The Hirzebruch-Riemann-Roch theorem in the fancy language of Spectra

Mattia Coloma¹

University of Rome Tor Vergata

Rome, 29 May 2020

¹joint work with Domenico Fiorenza and Eugenio Landi

Mattia Coloma (Tor Vergata)

HRR and Spectra

Suppose that E is an holomorphic vector bundle over a compact complex manifold X and suppose that we are trying to solve the problem of finding a global invariant for E.

<u>Naive candidate</u>: Let \mathcal{E} be the sheaf on X of holomorphic sections of E. Our first candidate for a global invariant of E is the complex vector space of global sections of \mathcal{E} ,

$$H^0(X; \mathcal{E}) := \{ holomorphic sections s : X o E \}$$

Notice that $H^0(X, \mathcal{E})$ is finite dimensional complex vector space.

 $H^0(X; \mathcal{E})$ is obviously a global invariant of E: if $E \cong F$ then

$$H^0(X;\mathcal{E})\cong H^0(X;\mathcal{F}),$$

but unfortunately is not quite well behaved (i.e. hard to compute): in general taking the global section of a sheaf is an operation that does not respect exactness of sequence.

Example

Denote by: \mathbb{R} the sheaf of constant functions on the circle S^1 , by C^{∞} the sheaf of smooth functions on S^1 and by $\Omega^1_{S^1}$ the sheaf of 1-forms on S^1 . The sequence

$$0 o \mathbb{R} \hookrightarrow C^\infty(S^1) \stackrel{d}{ o} \Omega^1_{S^1} o 0$$

is short exact, but if we take global sections

$$0 o \mathbb{R} \hookrightarrow C^\infty(S^1; \mathbb{R}) \stackrel{d}{ o} \Omega^1_{S^1}(S^1)$$

this is not exact on the right anymore.

How to fix the problem of "non-exactness" of $H^0(X; -)$? It is a very well know fact that for any exact sequence of sheaves

$$0
ightarrow \mathcal{F}
ightarrow \mathcal{G}
ightarrow \mathcal{H}
ightarrow 0$$

there exists "higher cohomological groups" $H^i(X; -), i > 0$ such that there exist a long exact sequence

$$0 \to H^0(X;\mathcal{F}) \to H^0(X;\mathcal{G}) \to H^0(X;\mathcal{H}) \to H^1(X;\mathcal{F}) \to H^1(X;\mathcal{G}) \to \cdots$$

where $H^0(X; -)$ is the global section functor.

So to define a good behaved (at least with respect short exact sequence of bundles) global invariant of *E* we need to take account of this higher degree cohomological corrections.

Definition (Less naive candidate)

Let *E* be an holomorphic vector bundle over a compact complex manifold *X*. The *holomorphic Euler characteristic* of *X* with coefficients in *E* $\chi_{hol}(X; E)$ is defined to be

$$\chi_{hol}(X; E) := \sum_{i} (-1)^{i} \dim H^{i}(X; \mathcal{E})$$

Mattia Coloma (Tor Vergata)

A B M A B M

Obviously if *E* and *F* are isomorphic vector bundles then $H^{i}(X; \mathcal{E}) \cong H^{i}(X; \mathcal{F})$, hence $\chi_{hol}(X; E) = \chi_{hol}(X; F)$ so χ_{hol} is an invariant. Moreover,

Proposition (Additivity of χ_{hol})

For three holomorphic vector bundles F, E, G over X, such that $F = E \oplus G$ as complex vector bundles, we have that

$$\chi_{hol}(X;F) = \chi_{hol}(X;E) + \chi_{hol}(X;G).$$

Mattia Coloma (Tor Vergata)

The Hirzebruch-Riemann-Roch solves the problem of computing the holomorphic Euler characteristic of an holomorphic vector bundle. It is an integral formula for $\chi_{hol}(X; E)$.

Theorem (Hirzebruch-Riemann-Roch)

Let E be an holomorphic vector bundle over a compact complex manifold X. Then the following identity holds:

$$\chi_{hol}(X; E) = \int_X \operatorname{ch}_X(E) \operatorname{td}(X)$$

where ch_X is the Chern character of E and $\operatorname{td}(X) := \operatorname{td}(T^{hol}X)$ is the Todd class of the holomorphic tangent bundle over X.

