Show that deg Y for Y ⊂ Pn counts the number of intersection points of Y with

a generic (n − k)-dimensional linear subspace of Pn. Hint : use the fact that
H2k(Pn) = 〈Lk〉 ∼= Z for any k = 0, . . . , n, where Lk ∼= Pk is a k-dimensional
linear subspace in Pn.
• For a divisor D =

∑
i niDi on Pn we let degD =

∑
i ni degDi. Show that

degD = 0 for any principal divisor D on Pn. Deduce that deg defines an

isomorphism deg : PicPn
∼=−→ Z.

• For a divisor D =
∑

i nipi on a smooth projective curve Γ we let degD =∑
i ni. Show that degD = 0 if D is principal.

• Let D be a divisor on X and C be a curve on X such that C 6⊂ suppD. Show
that C · D = deg ν∗D, where ν : Cnorm → C is the normalization morphism.
Deduce that if D′ is a prime divisor on X such that C ·D′ < 0, then C ⊂ D′.
• (Bézout Theorem) Show that for two curves C1 and C2 in P2 of degrees d1

and d2, respectively, one has C1 ·C2 = d1d2. Extend this formula to reducible
curves. Assuming that C1 6= C2 (or C1 and C2 has no common component,
in the reducible case), show that C1 and C2 intersect in exactly d1d2 points,
counted with multiplicities.
• Let dimX = 2, and let P ∈ X be an isolated intersection point of two curves
C1 and C2 on X. Show that (C1 · C2)P ≥ m1m2, where mi = multP Ci.
• In the same setup, verify the formula C1 · C2 =

∑
P∈C1∩C2

(C1 · C2)P .

• Given a curve C ⊂ P2 and a point P ∈ C, show that multP C = minl{(C ·l)P},
where l is a line in P2 through P , and that there exist lines l′ ⊂ P2 (called the
tangent lines to C at P ) such that (C · l′)P > multP C, unless C is a line.
• Let X be an n-dimensional smooth variety, and let P ∈ D1 ∩ . . . ∩Dn be an

isolated intersection point of n prime divisors D1, . . . , Dn in X. Define the
local intersection index (D1 · . . . ·Dn)P . Show that (D1 · . . . ·Dn)P = 1 if and
only if the local defining equations of the Di form a local coordinate system
in a neighborhood of P .

Definitions 11.5.

– In the latter setup one says that P is a normal crossing singularity of the
reduced divisor D :=

∑n
i=1Di.

– A reduced divisor D =
∑

iDi is called a simple normal crossing divisor (an
SNC divisor, for short) if all the components Di are smooth and D has only
normal crossing singularities.

Definitions 11.6 (Numerical equivalence). Let X be a smooth projective variety.
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– Two divisors D1 and D2 on X are called numerically equivalent (denoted D1 ≡ D2)
if for any curve C on X one has D1 · C = D2 · C.

– The classes of numerically equivalent divisors on X form an Abelian group called the
Neron-Severi group of X and denoted by NS(X). Due to the Neron-Severi Theorem,
this group is a lattice, that is, a finitely generated free Abelian group.

Exercise 11.7. Verify that two linearly equivalent divisors are numerically equiva-
lent.

12. Linear systems

In this section we let X be a projective or affine normal variety and D =
∑

i niDi

be a divisor on X.

Definitions 12.1.

– The complete linear system of (effective) divisors |D| associated with D is the
set of all effective divisors D′ on X linearly equivalent to D: D′ ∼ D.

– The Riemann–Roch space L(D) associated to D is

L(D) = {f ∈ k(X) |D + div f ≥ 0} ∪ {0} ⊂ k(X) .

It consists of all rational functions f on X such that
(1) f has no poles except possibly along Di if ni > 0 (order of pole up to ni),

and
(2) f must have zeros along Di if ni < 0 (order of zero at least −ni).

Exercise 12.2.

• Show that L(0) = O(X), and that L(D) is an O(X)-submodule of k(X).
• Let PV stands for the projective space associated to a vector space V . Show

that the correspondence f 7→ div(f) +D yields a surjection ϕ : PL(D)→ |D|,
which is a bijection if X is projective.
• Assume that D′ ∼ D. Show that there is a natural isomorphism of vector

spaces L(D) ∼= L(D′).
• Describe the complete linear system |2h|, where h ∼= P1 is a projective line in
P2. Find the dimension dim |2h|.

Theorem 12.3 (Cartan-Serre). For any normal projective variety X and any di-
visor D on X one has dimL(D) <∞.

Definitions 12.4.

– Fix a linear subspace V ⊂ L(D), and let PV be the projectivization of V .
The image L := ϕ(PV ) ⊂ |D| under the surjection ϕ : PL(D)→ |D| is called
a linear system on X. It is called a (linear) pencil if dimL = 1.

– The base locus BsV of a linear system L on X is the set

BsL = {x ∈ X |x ∈ suppD′ ∀D′ ∈ L} .
18



– A linear system L is base point free if BsL = ∅.
– A fixed component F of a linear system L is a prime divisor appearing in the

support of every D′ ∈ L (that is, the fixed components of L are the prime
divisors contained in the base locus BsL).

Theorem 12.5 (Bertini). A generic member of a linear system L on X is reduced,
irreducible, and smooth away from the base locus BsL.

Theorem 12.6 (Zariski). Let X be a smooth projective surface, and let D be an ef-
fective divisor on X. If the complete linear system |D| does not have fixed components,
then for m� 1 the complete linear system |mD| is base point free.

Remark 12.7. This theorem does not hold any longer in higher dimentions. Indeed,
Zariski ([13], [38]) contructed an example of a smooth projective threefold X and a
prime divisor D on X such that

– U := X \ suppD is affine;
– Bs |D| is a curve;
– Bs |mD| 6= ∅ ∀m ∈ N.

Exercises 12.8.

• Verify that the set of lines through a given point P ∈ P2 is a linear system of
projective dimension 1 with base locus {P} and without fixed components. Is
it complete?
• What can you say about the linear system of conics in P2 containing a given

line h?
• Show that the hyperplane sections of a projective variety X ⊂ Pn form a

base point free linear system of effective divisors on X. Show that a generic
member of this system is a smooth and reduced divisor on X provided that
X is normal.

13. Vector bundles

Definitions 13.1. Let X be an affine or projective variety.

– A vector bundle ξ of rank r over X is a data ((Ui)i, (ϕij)i,j), where (Ui)i is
an affine cover of X, that is, a cover of X by Zariski open affine subsets, and
the ϕij : Ui∩Uj → GL(r, k) are morphisms satisfying the conditions of a Čech
cocycle, that is., ϕji = ϕ−1

ij and ϕij ◦ ϕjk ◦ ϕki = 1 for all possible choices of
indices i, j, k.

– The total space of ξ is an abstract algebraic variety E obtained by gluing the
affine charts Ui×Ar and Ui×Ar over the intersections Ui∩Uj via isomorphisms

Φij : (Ui ∩ Uj)× Ar → (Uj ∩ Ui)× Ar, (x, v) 7→ (x, ϕij(x)(v)) .

– The isomorphisms Φij respect the first projections. Hence there is a surjective
morphism π : E → X such that for any x ∈ X the fiber π−1(x) carries a
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structure of a vector space isomorphic to Ar. Locally over Ui, π coincides
with the first projection of the direct product Ui × Ar → Ui.

– Given two vector bundles ξi = (πi : Ei → Xi), i = 1, 2, of the same rank r,
one says that ξ1 and ξ2 are isomorphic if there is a commutative diagram

E1

Φ
- E2

X1

π1

? ϕ
- X2

π2

?

where Φ and ϕ are biregular isomorphisms of algebraic varieties, and for each
x ∈ X1, the restriction Φ|π−1

1 (x) : π−1
1 (x) → π−1

2 (ϕ(x)) is an isomorphism of
vector spaces.

– A regular map s : X → E is called a regular section of ξ if π ◦ s = idX . If such
a section s is defined only in a Zariski open dense subset U ⊂ X, then it is
called a rational section of ξ. Locally in Ui a regular (resp., rational) section
is given by an r-vector of regular (resp., rational) functions on Ui. There is a
distinguished zero section passing through the origin in each fiber of π.

– A line bundle over X is a vector bundle of rank 1.
– A projective bundle over X or rank r is the projectivization of a vector bundle

over X of rank r + 1. Its fiber is isomorphic to Pr (see Exercise 14.2).

Exercises 13.2. Let X be a smooth variety. Define

• the tangent bundle T (X), its dual cotangent bundle T ∗(X), and the tensor
bundles T⊗k(X)⊗ T ∗⊗l(X);
• the direct (Whitney) sum ξ ⊕ η of two vector bundles ξ and η over X;
• the (tensor) inverse ξ−1 of a line bundle ξ on X (written usually as −ξ);
• the determinant of a rank r vector bundle ξ on X, that is, the top exterior

power det ξ = Λrξ. This is a line bundle;
• for a morphism ϕ : Y → X and a vector bundle ξ on X, the induced vector

bundle ϕ∗ξ on Y .

Show that

• the line bundles on X form an Abelian group with respect to the tensor
product (however, it is common to apply the additive notation in this group);
• the regular (resp., rational) sections of a vector bundle ξ on X form a vector

space denoted by H0(X,OX(ξ)); this is an O(X)-module.