< □ > < 同 > < 回 > < 回 > < 回 >

Fix a compact smooth manifold X. The key players of the HRR theorem are:

• The complex topological K-theory of X, K(X).

Image: Image:

3

Digression: *K*-theory in a nutshell

Let $(Vect_{\mathbb{C}}(X), \otimes, \oplus)$ be the semiring of isomorphism classes of complex vector bundles over X. K(X) is made up from $Vect_{\mathbb{C}}(X)$ by formally inverting the operation of direct sum, i.e. K(X) is the ring of pairs

$$([E],[F]) =: E - F$$

subjected to the identification

 $([E], [F]) \sim ([E'], [F'])$

if there exists $[G] \in Vect_{\mathbb{C}}(X)$ such that

$$[E\oplus F'\oplus G]=[E'\oplus F\oplus G]$$

Fix a compact smooth manifold X. The key players of the HRR theorem are:

- The complex topological K-theory of X, K(X).
- The even 2-periodic rational singular cohomology of X, $HP_{\mathrm{ev}}\mathbb{Q}(X) := \prod_{i \in \mathbb{Z}} H^{2i}(X; \mathbb{Q}).$
- The Chern character ch, a ring homomorphism $K(X) \stackrel{\operatorname{ch}_X}{\to} HP_{\operatorname{ev}}\mathbb{Q}(X)$.

$$\operatorname{ch}_X(E) = \sum_i \exp(\gamma_i)$$

where γ_i are the Chern roots of E.

• Integration maps $K(X) \xrightarrow{\int_X^K} K(pt)$ and $HP_{ev}\mathbb{Q}(X) \xrightarrow{\int_X^{HP_{ev}\mathbb{Q}}} HP_{ev}\mathbb{Q}(pt)$ (defined only for certain X).

With all of this data we can build a square diagram

$$\begin{array}{ccc}
\mathcal{K}(X) & \xrightarrow{\operatorname{ch}_{X}} & \mathcal{HP}_{\operatorname{ev}}\mathbb{Q}(X) \\
& & & & & & \downarrow_{\int_{X}^{\mathcal{HP}_{\operatorname{ev}}\mathbb{Q}}} \\
\mathcal{K}(pt) \cong \mathbb{Z} & \xrightarrow{\operatorname{ch}_{\operatorname{pt}}} & & & \mathbb{Q} \cong \mathcal{HP}_{\operatorname{ev}}\mathbb{Q}(pt)
\end{array}$$
(1)

and it natural to ask if this diagram is commutative for all (nice) X such that the integration maps are defined.

<u>Hint</u>: The integration maps in K-theory agrees with the holomorphic Euler characteristic for compact complex X and holomorphic $E \downarrow X$.

Theorem ((topological) Hirzebruch-Riemann-Roch)

The diagram (1) is not commutative. There exists a class $td(X) \in HP_{ev}\mathbb{Q}(X)$ such that the following diagram is commutative

$$egin{aligned} &\mathcal{K}(X) \xrightarrow{\operatorname{ch}_X \cdot \operatorname{td}(X)} &\mathcal{HP}_{\operatorname{ev}} \mathbb{Q}(X) \ && & & \downarrow^{\mathcal{K}}_X \downarrow & & \downarrow^{\mathcal{HP}_{\operatorname{ev}} \mathbb{Q}} \ && & \mathcal{K}(pt) \cong \mathbb{Z} & \longrightarrow \mathbb{Q} \cong \mathcal{HP}_{\operatorname{ev}} \mathbb{Q}(pt) \end{aligned}$$

i.e. $\forall a \in K(X)$ we have

$$\int_X^K {oldsymbol a} = \int_X^{HP_{\mathrm{ev}}\mathbb{Q}} \mathrm{ch}_X({oldsymbol a}) \cdot \mathrm{td}(X)$$

Mattia Coloma (Tor Vergata)

Why spectra?

There are at least three reasons for which the HRR theorem can be derived from the language of spectra:

 Both the functors K and HP_{ev}Q are the restrictions to the 0th degree group of two generalized cohomology theories K* and HP_{ev}Q*.

Definition (Generalized cohomology theory)

A Generalized cohomology theory E^* is a contravariant functor

$$\mathsf{Top} \xrightarrow{E^*} \mathsf{Ab}^{\mathbb{Z}}$$

from the category of topological spaces to the cateogry of graded abelian groups, subject to a set of axioms called Eilenberg-Steenrod axioms.