Definition 13.3. The line bundle KX := detT ∗(X) on X is called the canonical bun-
dle, its inverse −KX the anticanonical bundle, and the tensor powers nKX := K⊗nX
(resp., −nKX := (−KX)⊗n), n > 0, the pluricanonical bundles (resp., plurianticanon-
ical bundles). It ϕ : X → X ′ is an isomorphism, then ϕ∗KX′ = KX . In particular,
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the pluri(anti)canonical bundles are invariant under the automorphisms of X. This
justifies the adjective ‘canonical’.

14. Line bundles and linear systems

Exercises 14.1. Let X be a projective variety and ξ be a line bundle over X. Show
that

• given a nonzero rational section s of ξ, D(s) = div0 s− div∞ s ∈ CDivX is a
well defined Cartier divisor (called the divisor of s);
• D(s) is effective if and only if s is a regular section of ξ;
• for any two nonzero rational sections s1, s2 of ξ, the ratio s1/s2 is a well

defined rational function on X, and the divisors D(s1) and D(s2) are linearly
equivalent;
• for any Cartier divisor D′ ∼ D(s) on X there exists a rational section s′ of ξ

such that D′ = D(s′);
• for any nonzero effective divisor D′ ∈ |D(s)| there exists a nonzero regular

section s′ of ξ such that D′ = D(s′);
• for any Cartier divisor D ∈ CDiv(X) there exists a line bundle ξ and a rational

section s of ξ such that D = D(s);
• D is a principal divisor if and only if ξ is trivial;
• the divisor −D corresponds to a rational section of the inverse line bundle
ξ−1;
• if D1, D2 ∈ CDivX are Cartier divisors and ξ1, ξ2 the corresponding line

bundles on X, then D1 ∼ D2 if and only if the line bundles ξ1 and ξ2 are
equivalent;
• the divisor D1 + D2 is the divisor D(s) of a rational section s of the tensor

product ξ1 ⊗ ξ2.

Deduce that

• the group of equivalence classes of line bundles on X with the tensor product
is isomorphic to the Picard group PicX;
• given a nonzero rational section s of ξ, there is an isomorphism of vector

spaces L(D(s)) ∼= H0(X,OX(ξ)) (both of them are finite-dimensional due to
the Cartan-Serre Theorem).

Exercises 14.2. Let X be a projective variety.

• Given a vector bundle ξ = (π : V → X) of rank r+1, define its projectivization
PV → X as an algebraic fiber bundle with a general fiber Pr.
• Show that PE ∼= P(E ⊗ η) for any vector bundle E on X and any line bundle
η on X.
• Establish a one-to-one correspondence between the members of the complete

linear system |D(s)| and the points of the projectivization PH0(X,OX(ξ)).
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• Show that any line bundle over Pn is a tensor power of the tautological line
bundle O(−1). The latter bundle is the dual of the Serre twisting line bundle
O(1).
• Show that: each point of Pn corresponds to a copy of the punctured line A1

∗,
and these copies of A1

∗ can be assembled into a A1
∗-bundle over Pn so that, by

adjoining a point to each fiber, we get the tautological line bundle on Pn.

Theorem 14.3 (Grothendieck). Any vector bundle ξ over P1 is a direct sum of
line bundles:

ξ = OP1(n1)⊕ . . .⊕OP1(nr) ,

where ni ∈ Z and r = rk ξ.

Exercises 14.4. Show that

• any projective bundle with 1-dimensional fibers over P1 is isomorphic to the
projection of a Hirzebruch surface Fn for some n ≥ 0, that is, the projectiviza-
tion

πn : Fn = P(OP1 ⊕OP1(n))→ P1 ;

• the summands OP1 and OP1(n) give rise to the sections s0 and s∞ of πn : Fn →
P1, respectively, where s2

0 = n, s2
∞ = −n, and s0 · s∞ = 0 on Fn.

15. Rational maps

Definitions 15.1. Let X be an affine variety.

– A rational map F : X 99K Am is an m-vector of rational functions F =
(f1, . . . , fm), where fi ∈ k(X).

– The domain domF of F is the maximal Zariski open subset in X, where all
the fi are regular.

– A rational map F : X 99K Y , where Y ⊂ Am is an affine variety, is a rational
map F : X 99K Am such that F (domF ) ⊂ Y .

– A rational map F : X 99K Pm is given by x 7→ (f0(x) : · · · : fm(x)), where
fi ∈ k(X) are not all zero; the vector-function (f0, . . . , fn) is defined up to a
nonzero common factor f ∈ k(X)∗.

– Such a map F is called regular at a point x ∈ X if for a suitable f ∈ k(X)∗

the functions f · fi are regular at x for all i = 0, . . . ,m and not vanishing
simultaneously in a neighborhood of x.

– The domain domF is the Zariski open set of all points x ∈ X, where F is
regular.

– A rational map F : X 99K Y , where Y ⊂ Pm is a projective variety, is a
rational map F : X 99K Pm such that F (domF ) ⊂ Y .

– One call Y the image of X if Y coincides with the Zariski closure of F (domF ).

Definitions 15.2. Let X ⊂ Pn be a projective variety, and let (Uj)j be an affine
cover of X.
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– A rational map F : X 99K Y , where Y ⊂ Pm is a projective variety, is a
collection of rational maps Fj : Uj 99K Y such that Fi|Ui∩Uj

= Fj|Ui∩Uj
∀i, j.

– The domain domF ⊂ X is the union
⋃
j domFj, and the image of F is the

image of F |Ui
for any i.

– A rational map F : X 99K Y which is generically one-to-one is called birational.
– A projective or affine variety birational to some Pn is called rational.

Exercises 15.3. Let F : X 99K Y be a rational map between normal projective
varieties X ⊂ Pn and Y ⊂ Pm. Show that

• the indeterminacy set I(F ) := X \ domF is a Zariski closed subset of codi-
mension at least 2 in X;
• any rational map from a smooth curve is regular;
• any birational map between smooth projective curves is an isomorphism;
• any smooth rational projective curve is isomorphic to P1;
• the map F : X 99K Y extends to a rational map F̃ : Pn 99K Pm;
• any rational map Φ: Pn 99K Pm can be given by x 7→ (ϕ0(x) : · · · : ϕm(x)),

where ϕi are homogeneous forms in n + 1 variables of the same degree and
without a common factor of positive degree;
• the indeterminacy set I(Φ) is the set of common zeros of the forms φi, i =

0, . . . ,m;
• F : X 99K Y is birational if and only if it induces an isomorphism of rational

function fields F ∗ : k(Y )
∼=−→ k(X);

• birationally equivalent varieties are of the same dimension;
• the birational transformations X 99K X form a group (denoted BirX) iso-

morphic to the group of field automorphisms Autk k(X);
• any smooth quadric hypersurface in Pn+1 is a rational variety.

The indeterminacies of rational maps can be resolved in the following manner.

Theorem 15.4 (Hironaka). Let X and Y be smooth projective varieties, and F : X 99K
Y be a birational map. Then F fits in a commutative diagram

(4)

W

	�
�
�
�
�

g
@
@
@
@
@

f

R

X F > Y
where W is a smooth projective variety and f and g are birational morphisms.

16. Rational maps vs line bundles vs linear systems

Definition 16.1 (Rational map associated with a linear system). Let X be a
projective variety, and let L be a linear system of effective divisors on X without fixed
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components. One may interpret L as a subspace of the vector space H0(X,OX(ξ))
of regular sections of a suitable line bundle ξ = (π : E → X) on X. Fix an affine
coordinate in the fiber π−1(x) ∼= A1 over a point x ∈ X. The evaluation evalx : s 7→
s(x) defines a linear form L → A1, that is, an element of the dual vector space L∗.
The affine coordinate in the fiber π−1(x) is defined uniquely up to a nonzero factor.
Hence the image of evalx in the projectivization PL∗ does not depend on the choice
of an affine coordinate in π−1(x). This gives a well defined map ΦL : X \BsL→ PL∗,
x 7→ [evalx]. Indeed, the base point locus BsL coincides with the set of common zeros
of the sections in L.

Exercises 16.2.

• Verify that ΦL extends to a rational map X 99K PL∗ such that dom ΦL =
X \ BsL.
• Choosing a basis s0, . . . , sm of L one may identify the dual projective space
PL∗ with Pm. Using this identification, obtain a presentation

ΦL : x 7→ (s0(x) : · · · : sm(x)) .

• Given a rational map Φ: X 99K Pm, show that Φ = ΦL, where L = Φ∗OΦ(X)(1)
is induced by the linear system of hyperplane sections of the image of X.
• Show that ΦL : X 99K Pm is a morphism if and only if the linear system L is

base point free: BsL = ∅.
• Let Y = Φ(X \ BsL) ⊂ Pm (the Zariski closure) be the image of X. Consider

the diagram (4). Explain the meaning of the expression ”g : W → X is a
resolution of the base point set BsL”.
• Establish the bijections

{linear systems on X of projective dimension m without fixed components}
←→ {Riemann-Roch spaces on X of dimension m+ 1}

←→ {rational maps X 99K Pm modulo projective linear transformations} .

17. Linear normality

Definition 17.1. Given a projective variety X ⊂ Pn, one says that X is linearly
normal if the linear system of hyperplane sections |H|X | on X is complete, where
H ⊂ Pn is a hyperplane. In other words, X is linearly normal if the natural embedding
X ↪→ Pn coincides with an embedding Φ|D| produced by a base point free complete
linear system |D| on X.

Example 17.2. A rational normal curve Γn in Pn is the image of the embedding

Φ|nP | : P1 ↪→ Pn, (u : v) 7→ (un : un−1v : · · · : vn) ,

where P ∈ P1 is a point. Clearly, Γn is linearly normal.

Exercises 17.3. Show that
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• deg Γn = n;
• any linearly non-degenerate curve of degree n in Pn can be obtained from Γn

by a projective linear transformation;
• any linearly non-degenerate rational curve C of degree n in Pn−k, where k > 0,

is the image of Γn under the projection π : Pn 99K Pn−k with center in a linear
subspace E ⊂ Pn of dimension k − 1 disjoint with Γn, so that π|Γn : Γn → C
is a birational morphism;
• any linearly non-degenerate projective variety X ⊂ Pn, which is not linearly

normal, can be obtained as the image of a linearly normal and linearly non-
degenerate one Y ⊂ Pn+k, where k > 0, under the projection π : Pn+k 99K Pn
with center in a linear subspace E ⊂ Pn+k of dimension k− 1 disjoint with Y ,
so that π|Y : Y → X is a birational morphism.
• The Veronese surface is the image of the Veronese embedding v2 : P2 ↪→ P5

given by the complete linear system |2h|, where h ⊂ P2 is a line. Show that
there exists a projection π : P5 99K P4 from a point P /∈ V2 such that the
image π(V2) ⊂ P4 (called a Steiner surface) is isomorphic to P2. Hint : An
embedding of P2 onto a Steiner surface in P4 can be given via

(x : y : z) 7→ (x2 : y2 : z2 : y(x− z) : z(x− y)) .

(Note that, up to projective linear transformations, the Steiner surface is the
only Severi variety of dimension 2, that is, the only linearly nondegenerate
smooth projective surface embedded in a projective space by a non-complete
linear system.)

Definition 17.4. A projective variety X ⊂ Pn is called projectively normal if the

affine cone X̂ ⊂ An+1 over X is a normal affine variety.

Proposition 17.5. A projective variety X ⊂ Pn is projectively normal if and only if
for any d ≥ 1 the restriction |OX(d)| to X of the complete linear system |dH| on Pn,
where H ⊂ Pn is a hyperplane, is a complete linear system on X.

Definition 17.6. Let X be a smooth projective variety, and K = KX ∈ PicX
be the canonical divisor class of X. The rational map Φ|nK| : X 99K PN(n), where
N(n) := dim |nK| > 0, is called

– canonical if n = 1;
– pluricanonical if n > 1;
– anticanonical if n = −1;
– plurianticanonical if n < −1.

Exercise 17.7. Provide examples in all four cases.

18. Contractions and blowups

Definitions 18.1. Let X and Y be projective varieties, and let E ( X, Z ( Y be
Zariski closed subsets.
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– Given a morphism σ : X → Y , we say that σ is a contraction of E to Z if
1) σ|X\E : X \ E → Y \ Z is an isomorphism;
2) σ(E) = Z;
3) for each irreducible component Ei of E there is an irreducible component

Zj(i) of Z such that σ(Ei) = Zj(i) and dimZj(i) < dimEi.
– E is called the exceptional set of σ.
– For any subvariety V ⊂ Y not contained in Z, the proper (or strict) transform
V ′ of V in X is the Zariski closure in X of the preimage σ−1(V \ Z).

Exercises 18.2.

• Let σ : X → Y be a contraction with exceptional set E. Establish the equality
E = σ−1(Z). Show that any irreducible component Zj of Z = σ(E) has
codimension at least 2 in Y .
• Show that any birational morphism of normal projective varieties over C is a

contraction. Hint : apply the Zariski Main Theorem.
• Give an example of a birational morphism of projective varieties (resp., of

smooth affine varieties) which is not a contraction.

Theorem 18.3 (Castelnuovo). Let X be a smooth (abstract) algebraic surface, and
let E be a smooth projective curve in X. There exists a contraction σ : X → Y with
exceptional curve E, where Y is a smooth algebraic surface, if and only if E is a
(−1)-curve, that is, E ∼= P1 and E2 = −1.

Definition 18.4. The inverse of the contraction σ : X → Y of a (−1)-curve E on X
is called the blowup of the point P = σ(E) ∈ Y , and σ is called the blowdown of E.

Exercises 18.5. Let k = C. Let Y be a smooth algebraic surface, σ : X → Y be the
blowup of a point P ∈ Y with exceptional curve E, and U be a classical neighborhood
of P in Y with analytic coordinates (x, y) centered at P .

• Consider the surface S ⊂ U ×P1 given by equation vx−uy = 0, where (u : v)
are homogeneous coordinates in P1. Verify that S is the closure in U × P1 of
the graph of the meromorphic function f(x, y) = x/y on U .
• Consider the restriction π : S → U to S of the natural projection U×P1 → U .

Show that C = π−1(0, 0) ⊂ S is a (−1)-curve on S. Hint : replace U by A2

and S by the blowup of A2 at a point. Apply the Castelnuovo Theorem.

• Verify that there is an isomorphism Φ: S
∼=−→ σ−1(U) such that Φ(C) = E.

• Let C1 and C2 be two curves on Y , and let C ′1 and C ′2 be their proper trans-
forms in X. Show that C ′1 · C ′2 = C1 · C2 −m1m2, where mi = multP Ci.
• Deduce that for any curve C on Y such that P is a point of multiplicity m of
C one has (C ′)2 = C2 −m2.

Assuming that Y is a smooth projective surface, show that

• X is a smooth projective surface too;
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• if H is a hyperplane section of X ⊂ Pn and D := H +mE, where m := H ·E,
then the complete linear system |D| is base point free, and the morphism
ϕ|D| : X → PN contracts the curve E to a point. (In fact, after replacing H
by lH with l � 1, the image ϕ|D|(X) is isomorphic to Y , so that ϕ|D| = σ
under this isomorphism);
• σ∗KY = KX − E;
• σ∗C = C ′ +mE for any curve C on Y , where m = multP C;

the following projection formulas hold:
• σ∗D1 · σ∗D2 = D1 ·D2 for any D1, D2 ∈ PicY ;
• σ∗D · E = 0 for any D ∈ PicY ;
• σ∗D1 ·D2 = D1 ·σ∗D2 for any D1 ∈ PicY , D2 ∈ PicX, where the pushforward
σ∗D is defined as folllows.

Definition 18.6. Let ϕ : X → Y be a dominant morphism of projective varieties of
the same dimension. For a prime divisor D on X, we let

– ϕ∗(D) = 0 if dimϕ(D) < dimD, and
– ϕ∗(D) = rϕ(D) otherwise, where r is the degree of the finite map ϕ|D : D →
ϕ(D).

For a divisor D =
∑

i aiDi on X its pushforward is ϕ∗D =
∑

i aiϕ∗(Di).

Theorem 18.7 (Decomposition of birational maps of surfaces). Let X and Y
be smooth projective surfaces.

(a) Any birational morphism f : X → Y can be decomposed into a sequence of
blowdowns of (−1)-curves.

(b) Any birational map F : X 99K Y can be decomposed into a sequence of blowups
of points followed by a sequence of blowdowns of (−1)-curves. The first se-
quence yields the birational morphism g : W → X in diagram (4), and the
second the birational morphism f : W → Y in (4).

Exercises 18.8.

• Let σ : X → Y be the contraction of a (−1)-curve E on a smooth projective
surface X. Show that PicX ∼= PicY ⊕ 〈E〉. Deduce that if PicY is a lattice
of finite rank, then PicX is as well, and rk PicX = rk PicY + 1.
• Show that C2 ≥ 0 for any curve C on P1 × P1.
• Let F1 be the surface obtained as a result of a blowup of a point in P2. Show

that F1 6∼= P1 × P1, while the ranks of the corresponding Picard groups equal
2 for both surfaces.
• Let Y be a smooth projective surface. Given a reduced normal crossing divisor
D =

∑n
i=1 Di on Y , consider the symmetric matrix

M = M(D) = (Di ·Dj)i,j=1,...,n

of the bilinear intersection form on the lattice
⊕n

i=1 ZDi. Let σ : X → Y
be the blowup of a point P ∈ Y with the exceptional (−1)-curve E, and
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let D′ = σ−1(D) = E +
∑n

i=1D
′
i. Show that det(−M) = det(−M ′), where

M ′ = M(D′). Hint : apply a suitable change of a basis.

• Verify that the linear string D =
∑k

i=1Di of smooth rational curves on a
smooth projective surface with [D2

1, . . . , D
2
k] = [−2, . . . ,−2,−1] can be con-

tracted to a smooth point. Write the matrix M(D) and compute the deter-
minant det(−M).
• Assume that D =

∑
iDi can be contracted to a smooth point. Show that

det(−M(D)) = 1, andD is a tree of rational curves, or rational tree. The latter
means that D is an SNC (simple normal crossings) divisor, all components of
D are rational curves, and the dual graph ΓD is a tree, that is, a connected
graph without cycles. The dual graph ΓD of D is defined as follows: its vertices
are the irreducible components Di of D, and for i 6= j the segment [Di, Dj] is
an edge of ΓD if and only if Di ·Dj > 0.
• One defines the wighted dual graph ΓD by attributing to any vertex Di of ΓD

the integer D2
i . Show that if D can be contracted to a smooth point, then

there is no vertex of ΓD of weight −1 and of degree ≥ 3, where the degree of
a vertex is the number of incident edges.
• Deduce that, if D can be contracted to a smooth point, then this contraction

can start by contracting an arbitrary (−1)-component Di of D.