- Spectra represent generalized cohomology theories.
- Manifolds can be seen as a special type of spectra.

14/52

What a spectrum is: a brave analogy

The slogan to understand the main properties of the category of spectra is:

Topological spaces stands to spectra as rational numbers stands to real numbers.

$\mathbb{Q}:\mathbb{R}$

- There is an inclusion $\mathbb{Q} \hookrightarrow \mathbb{R}$.
- There is a multiplication on ℝ that agrees to the one on Q when restricted.

Topological spaces : Spectra

- \bullet There is a functor Top $\stackrel{\Sigma^\infty_+}{\to}$ Sp.
- Sp is a symmetric monoidal category and Σ^∞_+ is a symmetric monoidal functor.

15/52

What a spectrum is: a brave analogy

 $\mathbb{Q}:\mathbb{R}$

- There exists a unit element for the multiplication which is the rational number 1.
- Every real number a ∈ ℝ can be shifted by an integer k ∈ ℤ by sending a → a + k.

Topological spaces : Spectra

- There exists a unit spectrum S called the sphere spectrum which is given by the one point space pt considered as a spectrum.
- For every k ∈ Z and every spectrum E there exists the shifting of E by k denoted by E[k].

< □ > < 同 > < 回 > < 回 > < 回 >

16 / 52

What a spectrum is

There are two other properties the are fundamental for our purposes:

- For every spectrum *E* there exists a notion of the "dual spectrum" of *E*, denoted by *DE*. This construction reassemble in a contravariant functor Sp \xrightarrow{D} Sp. Moreover $D\mathbb{S} \cong \mathbb{S}$.
- For a fixed spectrum E and a topological space X, the association

$$X \mapsto [X[k], E] := \hom_{\mathsf{Sp}}(X[k], E)$$

that goes from topological spaces to graded abelian groups is a generalized cohomology theory called *E-cohomology*.

What a E_{∞} -spectrum is

We will restrict our attention to a particular class special objects in Sp, namely, $E_\infty\text{-}\mathsf{spectra.}$

Definition (E_{∞} -spectra)

A spectrum E is called an E_{∞} -spectrum if it is equipped with two maps;

 $\mu_E: E\otimes E\to E$

called multiplication map, and

$$1_E:\mathbb{S}\to E$$

called *unit map of E*, subjected the standard associative, commutative and unital conditions.

Mattia Coloma (Tor Vergata)

イロト イポト イヨト イヨト 二日

What an E_{∞} -spectrum is

If the spectrum E is an E_{∞} -spectrum the associated generalized cohomology theory is multiplicative, i.e. comes with a product:

$$[X[m], E] \otimes [X[n], E] \longrightarrow [X[n+m], E].$$

For $f \in [X[m], E], g \in [X[n], E]$ then the composition

$$X[m+n] \xrightarrow{\Delta} X[m] \otimes X[n] \xrightarrow{f \otimes g} E \otimes E \xrightarrow{\mu} E$$

is defined to be the product $f \cdot g \in [X[n+m], E]$.

What an E_{∞} -spectrum is

The algebraic/categorical fact hidden behind the previous computation is the following:

• Every topological space X is a cocommutative, coassociative comonoid object in Sp, via

- E_{∞} -spectra are exactly the commutative, associative monoid objects in Sp.
- The hom set [X, E] from the comonoid X to the monoid E is a monoid.

20 / 52

Orientations and integration: an overview

Mattia Coloma (Tor Vergata)

HRR and Spectra

Rome, 29 May 2020 21/52

3

Let V be a (real) rank d vector bundle over a (nice) compact topological space X.

Definition (Thom Space)

The *Thom space* of V, denoted by X^V is the pointed space given by the one point compactification of the total space of the bundle.

The *Thom spectrum* of V is simply the pointed topological space X^V thinked as a spectrum and will be denoted by the same symbol.