Remark 18.9. Let X be a complex manifold of dimension 2, and let E =
∑

iEi be a
compact connected analytic set in X such that any irreducible component Ei of E is a
curve. Due to a theorem of Grauert, there exists a contraction of E to a (singular, in
general) point of a complex analytic surface Y if and only if the intersection form on
H2(X,Z) is negative definite on the lattice span(Ei), that is, the bilinear form with
matrix M(E) is negative definite. However, for a smooth projective surface X and a
curve E on X which satisfies the Grauert criterion, the analytic surface resulted from
the contraction of E is not biholomorphically equivalent to any algebraic surface, in
general.

Definition 18.10. Let X be an affine variety, and let I ⊂ O(X) be an ideal generated
by nonzero regular functions f0, . . . , fr on X. The blowup BlIX of X with center I
is the Zariski closure in X × Pr of the graph Γ(ϕ) of the rational map

ϕ : X 99K Pr, x 7→ (f0(x) : · · · : fr(x))

together with the projection to the first factor σ : BlI X → X.

Exercises 18.11. Let X be an affine variety. Show that

• the blowup of a smooth point P ∈ X (see 18.4) is the blowup with center the
maximal ideal mP ⊂ O(X);
• σ : BlI X → X is a birational surjective morphism with connected projective

fibers, that is, any fiber of σ is a connected Zariski closed set in a projective
space.
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• Is it true that any birational surjective morphism X̃ → X with connected
projective fibers is a blowup with center an ideal I ⊂ O(X)?

Remarks 18.12.

1. Given a finitely generated graded k-domain R =
⊕

i≥0Ri, consider the set
ProjR of all homogeneous (or graded) prime ideals of R different from the
irrelevant (or augmentation) ideal I0 :=

⊕
i>0Ri ⊂ R. This set possesses a

natural structure of an abstract algebraic variety. The subdomain R0 ⊂ R is
finitely generated, hence X = SpecmR0 is an affine variety with O(X) = R0.
The algebra R is an R0-module; the embedding R0 ⊂ R defines a morphism
π : ProjR→ X with projective fibers.

2. Given an ideal I ⊂ O(X), the graded domain R := R0 ⊕
⊕

k>0 I
k, where

R0 := O(X), is called the Rees algebra of I. We have BlIX = ProjR. The
morphism π : ProjR → X induced by the inclusion R0 ↪→ R coincides with
the morphism of blowup σ : BlI X → X.

3. An analog of the construction ”blowup of an ideal” exists also in the context of
projective varieties. However, this needs introducing the language of schemes.
Such a blowup of a projective variety X restricts to each element of an affine
cover of X yielding the blowup of an ideal.

19. Resolution of singularities

Theorem 19.1 (Hironaka). (a) Given a projective variety Y , there exists a smooth
projective variety Y ′ and a birational morphism ϕ : Y ′ → Y (called a desingu-
larization of Y ) such that ϕ is an isomorphism over the smooth locus reg Y ,
that is,

(5) ϕ|ϕ−1(reg Y ) : ϕ−1(reg Y )
∼=−→ reg Y .

(b) Given a smooth projective variety X and a projective subvariety Y ⊂ X, there
exists a smooth projective variety W and a birational morphism ϕ : W → X
such that ϕ−1(Y ) ⊂ W is a divisor with simple normal crossings.

(c) If Y ⊂ X as in (b) is a hypersurface, then there is a unique irreducible com-
ponent Y ′ of the exceptional set ϕ−1(Y ) which dominates Y . The restriction
ϕ|Y ′ : Y ′ → Y is a desingularization satisfying (5) (in this case ϕ is called an
embedded desingularization, or embedded resolution of Y ).

(d) The morphism ϕ in (a) and (b) can be chosen to be a composition of blowups
with smooth reduced centers.

In the case of surfaces, we have the following facts.

Theorem 19.2 (Zariski). Any projective surface can be desingularized via a sequence
of transforms, which repeatedly alternates normalizations and blowups of maximal
ideals. The resulting smooth surface is again projective.
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Theorem 19.3 (Minimal resolution of surface singularities). Any normal pro-
jective surface Y admits a unique minimal resolution of singularities, that is, a bira-
tional morphism ϕ : X → Y such that

1) X is a smooth projective surface;
2) ϕ is an isomorphism over the regular locus reg Y ;
3) any other desingularization ϕ′ : X ′ → Y satisfying 1) and 2) admits a factor-

ization ϕ′ = σ ◦ ϕ, where σ : X ′ → X is a composition of blowups of points
over the exceptional locus of ϕ.

Example 19.4 (Embedded resolution of singularities of a curve ). Let X be
a smooth projective surface, and let C be a curve in X. The Hironaka resolution of
singularities of C consists in a sequence of blowups of X in the singular points of C
and their infinitely near points, that is, in points of the proper transforms of C on the
successive projective surfaces blown up starting with X. By the Hironaka Theorem,
after a finite number of steps this process terminates with an SNC divisor as the total
preimage of C; see [16, Ch. V, Theorem 3.9] for an elementary proof.

Exercise 19.5. Show that the singularity of the Neil parabola {y2 − x3 = 0} in A2

resolves after a single blowup at the origin, whereas an embedded resolution needs at
least 3 blowups over the origin.

20. Riemann-Roch Theorems and Serre Duality

Notation 20.1. For a divisor D on a variety X we let h0(D) := dimH0(X,OX(D)).

Definitions 20.2.

– Let C be a smooth projective curve, and let KC be the canonical divisor class
of C. The genus g = g(C) is defined by the formula

g := dimL(KC) = h0(KC) .

– The geometric genus g = g(C) of a projective curve C is the genus of the
normalization Cnorm. The genus of an affine curve C is the geometric genus
of the projective closure C̄ of C.

– A curve C of geometric genus 1 is called an elliptic curve.

Exercises 20.3.

• Show that the canonical divisor of the projective space Pn satisfies KPn ∼
−(n+ 1)H, where H ⊂ Pn is a hyperplane.
• Deduce that g(P1) = h0(KP1) = 0.
• Show that birationally equivalent curves share the same geometric genus, and
• the projective curves of geometric genus zero are exactly the rational projective

curves.
• Show that any smooth cubic in P2 is an elliptic curve, and any smooth pro-

jective elliptic curve is isomorphic to a smooth plane Weierstrass cubic (2).
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• (Riemann-Hurwitz Formula) Given a surjective morphism f : X → Y of
smooth projective curves X and Y , prove that

KX = f ∗(KY ) +Rf ,

where an effective divisor Rf on X (called the ramification divisor of f) is
defined as follows. For a point x ∈ X and the image y = f(x) ∈ Y one choses
local analytic coordinates z on X centered at x, resp., w on Y centered at
y such that f : z 7→ w = zν(x) near x. The integer ν(x) ≥ 1 is called the
ramification index of f at x. We let

Rf :=
∑
x∈X

(ν(x)− 1)x .

The sum is finite since ν(x) > 1 just in a finite set of branch points of f , which
are the critical points of f .
• Deduce the Riemann-Hurwitz inequality g(X) ≥ g(Y ). Show that if g(Y ) ≥

2, then the equality g(X) = g(Y ) forces f to be an isomorphism. Show
that the latter is not any longer true if g(Y ) ∈ {0, 1}. Hint : The Riemann-
Hurwitz inequality in case k = C is equivalent to the inequality e(X) ≤
e(Y ) for the topological Euler characteristics.3 Indeed, we have e(X) = 2 −
2g(X), and similarly for Y . The inequality e(X) ≤ e(Y ) can be checked using
the facts that the Euler characteristic is additive for disjoint partitions and
multiplicative for unramified topological coverings.

Remark 20.4.

Theorem 20.5 (The Riemann-Roch Formula for curves). Let C be a smooth
projective curve of genus g = g(C). For a divisor D on C of degree d one has

h0(D)− h0(KC −D) = d− g + 1 .

Exercise 20.6. Show that

• degKC = 2g − 2 and dim |KC | = g − 1;
• if d ≥ g then the linear system |D| is nonempty;
• for a divisor D on C of degree d ≥ 2g − 1 one has

h0(D) = d− g + 1 ;

• if g(C) = 1, i.e., if C is a smooth elliptic curve, then KC ∼ 0 and there is a
bijection between C and Pic0(C), where Pic0(C) := ker(deg : PicC → Z).

Remark 20.7. For a smooth projective curve C of genus g = g(C) ≥ 1, the Abelian
group Pic0(C) is isomorphic to the Jacobian JacC of C, which is an Abelian variety of
dimension g, that is, a smooth projective variety of dimension g equipped with a group
structure such that the group operations are morphisms. For k = C, topologically,
JacC is a real torus of dimension 2g(C). For an elliptic curve, JacC is a real 2-torus.

3Recall that the topological Euler characteristic is the alternating sum of Betti numbers.
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Theorem 20.8 (Adjunction formula). Let X be a smooth projective variety, D
be a smooth prime divisor in X, and KX and KD be the canonical divisors of X and
D, respectively. Then

KD = (KX +D)|D .
Consequently, for a smooth curve C of genus g(C) in a smooth projective surface X
one has

(6) (KX + C) · C = degKC = 2g(C)− 2 .

Exercises 20.9. Show that

• for a smooth curve C ⊂ P2 of degree d,

g(C) =
(d− 1)(d− 2)

2
;

• any smooth quartic C ⊂ P2 is a canonical curve, that is, the image of a
smooth projective curve under the canonical embedding. Hint : verify that
the canonical linear system on C is the system of hyperplane sections;
• vice versa, any canonical curve in P2 is a smooth quartic;
• if C ⊂ Pn is a smooth canonical curve of degree d and of genus g, then g ≥ 3,
d = 2g − 2, and n = g − 1;
• letting C be a smooth curve in P1 × P1 of type (bidegree) (a, b), where a =
C · ({pt} × P1) and b = C · (P1 × {pt}) for a point pt ∈ P1, one has

g(C) = (a− 1)(b− 1) .

Hint : show first that

KP1×P1 ∼ −2(P1 × {pt})− 2({pt} × P1) .

• Let X ⊂ P3 be a smooth surface of degree d.
– Show that KX ∼ (d − 4)h, where h is a hyperplane section of X. Hint :

use the Adjunction Formula;
– suppose X contains a line l. Show that l2 = 2− d on X. Hint : consider

a hyperplane section h of X passing through l;
– deduce that for d ≥ 3 there is at most finite number of lines in X. Hint :

show that a curve with negative selfintersection in X is not movable, that
is, is a unique curve in its class in N1(X);

– in particular, l2 = −1 for a line l in a smooth cubic surface in P3. How
many lines lie on such a cubic? Justify your answer.

Remark 20.10. A generic hypersurface of degree d in Pn

i) does not contain lines if d ≥ 2n− 2;
ii) contains a finite number N(n) of lines if d = 2n− 3;

iii) contains a family of lines if d < 2n− 3.
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Definition 20.11 (Arithmetic genus of a curve). Let X be a smooth projective
surface. For a divisor D on X the arithmetic genus pa(D) can be defined by the
formula

pa(D) :=
1

2
D(D +KX) + 1 .

Exercises 20.12. Let X be a smooth projective surface. Show that

• The arithmetic genus pa(D) depends only on the linear equivalence class of
D;
• deduce that for a projective curve C of degree d in P2,

pa(C) =
1

2
(d− 1)(d− 2) ;

• for a smooth curve C on X one has pa(C) = g(C). Hint : apply the Adjunction
Formula; see (6);
• birationally equivalent curves can have different arithmetic genera;
• for any divisors D,D1, D2 on X,

pa(−D) = D2−pa(D)+2, and pa(D1 +D2) = pa(D1)+pa(D2)+D1 ·D2−1 ;

• for a smooth projective curve C of genus g ≥ 0, letting ∆ ⊂ C × C be the
diagonal, one has ∆2 = 2− 2g;
• let C be a curve on X, and let P ∈ C be a point of multiplicity m on C. Let
σ : X ′ → C be the blowup of P in X with exceptional (−1)-curve E, and let
C ′ be the proper transform of C in X ′. Then

KX′ = σ∗KX − E, σ∗(C) = C ′ +mE, and pa(C
′) = pa(C)− 1

2
m(m− 1) ;

• furthermore,

g(C) = pa(C)− 1

2

∑
i

mi(mi − 1) ,

the summation over all infinitely near singular points of C, that is, the singular
points of C and of all its proper transforms on the intermediate surfaces in
the resolution of singularities of C;
• deduce that pa(C) ≥ 0, and pa(C) = 0 if and only if C ∼= P1;
• (Genus Formula) for a curve C ⊂ P2, deduce the classical formula:

g(C) =
1

2
(d− 1)(d− 2)− 1

2

∑
i

mi(mi − 1) .

Theorem 20.13 (The Riemann-Roch Formula for surfaces). Let X be a smooth
projective surface over C, and let K = KX be the canonical divisor class of X. For a
divisor D on X one has

(7) h0(D) + h0(K −D) =
1

2
D(D −K) +

1

12
(K2 + e(X)) + s(D) ,
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where e(X) stands for the topological Euler characteristic of X, and

s(D) := dimH1(X,OX(D)) ≥ 0 .

Exercise 20.14. Show that if D2 > 0 then either h0(nD) > 0 or h0(−nD) > 0 for
n� 0, and exactly one of the linear systems |nD| and | − nD| is nonempty.

Remark 20.15 (Holomorphic Euler characteristic). The Riemann-Roch For-
mula (7) goes back to the 19th century. In the 20th century it was rewritten in a
more elegant way, using the language of sheaves and sheaf cohomology:

(8) χ(OX(D))− χ(OX) =
1

2
D(D −KX) ,

where OX , resp., OX(D) stands for the sheaves of germs of regular functions on
X, resp., of germs of regular sections of the line bundle associated with D. For a
sheaf F on X, the integer χ(F) :=

∑
i≥0(−1)ihi(F) is called the holomorphic Euler

characteristic of F , where hi(F) := dimH i(X,F). There are analogs of (8) in all
dimensions; these are the celebrated Hirzebruch-Riemann-Roch and Grothendieck-
Riemann-Roch Formulas.

The arithmetic genus is defined for an arbitrary projective variety X as

pa(X) = χ(OX)− 1 .

For a smooth projective surface X over C, the arithmetic genus can be expressed via
the Noether Formula

pa(X) =
1

12
(K2

X + e(X))− 1 ,

where the right hand side represents the Todd genus. The latter participates in (7).
Another important ingredient that relates (7) and (8) is the Serre Duality :

hi(D) = hn−i(KX −D), i = 0, . . . , n,

for any smooth projective variety X of dimension n and any divisor D on X. For a
smooth projective curve C (surface X, respectively) this yields the equality h1(D) =
h0(KC −D) (h2(D) = h0(KX −D), respectively).

21. Ample divisors and ample cone

Definitions 21.1 (Ample divisors). Let X be a projective variety.

– A divisor D on X is said to be very ample if the rational map Φ|D| : X 99K Pn
defined by the complete linear system |D| on X is a regular embedding.

– A divisor D is said to be ample if mD is very ample for some m ∈ N.
– A polarized variety is a projective variety equipped with a (very) ample divisor

called a polarization.

Exercises 21.2. Show that
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• a divisor D on X is very ample if and only if D = ϕ∗H for a projective
embedding ϕ : X ↪→ Pn and a hyperplane H ⊂ Pn;
• if D is a very ample divisor on X, then D is Cartier and the complete linear

system |D| on X is base point free;
• a divisor D on a smooth projective curve X is very ample if and only if for

any points P,Q ∈ X,

dim |D − P −Q| = dim |D| − 2 ,

and ample if and only if degD > 0;
• any projective curve C ⊂ P2 represents a very ample (prime) divisor on P2;
• any Cartier divisor on X is a difference of two very ample divisors;
• D2 > 0 for any ample divisor D on a smooth projective surface X.

Due to the following theorem, ampleness is an invariant of the numerical equiva-
lence.

Theorem 21.3 (Nakai-Moishezon Criterion). A divisor D on a smooth projective
surface X is ample if and only if D2 > 0 and D · C > 0 for any projective curve C
on X.

Exercise 21.4. Let X be a projective variety, and let D be an ample effective divisor
on X. Show that the Zariski open set U = X \ suppD is affine.

For smooth surfaces, the converse is also true; see [13] or [15, Ch. 2, §2].

Theorem 21.5 (Goodman). Let X be a smooth projective surface, and let U ⊂ X
be a Zariski open affine subset in X. Then there exists an ample effective divisor D
on X such that U = X \ suppD.

Remark 21.6. Zariski’s example (see Remark 12.7) shows that this theorem does
not hold any longer in dimension 3 and higher.

Useful applications of ampleness to the Riemann-Roch Formula go through van-
ishing theorems, that ensure vanishing of the term s(D) = h1(D) in (7). The first
vanishing theorems for surfaces are as follows.

Theorem 21.7. Let X be a smooth projective surface, and D be a divisor on X.

a) (Kodaira Vanishing Theorem) If D is ample then

h1(KX +D) = h1(−D) = 0 .

b) (Ramanujam Vanishing Theorem) The same conclusions hold if D is nef
and D2 > 0 (see 21.14 for the notion of a nef divisor).

Definitions 21.8 (Q-divisors). Let X be a normal projective variety.

– A Q-divisor D =
∑

i riDi onX is a formal linear combination of prime divisors
Di with rational coefficients ri ∈ Q.

35



A Q-divisor D =
∑

i riDi is called

– effective if ri ≥ 0 ∀i;
– Q-Cartier if mD is Cartier for some m ∈ N.

– X is called Q-factorial if every Q-divisor on X is Q-Cartier.

Definitions 21.9 (Neron-Severi vector space). Let again X be a normal projec-
tive variety.

– Let Z1(X) be the group of 1-cycles on X, i.e., the free Abelian group generated
by the curves in X. Two 1-cycles C1, C2 are said to be numerically equivalent
(written C1 ≡ C2) if L · C1 = L · C2 for any L ∈ PicX.

– Define

N1(X) = (PicX/ ≡)⊗ R and N1(X) = (Z1(X)/ ≡)⊗ R .

Then N1(X) (called the Neron-Severi vector space) and N1(X) are dual fi-
nite dimensional R-vector spaces with respect to the non-degenerate pairing
induced by

PicX × Z1(X)→ Z, (L,C) 7→ L · C := degC(L|C) .

The integer ρ(X) := dimRN
1(X) is called the Picard number of X.