Example

The trivial bundle of rank d over X is $X \times \mathbb{R}^d$. The one point compactification of $X \times \mathbb{R}^d$ is given by the quotient $X \times S^d/(X \times \{\infty\})$ where we think S^d as $\mathbb{R}^d \cup \{\infty\}$ and the Thom space of d is given by

$$X^{X imes \mathbb{R}^d} = rac{X imes S^d}{X imes \{\infty\}} = \Sigma^d X_+$$

A very useful fact implied by this simple example is that the Thom spectrum of the rank d trivial bundle $X^{X \times \mathbb{R}^d}$ is just X (again thinked as a spectrum) shifted by d, i.e.

$$X^{X imes \mathbb{R}^d} \cong X[d]$$

Example: Thom space of rank 1 trivial bundle on S^1

The (total space of the) rank 1 trivial bundle on S^1 is the infinite cylinder $S^1 \times \mathbb{R}$. So the Thom space $(S^1)^{S^1 \times \mathbb{R}}$ is given by the quotient $S^1 \times S^1/S^1 \times \{\infty\}$ where we have collapsed the subspace $S^1 \times \{\infty\}$ to a point. The resulting space is a pinched torus.

Figure: The Thom space of the rank 1 trivial bundle on S^1 , ΣS^1_+

One of the most important feature of Thom spectra is that given a vector bundle V over X, then for every spectrum E, the E-cohomology of the Thom space X^V is a (graded) module over the (graded) E-cohomology ring of the base space X, which means that are defined multiplication maps

$$[X[n], E] \otimes [X^{V}[m], E] \longrightarrow [X^{V}[n+m], E]$$

which allows to multiply an element of the *E*-cohomology of X^V by an element of the *E*-cohomology of *X* to get an element of the *E*-cohomology of X^V again.

イロト イポト イヨト イヨト 二日

Again, the hidden algebraic/categorical fact behind the previous construction is the following: the Thom spectrum functor *Th* can be refined to a functor

$$\mathsf{VectBun}_{\mathbb{R}} \stackrel{\mathsf{Th}}{
ightarrow} \mathsf{Comod}(\mathsf{Sp})$$

which means that for a real vector bundle $V \downarrow X$ the Thom spectrum X^V is a comodule over the comonoid object $X \in \text{Sp.}$ This gives a (graded) module structure to the *E*-cohomology of X^V .

Let X be a compact smooth manifold. The *negative tangent bundle* of X is by definition the virtual vector bundle of (real) rank dim X given by -TX. It is possible to define a Thom spectrum X^{-TX} by defining

$$X^{-TX} := X^{\nu_{\iota}}[-N]$$

where $\nu_{\iota} : X \hookrightarrow \mathbb{R}^N$ is an embedding of X into a (sufficiently large) euclidean space.

The condition for a manifold X to be oriented in the generalized cohomology theory induced by a spectrum E is expressed in terms of (the module structure of the E-cohomology of the) Thom spectrum X^{-TX} .

27 / 52

イロト イボト イヨト イヨト 一日

Let E be a spectrum.

Definition (E-Oriented manifolds)

- A compact smooth manifold X is said to be *E-orientable* if the [X, E]-module [X^{-TX}[dim X], E] is isomorphic to the free module of rank 1.
- An E-oriented manifold is a pair (X, σ), where X is an E-orientable manifold and [X, E] → [X^{-TX}[dim X], E] is an isomorphism of [X, E] modules.

Let X be a smooth manifold, as a particular type of spectrum via the infinite suspension X has a Spanier-Whitehead dual DX. DX receives a map from \mathbb{S} given by applying the duality functor to the terminal map $X \xrightarrow{t_X} \mathbb{S}$ (considered as a map between spectra) so for every manifold X we have a natural map

$$\mathbb{S} \xrightarrow{Dt_X} DX$$

In particular, by taking the pullback in E-cohomology of the above map, we get maps

$$[DX[k], E] \xrightarrow{(Dt_X)^*} [\mathbb{S}[k], E]$$

So for a compact smooth manifold X, it is possible to define two spectra: the dual DX and the Thom spectrum of the negative tangent bundle X^{-TX} .

Theorem (Atiyah)

Let X be a compact smooth manifold, then DX and X^{-TX} are isomorphic.

The integration map associated to an *E*-oriented manifold (X, σ) is defined to be the composition

$$\int_{(X,\sigma)}^{E} : [X, E] \xrightarrow{\sigma} [X^{-TX}[\dim X], E] \longrightarrow [\mathbb{S}[\dim X], E]$$
$$\downarrow \cong (Dx[\dim X], E]$$

< □ > < 同 > < 回 > < 回 > < 回 >

- <u>Done</u>: We have shown that for every spectrum E the definition of E-oriented manifold gives, by Atiyah's result $DX \cong X^{-TX}$, integration map in E-cohomology.
- <u>To do</u>: Show that there exists a general definition of orientation of spectra, such that a certain class of manifold is automatically oriented with respect to an oriented spectrum.