Theorem 21.10 (Hodge Index Theorem). Let X be a smooth projective surface,
H be an ample divisor on X, and D be a divisor on X. Then H · D = 0 implies
D2 ≤ 0. Moreover, if D2 = 0 then D ≡ 0.

Exercise 21.11. • Deduce that the intersection pairing on N1(X) is a nonde-
generate symmetric bilinear form of signature

(+1,−(ρ(X)− 1)) ,

where the positive part corresponds, e.g., to the one-dimensional subspace
〈H〉 ⊂ N1(X) with H being a hyperplane section of X.
• Show that for generic elliptic curves E1 and E2 we have ρ(E1×E2) = 2. Give

an example of two elliptic curves E1 and E2 such that ρ(E1 × E2) > 2.

Definition 21.12. One says that a surface X ⊂ P3 of degree d is very generic if
its vector of coefficients is chosen outside a certain countable union of proper Zariski
closed subsets in the affine space of the corresponding dimension N(d).

Theorem 21.13 (Noether-Lefschetz). Let X be a very generic surface in P3 of
degree d ≥ 4. Then ρ(X) = 1, and N1(X) is generated by the class of a hyperplane
section of X.

Definitions 21.14 (Mori cones). Let X be a smooth projective surface.
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– We let NE(X) ⊂ N1(X) be the cone of effective 1-cycles, that is,

NE(X) = {C =
∑
i

riCi ∈ N1(X) | ri ∈ R≥0} ,

where Ci are curves.
– The Kleiman-Mori cone of X is the closure NE(X) of NE(X) in the classical

topology on N1(X).
– A Q-divisor D on X is called pseudoeffective if the class of D (considered as

a 1-cycle on X) in N1(X) belongs to the cone NE(X).

– We use the following notation: NE(X)H≥0 := NE(X)∩H≥0, and similarly for
> 0,≤ 0, < 0.

– An element H ∈ N1(X) is called numerically effective or nef if H ·C ≥ 0 for

any curve C on X, in other words, if NE(X)H≥0 = NE(X).

– The set of all classes of nef divisors in N1(X) form a closed convex cone called

the nef cone. This is the dual cone of the Kleiman-Mori cone NE(X).
– The ample cone is the convex cone in N1(X) generated (over R) by the classes

of ample divisors on X.

The following theorem is due to Zariski for effective divisors, and to Fujita [10] in
the general case.

Theorem 21.15 (Zariski Decomposition for surfaces). Let X be a smooth pro-
jective surface. Any pseudoeffective Q-divisor D on X admits a unique Zariski de-
composition D = H +N , where

i) H and N are Q-divisors on X;
ii) H is nef and N =

∑
i aiEi is effective, where ai ∈ Q;

iii) either N = 0 or the symmetric matrix M(N) = (Ei ·Ej)i,j is negative definite;
iv) H · Ei = 0 ∀i.

Theorem 21.16 (Kleiman Amplness Criterion). Let X be a smooth projective

variety. A divisor D ∈ PicX is ample if and only if D·C > 0 for all C ∈ NE(X)\{0}.

Definition 21.17 (Extremal rays). Let V ⊂ Rn be a closed convex cone. A ray
r ⊂ R is a one-dimensional closed subcone. The ray r is called extremal if

(u, v ∈ V &u+ v ∈ r)⇒ (u, v ∈ r) .

Exercises 21.18. Show that

• any closed convex cone in Rn is the convex hall of its extremal rays;
• the Kleiman-Mori cone NE(X) does not contain any line;

• if ρ(X) = 2, that is, N1(X) ∼= R2, then the cone NE(X) has exactly two
extremal rays with angle < π inside the cone;
• a Cartier divisor D on X is ample (nef) if and only if it takes positive (resp.,

non-negative) values on any extremal ray of the cone NE(X);
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• deduce the following corollary.

Corollary 21.19. The cone of ample divisors in N1(X) is the interior of the nef
cone.

Exercises 21.20. Let X be a smooth projective surface. Show that

• if z ∈ N1(X) is such that z2 > 0 and z ·H > 0 for an ample divisor H on X

then z is an interior point of the cone NE(X);
• let C be a curve in X. If C2 ≤ 0 then the class [C] ∈ N1(X) belongs to the

boundary of NE(X), and if C2 < 0 then [C] lies on an extremal ray;

• for an extremal ray R of the cone NE(X) the following conditions are equiv-
alent:

i) R2 < 0;
ii) R · C < 0 for a curve C in X;

iii) R2 < 0 and R contains the class of a curve in X;

• if there is an extremal ray R ⊂ NE(X) such that R2 > 0, then ρ(X) = 1;
• if R is KX-negative, that is, KX ·R < 0, then one of the following holds:

i) R2 < 0 and R = R≥0[C] for a (−1)-curve C in X;
ii) R2 = 0 and X admits a ruling with the class f of a general fiber sitting

in R;
iii) R2 > 0, ρ(X) = 1, and −KX is ample, hence X ∼= P2.

22. Minimal Model Program for surfaces

Theorem 22.1 (Mori Cone Theorem for surfaces). Let X be a smooth projective
surface. Then

NE(X) = NE(X)KX≥0 +
∑
i

Ri ,

where Ri are the extremal rays of NE(X) contained in NE(X)KX<0. Moreover, for
any ample divisor H and any ε > 0 there are only finitely many extremal rays Ri

such that (KX + εH) ·Ri ≤ 0.

Remark 22.2. The theorem can be interpreted as follows. Consider the linear form
on N1(X) defined by the canonical divisor KX . Then the part of the Kleiman-Mori

cone NE(X) which sits in the negative halfspace defined by KX (if not empty) is
locally polyhedral and is spanned by a countable set of extremal rays Ri. Moreover,
moving an ε away from the hyperplane {C ∈ N1(X) |KX · C = 0} ⊂ N1(X) in the
KX-negative direction, the number of extremal rays becomes finite.

Proposition 22.3 (Supporting nef divisor). For any extremal ray R ⊂ NE(X)
with KX · R < 0 there exists a nef divisor H on X such that Hz = 0 if and only if
z ∈ R.

38



Definition 22.4. Let R be an extremal ray of NE(X). The extremal contraction
associated to R is a projective morphism ϕ : X → W onto a normal projective variety
Z such that

i) for any irreducible curve C ⊂ X, ϕ(C) is a point if and only if C ∈ R;
ii) ϕ has connected fibers;
iii) for some ample Cartier divisor A on Z, H = ϕ∗(A) ∈ DivX is a supporting

nef divisor for R.

Theorem 22.5 (Contraction theorem). Let X be a smooth projective surface. For

any extremal ray R of NE(X) in the halfspace N1(X)KX<0 there exists the associated
extremal contraction ϕR : X → Z. Moreover, ϕR is one of the following types:

(1) Z is a smooth surface and ϕR : X → Z is the blowdown of a (−1)-curve in X,
so that ρ(Z) = ρ(X)− 1 for the Picard numbers;

(2) Z is a smooth curve and ϕR : X → Z is a minimal ruled surface over Z (with
Picard number ρ(X) = 2), that is, the projection PV → Z of the projectiviza-
tion of a rank 2 vector bundle V → Z;

(3) Z is a point, ρ(X) = 1, and −KX is ample; in this case X ∼= P2.

Definitions 22.6. A smooth projective variety X is called

– a Fano variety if the anticanonical divisor −KX is ample;
– a del Pezzo surface if X is Fano of dimension 2;
– ruled if there is a surjective morphism X → Z with a general fiber P1;
– uniruled if X is covered by rational curves;
– a minimal model if the canonical divisor KX is nef;

– a minimal surface if dimX = 2 and X does not contain any (−1)-curve.

Exercise 22.7. Show that a smooth cubic surface in P3 and a smooth intersection
of two smooth quadric hypersurfaces in P4 are del Pezzo surfaces.

22.8 (Minimal Model Conjecture). It suggests the following dichotomy:

Any projective variety is either uniruled or birationally equivalent to a minimal model.

The uniruledness can be detected numerically as follows.

Theorem 22.9 (Mori-Miyaoka). Let X be a smooth projective variety. If X con-
tains a Zariski open set U such that through any point x ∈ U passes a curve C in X
with KX · C < 0, then X is uniruled.

Exercises 22.10.

• Confirm the Minimal Model Conjecture for curves. Hint : replace any projec-
tive curve by its normalization, and then show that the canonical divisor is
nef unless the curve is rational (it is zero for an elliptic curve, and ample for
a curve of genus ≥ 2).
• Let X be a smooth projective surface. Show that
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– X is a minimal model if and only if NE(X) = NE(X)KX≥0, if and only if

the Kleiman-Mori cone NE(X) has no KX-negative extremal ray;
– if X is a minimal model, than X is minimal, that is, it contains no (−1)-

curve. Is the converse also true? Hint : verify, and then use, the following
characterization: a curve C on X is a (−1)-curve if and only if C2 < 0
and KX · C < 0.

It is common to use the abbreviation MMP for the Minimal Model Program.

Theorem 22.11 (MMP for surfaces). Let X be a smooth projective surface. After
finitely many blowdowns of (−1)-curves,

X = Xn → Xn−1 → · · · → X0 ,

one reaches a smooth surface X0 satisfying one of the following:

1) KX0 is nef, that is, X0 is a minimal model;
2) X0 is a minimal ruled surface;
3) X0

∼= P2.

Remark 22.12. The MMP for surfaces consists in performing a sequence of extremal
contractions, that is, contractions of KX-negative extremal rays, in order to make the
KX-negative part of the Kleiman-Mori cone as small as possible. The extremal con-
tractions of (−1)-curves are contractions of divisorial type, or divisorial contractions.
Such a contraction σ : X → Y is a birational morphism onto a variety of the same
dimension, which contracts a prime divisor E in X to a subvariety σ(E) of Y of
codimension at least 2, and so, decreases the Picard number by 1. An extremal con-
traction X → Y , where dimY < dimX, is called a Mori fiber space. In particular,
case 1) of Contraction Theorem 22.5 represents a divisorial contraction, while cases
2) and 3) represent Mori fiber spaces with an extremal contraction to a curve, resp.,
to a point. Theorem 22.11 can be translated in this language as follows.

Corollary 22.13. Running the MMP for a smooth projective surface, after a finite
number of extremal divisorial contractions one arrives either at a minimal model, or
at a Mori fiber space.

Exercises 22.14. Let X be a smooth projective surface. Show that

• if X is uniruled, then it is not birationally equivalent to a minimal model, and
either X ∼= P2, or X is ruled;
• the Minimal Model Conjecture holds for projective surfaces;
• if X is rational, then X is uniruled and birationally dominates either P2 or a

Hirzebruch surface Fn with n 6= 1 (see 14.4).

The following two theorems provide useful supplements to Theorem 22.11.

Theorem 22.15. a) Two smooth projective surfaces which are minimal models
are birationally equivalent if and only if they are isomorphic.
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b) A ruled surface does not admit any minimal model, and is birationally equiva-
lent to a countable number of pairwise non-isomorphic minimal smooth ruled
surfaces.

Theorem 22.16 (Abundance Theorem for surfaces). Let X be a smooth pro-
jective surface. If X is a minimal model, then the linear system |mKX | is base point
free for a sufficiently large m ∈ N.

One can deduce from Theorem 22.11 the following classical results (see [1]).

Theorem 22.17. Let X be a smooth projective surface.

(Lüroth Theorem for surfaces) If X admits a dominant morphism ϕ : P2 →
X, then X is a rational surface.
(Castelnuovo rationality criterion) X is rational if and only if h1(OX) =
h0(2KX) = 0.
(Noether theorem on the Cremona group) Any birational automorphism
of P2 is composed of linear transformations and the quadratic transformation
(x0 : x1 : x2) 7→ (x1x2 : x0x2 : x0x1).

Remark 22.18 (MMP in higher dimensions). In higher dimensions the unique-
ness of a minimal model in its birational equivalence class (see Theorem 22.15) fails.
However, two birationally equivalent minimal models differ in codimension ≥ 2 only.
Moreover, the very existence of a smooth minimal model for a non-uniruled smooth
projective variety fails as well in dimension 3.

However, the Minimal Model Conjecture was modified in dimensions ≥ 3 by allow-
ing minimal models with certain moderate singularities. With this modification the
Conjecture was established in dimension 3 by Mori (1988), and in higher dimensions
for varieties of general type by Birkar, Cascini, Hacon, and McKernan (2010). They
also established that any uniruled variety X is birationally equivalent to a Fano fiber
space X ′, that is, a projective variety X ′ with a morphism π : X ′ → Y such that the
fibers are Fano varieties.

23. Ruled surfaces

Definitions 23.1.

– A smooth projective surface X is called a ruled surface if it admits a ruling,
that is, a surjective morphism π : X → Y to a smooth projective curve Y with
general fiber isomorphic to P1.

– A fiber of a ruling π : X → Y over a point y ∈ Y is called non-degenerate (or
general) if it is reduced and irreducible, that is, π∗(y) is a prime divisor, and
degenerate (or special) otherwise.

– The ruling π : X → Y is called relatively minimal if all its fibers are non-
degenerate.
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Example 23.2. Any Hirzebruch surface πn : Fn → P1 is a relatively minimal ruled
surface; it is minimal if n 6= 1 (see 14.4).

Exercises 23.3. Let f be the class in N1(Fn) of a fiber F and s∞ the class of the
exceptional section S∞ with S2

∞ = −n. Show that

• ρ(Fn) = 2 and PicFn = 〈[S∞], [F ]〉;
• KFn ∼ −(2S∞ + (n+ 2)F );
• if C is a curve on X such that C ≡ S∞ + nF , then C is a section of πn with
C · S∞ = 0;
• the linear system |S∞ + aF | is nonempty if and only if either a = 0 or a ≥ n;
• in the latter case this linear system is base point free;
• this system is ample if and only if a > n.

Proposition 23.4. Any relatively minimal ruling π : X → Y on a smooth projective
surface X is the projectivization of a vector bundle of rank 2 on Y .

The proof exploits the following fact.

Theorem 23.5 (Tsen). Any ruled surface π : X → Y admits a regular section
s : Y → X.

Exercises 23.6. Show that

• a ruled surface π : X → Y cannot have a multiple fiber (a fiber π∗(y) =∑r
i=1miFi is called multiple if gcd(m1, . . . ,mr) > 1);

• if π : X → Y is a relatively minimal ruled surface, then
– ρ(X) = 2;
– the Neron-Severi space N1(X) is spanned by the fiber class f and the

class s of a section;
– PicX = π∗ PicY ⊕ 〈f〉;
– there is at most one curve C on X with C2 < 0, and such a curve is a

section of π (called the exceptional section);
• if X is a smooth projective surface and C is a smooth rational curve in X

such that C2 ≥ 0, then h0(nKX) = 0 for all n > 0, and X is either P2 or a
ruled surface. Hint : deduce first that KX · C < 0.

The next two lemmas deal with general fibrations on surfaces. In particular, they
can be applied to rulings.

Lemma 23.7. Let X be a smooth projective surface over C, let Y be a smooth projec-
tive curve, and let π : X → Y be a surjective morphism with a connected (topological)
general fiber F . For a point y ∈ Y we let Xy := π−1(y). Then there is the following
relation for the topological Euler characteristics:

e(X) = e(Y )e(F ) +
∑
y∈Y

(e(Xy)− e(F )) .
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Furthermore, e(Xy) ≥ e(F ) ∀y ∈ Y , with equality if and only if either the fiber Xy is
nondegenerate, or this is an irreducible multiple fiber of an elliptic fibration, that is,
g(F ) = 1 and π∗(y) = mE, where E = Xy is a smooth elliptic curve in X.

Lemma 23.8 (Zariski). Let X be a smooth projective surface, Y be a smooth projec-
tive curve, and π : X → Y be a surjective morphism with connected fibers. Consider
the fiber Xy = π−1(y) =

∑
i Fi over a point y ∈ Y . Let V ⊂ N1(X) be the subspace

spanned by the components Fi of Xy. Then the intersection form on V is negative
semidefinite, and its isotropic cone is the line 〈π∗(y)〉 ⊂ V .

Exercises 23.9. Let X be a smooth projective surface. Show that

• if X is ruled with a ruling π : X → Y , then it birationally dominates a rel-
atively minimal ruled surface equipped with an induced ruling. Hint : pro-
ceed by induction on the number r of components of a degenerate fiber Xy,
where π∗(y) =

∑r
i=1miFi. Show first that F 2

i < 0 ∀i, and Xy contains a
(−1)-component Fj. The latter follows from the Adjunction Formula and the
equality

−KX · f =
r∑
i=1

mi(F
2
i + 2) = 2 .

• Let Xy =
∑

i Fi be a fiber of a ruling π : X → Y . Show that
– Xy is a divisor with simple normal crossings;
– the wighted dual graph ΓXy is a rational tree (see 18.8) without branching

(−1)-vertices, that is, (−1)-vertices of degree at least 3;
– any contraction of a (−1)-component Fi yields again such a divisor.

Lemma 23.10 (Gizatullin). Let π : X → Y be a ruling, where X and Y are smooth
projective surface resp., curve. Then for any (−1)-component Fj of multiplicity mj =
1 in the divisor π∗(y) =

∑
imiFi, where mi > 0 ∀i, the rest of the fiber Xy can be

contracted to a point of a smooth ruled surface X ′, so that the fiber X ′y is reduced and
irreducible.

Exercises 23.11.

• Prove the Gizatullin lemma. Hint : show that any (−1)-fiber component of
multiplicity 1 is a vertex of degree 1 in the dual graph of the fiber.
• Let Xy be a fiber of a ruling π : X → Y with weighted dual graph being

the string [−2,−1,−2]. Show that the only (−1)-component Fi of Xy has
multiplicity 2 in π∗(y).

Definition 23.12. Let X be a smooth projective surface, Y be a smooth projective
curve, and π : X → Y be a ruling. An elementary (birational) transformation in a
non-degenerate fiber Xy of π consists in the blowing up a point P ∈ Xy followed by
the blowdown of the proper transform of the curve Xy.
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Theorem 23.13 (Nagata-Maruyama). Given a relatively minimal ruling π : X →
Y on a smooth projective surface X, by a finite sequence of elementary transforma-
tions one can transform it into the trivial ruling pr1 : Y × P1 → Y .

Exercise 23.14. Deduce that any ruled surface X over Y is birationally equivalent
to the product Y × P1, and pa(X) = −g(Y ).

24. Kodaira dimension

Definitions 24.1. Let X be a normal projective variety, and let D be a Cartier
divisor on X.