A complex orientation for a spectrum E is basically a theory of Thom isomorphisms for the generalized cohomology induced by E.

Definition

A vector bundle V over X is oriented in E-cohomology if it is equipped with an isomorphism of [X, E]-modules

$$\sigma_V: [X, E] \xrightarrow{\sim} [X^V[-\mathrm{rk}V], E]$$

The isomorphism σ_V is called the orientation of V in E-cohomology.

Definition (Complex oriented spectrum)

A spectrum *E* is called *complex oriented* if every complex vector bundle is coherently oriented in *E*-cohomology.

Obviously, it is possible for the same spectrum E to be complex oriented in two different ways, i.e. to have two different set of isomorphism $\sigma_V, s_V : [X, E] \xrightarrow{\sim} [X^V[-\mathrm{rk}V], E]$ for each complex vector bundle $V \downarrow X$. The two isomorphism are related by the multiplication of an element $m_V \in GL_1[X, E]$ such that

Two different complex orientations of the same spectrum defines a set of multipliers $\{m_V\} \subset GL_1[X, E]$.

イロト イポト イヨト イヨト 二日

In order to define integration maps for compact manifolds the cohomology induced by a complex oriented spectrum E we may ask for the manifold to have a complex negative tangent bundle.

Definition (Stably complex manifold)

A stably complex manifold X is a manifold X such that the normal bundle of an embedding of X into a (sufficiently large) euclidean space is a complex vector bundle.

Every stable complex manifold is oriented for a complex oriented spectrum by, hence we can build integration maps for every stably complex manifold.

34 / 52

イロト イポト イヨト イヨト 二日

Example (Stably complex manifold)

An example is given by an odd sphere S^{2n+1} . The normal bundle NS^{n+1} with respect to the standard inclusion $S^{2n+1} \hookrightarrow \mathbb{R}^{2n+2}$ is the trivial line bundle 1.

$$TS^{2n+1} \oplus NS^{2n+1} = TS^{2n+1} \oplus 1 \cong 2n+2$$

This means that the normal bundle u_{ι} with respect to the inclusion

$$\iota: S^{2n+1} \longleftrightarrow \mathbb{R}^{2n+2} \stackrel{\mathsf{x}_{2n+3}=0}{\longleftrightarrow} \mathbb{R}^{2n+3},$$

is the rank two trivial vector bundle 2, which has a standard complex structure. So S^{2n+1} is a stably complex manifold.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Examples: KU and $HP_{\mathrm{ev}}\mathbb{Q}$

As we said before K and $HP_{ev}\mathbb{Q}$ are the restriction to the 0th-degree group of two generalized cohomology theories K^* and $HP_{ev}\mathbb{Q}^*$. These two generalized cohomology theories are represented by two spectra, respectively KU and $HP_{ev}\mathbb{Q}$, so we have isomorphism, for each topological space X:

$$\mathcal{K}(X) \cong [X, \mathcal{K}U]; \quad \mathcal{HP}_{\mathrm{ev}}\mathbb{Q}(X) = \prod_{i\in\mathbb{Z}} \mathcal{H}^{2i}(X;\mathbb{Q}) \cong [X, \mathcal{HP}_{\mathrm{ev}}\mathbb{Q}]$$

Both KU and $HP_{ev}\mathbb{Q}$ are examples of E_{∞} -spectra and most important they are both complex oriented. We will refer to these complex orientations on KU and $HP_{ev}\mathbb{Q}$ as standard orientations.

イロト 不得下 イヨト イヨト 二日

Examples: KU and $HP_{\mathrm{ev}}\mathbb{Q}$

The reason why both KU and $HP_{ev}\mathbb{Q}$ are standardly complex oriented lies in a surprisingly fact: the datum of a complex orientation for a spectrum E(coherent choice of orientation isomorphism for every complex vector bundle) can be condensed into a single object.