– The Kodaira dimension of D denoted κ(D) is defined as follows:

κ(D) :=

{
κ(D) = −∞ if |mD| = ∅ ∀m > 0

maxm≥1{dimϕ|mD|(X)} ∈ {0, . . . , dimX} otherwise .

Thus, in the second case the rational map ϕ|mD| : X 99K PN(m) is well defined
for certain values of m > 0, and κ(D) is the maximal dimension of the nimage
of X for these values.

– D is called big if κ(D) = dimX. If D is big, then for some m ∈ N the map
ϕ|mD| : X 99K PN(m) is birational onto its image.

– If X is smooth, then κ(X) := κ(KX) is called the Kodaira dimension of X.
– For a singular X, the Kodaira dimension κ(X) is by definition the Kodaira di-

mension of any smooth model of X (resulting from a resolution of singularities
of X; this definition does not depend of the choice of a resolution).

– X is called a variety of general type if κ(X) = dimX, that is, the canonical
divisor KX is big. Otherwise, X is called special.

The following criteria can be useful in order to detect the bigness of a divisor.

Proposition 24.2. Let X be a normal projective variety.

a) A Q-Cartier divisor D on X is big if and only if D = A + E, where A is an
ample and E an effective Q-Cartier divisors.

b) If X is a surface and H is an ample divisor on X, then D is big if D2 > 0
and D ·H > 0. If D2 = 0, D ·H > 0, and D ·KX < 0, then κ(D) = 1.

The Kodaira dimension possesses the following properties.

Theorem 24.3.

a) The Kodaira dimension is a birational invariant.
b) κ(X1 ×X2) = κ(X1) + κ(X2) .
c) (Easy Addition Theorem) Let f : X → Y be a surjective morphism of

projective varieties with connected fibers. Then

κ(X) ≤ κ(F ) + dimY ,

where F is a generic fiber of f .
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d) (Kawamata-Vieweg) Let f : X → Y and F be as before. If X is a surface
and Y is a curve, then

κ(X) ≥ κ(F ) + κ(Y ) .

e) If f : X → Y is an unramified covering, then κ(X) = κ(Y ).
f) If X is a uniruled projective variety, then κ(X) = −∞.

Exercise 24.4. Let X be a smooth projective curve of genus g. Show that κ(X) =
−∞ if g = 0, κ(X) = 0 if g = 1, and κ(X) = 1 if g ≥ 2.

The Kodaira dimension determines the outcome of the Minimal Model Program
for surfaces in the following sense.

Theorem 24.5. Running the MMP for a smooth projective surface X has as outcome

– a minimal model if κ(X) ≥ 0,
– a Mori fiber space if κ(X) = −∞.

In the latter case X is a ruled surface or X ∼= P2.

25. Castelnuovo-Enriques classification of projective surfaces

Definitions 25.1. Let X be a minimal smooth projective surface.

– The geometric genus of X is the integer pg(X) := h0(KX);
– the irregularity of X is the integer q(X) := h1(OX) = pg(X)− pa(X).
– An elliptic fibration on X is a surjective morphism X → Y to a smooth

projective curve Y with elliptic curves as general fibers.

Let (pg, q) = (pg(X), q(X)). Then X is called

– Enriques surface if KX 6= 0, 2KX = 0, and (pg, q) = (0, 0);
– K3 surface if KX = 0 and (pg, q) = (1, 0);
– hyperelliptic surface (or also bielliptic surface) if κ(X) = 0 and (pg, q) = (0, 1);
– Abelian surface if κ(X) = 0 and (pg, q) = (1, 2);
– elliptic surface if X admits an elliptic fibration.

The projective surfaces are classified according to the Kodaira dimension as follows.

Theorem 25.2 (Castelnuovo-Enriques). For a minimal smooth projective surface
X the following hold.

– κ(X) = −∞ if and only if |12KX | = ∅, if and only if X is either P2, or a
minimal ruled surface;

– κ(X) = 0 if and only if |12KX | = {0}, if and only if the surface X is either
K3, or Enriques, or Abelian, or hyperelliptic;

– if κ(X) = 1, then X is an elliptic surface;
– otherwise κ(X) = 2, and so, X is a surface of general type.

Exercises 25.3. Let k = C.
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• Verify that the integers pa(X), pg(X), q(X), Pm(X) := h0(mKX), and K2
X

are birational invariants. Deduce that the Kodaira dimension κ(X) is as well.
• Show that q(X1 × X2) = q(X1) + q(X2) for any projective varieties X1 and
X2.
• Apply Abundance Theorem 22.16 to the Abelian, Enriques, and K3 surfaces.
• Are there Abelian surfaces different from the Jacobians of genus 2 curves?

non-elliptic Abelian surfaces? Give an example of an elliptic Abelian surface.
• Show that any Abelian surface is a two-dimensional Abelian variety.
• Deduce that the tangent bundle of an Abelian surface is trivial, and the canon-

ical line bundle is as well. Hint : use the group structure. (In fact, the same
hold for any algebraic group.)
• Show that there are no rational curves in the Abelian and hyperelliptic sur-

faces (by contrast, all the K3 and Enriques surfaces do contain rational curves).
Hint : apply the topological Monodromy Theorem, the Riemann-Hurwitz For-
mula, the facts that a hyperelliptic surface is a factor of a product of two
elliptic curves by a finite group of automorphisms, and that the universal
covering of an Abelian surface is the affine plane A2.

Let X be a smooth projective surface. Show that

• a smooth surface in P3 of degree d is rational if d ≤ 3, a K3 surface if d = 4,
and a surface of general type if d ≥ 5;
• the smooth (complete) intersection of a quadric and a cubic hypersurfaces in
P4, and of three quadrics in P5, are K3 surfaces;
• any Enriques surface and some K3 surfaces are elliptic surfaces over P1;
• the quotient of a K3 surface by a fixed point free involution is Enriques, and

any Enriques surface appears in this way;
• there are rational elliptic surfaces (with Kodaira dimension −∞). Hint : In

appropriate affine coordinates, such an elliptic surface can be given by the
Weierstrass equation y2 + x3 + a(t)x+ b(t) = 0;
• any elliptic surface over a curve of genus at least 2 has Kodaira dimension 1;
• there are elliptic surfaces X with κ(X) = 1 over rational and elliptic curves;
• for an elliptic fibration over a curve, the analog of Nagata-Maruyama Theorem

23.13 fails, in general. Explain the reason of the failure;
• X is hyperelliptic if and only if κ(X) = 0 and q(X) = 1, if and only if X

admits two elliptic fibrations, one over P1 and another one over an elliptic
curve;
• the product of two smooth projective curves of genera at least 2 is a surface

of general type.

Let us mention the following celebrated inequalities involving the topological Euler
characteristic e(X) of a smooth projective surface X; see, e.g., [12] and [28] for part
a), [23] for part b), and [19] for part c).
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Theorem 25.4. Let X be a smooth projective surface over C.

a) (Castelnuovo-de Franchis-Enriques)
a1) If X is minimal and χ(OX) < 0, then X is a ruled surface.

a2)-a3) X is an irrational ruled surface provided that either e(X) < 0, or X is
minimal and K2

X < 0.
b) (Bogomolov-Miyaoka-Yau inequality) If κ(X) ≥ 0, then K2

X ≤ 3e(X) .
c) (Kobayashi-Nakamura-Sakai) If X is of general type, then H2 ≤ 3e(X) ,

where H is the positive part of the Zariski decomposition KX = H + N (see
Theorem 21.15).

Remark 25.5. The projective surfaces of non-general type are classified completely.
A lot is known on the geometry of surfaces of general type. However, their complete
classification is out of reach at present. Even the surface geography, that is, the
distribution of the principal numerical invariants (say, K2

X and e(X)) of minimal
surfaces of general type, still has white holes.

26. Quick guide to the literature

Section 1: [8, 14, 16, 22, 25, 32, 33]
Section 2: [8, 14, 16, 22, 25, 31, 32, 33, 34]
Section 3: [2, 22, 25, 31, 32, 33, 34]
Section 4: [4, 8, 14, 16, 22, 25, 31, 32, 33, 34, 36]
Section 5: [8, 14, 25]
Section 6: [2, 8, 9, 14, 22, 25, 31, 32, 33, 34]
Section 7: [2, 7, 8, 14, 25, 31, 32, 34]
Section 8: [2, 14, 25, 27, 29, 31, 32, 33, 34]
Section 9: [7, 12, 25, 32, 33]
Section 10: [8, 11, 12, 32, 34]
Section 11: [11, 12, 14, 16, 22, 25, 29, 31, 32, 34]
Section 12: [16, 28, 31, 32, 34, 35, 38]
Section 13: [11, 12, 33]
Section 14: [12, 32, 34]
Section 15: [12, 14, 16, 22, 25, 31, 32, 33, 34]
Section 16: [1, 8, 12, 31, 32, 33]
Section 17: [16, 32]
Section 18: [1, 12, 14, 16, 25, 28, 29, 32, 33, 34]
Section 19: [1, 3, 14, 25, 28, 30, 32, 33]
Section 20: [1, 3, 6, 11, 12, 16, 28, 34, 35]
Section 21: [1, 5, 8, 10, 15, 20, 21, 24, 28, 30, 33, 34]
Section 22: [1, 20, 21, 24, 30]
Section 23: [2, 12, 16, 28]
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Section 24: [12, 17, 28]
Section 25: [3, 6, 12, 16, 19, 23, 28]
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