Theorem (Universal Euler class)

A spectrum E is complex oriented iff it admits an element $x_E \in [\mathbb{P}^{\infty}[-2], E]$ such that

$$[\mathbb{P}^{\infty}[-2], E] \xrightarrow{\iota^*} [\mathbb{P}^1[-2], E] \cong [\mathbb{S}, E]$$

$$x_E \longmapsto 1_E$$
,

where $\mathbb{P}^1 \stackrel{\iota}{\to} \mathbb{P}^{\infty}$ is the standard inclusion map.

イロト イポト イヨト イヨト 二日

The elements x_{KU} and $x_{HP_{ev}\mathbb{Q}}$ that gives the standard complex orientation of KU and $HP_{ev}\mathbb{Q}$ are given by

$$egin{aligned} & x_{\mathcal{K}\mathcal{U}} := 1_{\mathbb{C}} - \mathcal{O}(1)^* \in [\mathbb{P}^\infty[-2], \mathcal{K}\mathcal{U}] \ & x_{\mathcal{HP}_{\mathrm{ev}}\mathbb{Q}} := c_1(\mathcal{O}(1)) \in [\mathbb{P}^\infty[-2], \mathcal{HP}_{\mathrm{ev}}\mathbb{Q}], \end{aligned}$$

where $\mathcal{O}(1)$ is the universal line bundle on \mathbb{P}^{∞} .

Image: Image:

Examples: KU and $HP_{\mathrm{ev}}\mathbb{Q}$

Complex orientations of spectra can be push forward along maps of spectra, by pushing forward the orientation isomorphisms.

Observation (Pushing forward complex orientations)

Let $E \xrightarrow{\phi} F$ be a map of complex oriented spectra, the for every complex vector bundle $V \downarrow X$ the diagram

$$\begin{array}{ccc} [X,E] & & \stackrel{\phi_*}{\longrightarrow} & [X,F] \\ \cong & & & \downarrow \cong \\ [X^V[-\mathrm{rk}V],E] & \xrightarrow{\phi_*} & [X^V[-\mathrm{rk}V],F] \end{array}$$

commute iff the complex orientation on F is the one on E pushed forward along ϕ .

Mattia Coloma (Tor Vergata)

Examples: KU and $HP_{\mathrm{ev}}\mathbb{Q}$

In our case the Chern character can be refined to a map of spectra $KU \stackrel{\mathrm{ch}}{\to} HP_{\mathrm{ev}}\mathbb{Q}$, so that the complex orientation of KU can be pushed forward along the Chern character to get a new complex orientation of $HP_{\mathrm{ev}}\mathbb{Q}$.

For a complex vector bundle $V \downarrow X$ denote by:

- σ_V the isomorphisms in $HP_{\rm ev}\mathbb{Q}$ given by the standard complex orientation,
- s_V the isomorphisms in $HP_{\mathrm{ev}}\mathbb{Q}$ given by pushing forward the complex orientation of KU along ch,
- k_V the isomorphisms in K-theory given by the standard complex orientation on KU.

40 / 52

イロト 不得下 イヨト イヨト 二日

The Hirzebruch-Riemann-Roch theorem is completely encoded in the fact that the standard complex orientation on $HP_{ev}\mathbb{Q}$ does not coincide with the one given by the standard complex orientation on KU pushed forward along the Chern character.

Let X be a stably complex manifold, we end up with three integration maps associated to X:

•
$$[X, HP_{\mathrm{ev}}\mathbb{Q}] \stackrel{\sigma_{-TX}}{\to} [X^{-TX}[\dim X], HP_{\mathrm{ev}}\mathbb{Q}] \stackrel{(Dt_X)^*}{\to} [\mathbb{S}[\dim X], HP_{\mathrm{ev}}\mathbb{Q}]$$

•
$$[X, HP_{\mathrm{ev}}\mathbb{Q}] \xrightarrow{s_{-TX}} [X^{-TX}[\dim X], HP_{\mathrm{ev}}\mathbb{Q}] \xrightarrow{(Dt_X)^*} [\mathbb{S}[\dim X], HP_{\mathrm{ev}}\mathbb{Q}]$$

•
$$[X, KU] \stackrel{k_{-TX}}{\to} [X^{-TX}[\dim X], KU] \stackrel{(Dt_X)^*}{\to} [\mathbb{S}[\dim X], KU]$$

And all of this orientation maps assemble into a unique diagram.

3

Mattia Coloma (Tor Vergata)

HRR and Spectra

Rome, 29 May 2020

43 / 52

Mattia Coloma (Tor Vergata)

HRR and Spectra

Rome, 29 May 2020

3

44 / 52

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

So for every $a \in [X, KU]$, we have that

 $\int_{(X,k_{-TX})}^{KU} a$

So for every $a \in [X, KU]$, we have that

$$\int_{(X,k_{-TX})}^{KU} a = \int_{(X,s_{-TX})}^{HP_{ev}\mathbb{Q}} ch_{*}(a)$$

Mattia Coloma (Tor Vergata)

Rome, 29 May 2020

46 / 52

So for every $a \in [X, KU]$, we have that

$$\int_{(X,k_{-TX})}^{KU} a = \int_{(X,s_{-TX})}^{HP_{\mathrm{ev}}\mathbb{Q}} \mathrm{ch}_{*}(a) = \int_{(X,\sigma_{-TX})}^{HP_{\mathrm{ev}}\mathbb{Q}} \mathrm{ch}_{*}(a)m_{-TX}$$

Mattia Coloma (Tor Vergata)

3

The commutativity of the previous diagram reads:

Theorem (Hirzebruch-Riemann-Roch in the language of spectra) Let KU and $HP_{ev}\mathbb{Q}$ be the spectra representing respectively complex K-theory and even 2-periodic rational singular cohomology. Then for every stably complex oriented X and every $a \in [X, KU]$ we have that there exist a class $m_{-TX} \in [X, HP_{ev}\mathbb{Q}]$ such that

$$\int_{X}^{KU} a = \int_{X}^{HP_{\mathrm{ev}}\mathbb{Q}} \mathrm{ch}_{*}(a) m_{-TX}.$$

where the integral are made with respect to the standard complex orientations on both KU and $HP_{ev}\mathbb{Q}$.

イロト イポト イヨト イヨト 二日

But why this is a proof of the topological HHR theorem? The multiplier $m_{-TX} \in [X, HP_{\mathrm{ev}}\mathbb{Q}]$, as said before, measure the difference from the standard complex orientation on $HP_{\mathrm{ev}}\mathbb{Q}$ with another complex orientation (also in $HP_{\mathrm{ev}}\mathbb{Q}$) but I did not said anything on how to compute it. It can be shown that

$$m_{-TX} = \operatorname{td}(X) \in HP_{\operatorname{ev}}\mathbb{Q}(X)$$

for every stably complex manifold X. The proof of the latter identity is basically an application of the splitting principle for complex vector bundles.

イロト イポト イヨト イヨト 二日

Beautiful friend, this is (really) the end

For good (=stably complex) maps between compact smooth manifolds $X \xrightarrow{f} Y$, it is possible to define pushforward maps

$$egin{aligned} & \mathcal{K}(X) \stackrel{f_{\mathfrak{f}}}{
ightarrow} \mathcal{K}(Y) \ & \mathcal{HP}_{\mathrm{ev}}\mathbb{Q}(X) \stackrel{f_{*}}{
ightarrow} \mathcal{HP}_{\mathrm{ev}}\mathbb{Q}(Y) \end{aligned}$$

and build the same diagram

$$\begin{array}{ccc} \mathcal{K}(X) & \stackrel{\mathrm{ch}_{X}}{\longrightarrow} & HP_{\mathrm{ev}}\mathbb{Q}(X) \\ & & & & & \downarrow f_{*} \\ \mathcal{K}(Y) & \stackrel{\mathrm{ch}_{Y}}{\longrightarrow} & HP_{\mathrm{ev}}\mathbb{Q}(Y). \end{array}$$

which is, of course, not commutative.

Beautiful friend, this is (really) the end

Theorem (Grothendieck-Hirzebruch-Riemann-Roch)

For every stable complex map $X \xrightarrow{f} Y$, there exists a cohomology class $td(f) \in HP_{ev}\mathbb{Q}(X)$, such that the following diagram is commutative:

Figure: Grothendieck's drawing on the GHRR theorem

Beautiful friend, this is (really) the end

Thank you for your attention.

Mattia Coloma (Tor Vergata)

HRR and Spectra

⁰A complete treatment and an exhaustive list of references to these arguments can be found in the ArXiv preprint: Mattia Coloma, Domenico Fiorenza, and Eugenio Landi; An exposition of the topological half of the Grothendieck-Hirzebruch-Riemann-Roch theorem in the fancy language of spectra, 2019. https://arxiv.org/abs/1911.12035