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Quiver Q = (Z, £): T = set of vertices, £ = set of edges. For example:

N-2 N-1 O

1 2 -
0O—3 00—+t ——5 0 —30 o

AN quiver one-loop quiver

b h=CT =spanc{& |1 €I}, {&]|1€ I} = tautological basis of C~.
" symmetric bilinear form
(,):Ctect -, (vu):=ToAu VYoucz?
where
» A :=2ld — C — TC = Cartan matrix;
» C = (c,;) = adjacency matrix; and
" ¢, =#{e e &|source(e) = 1,target(e) = j}, V1,7 € L.

We say that ¢, is real / imaginary if ¢,;, =0/ c,; # 0. For example:
Aone-loop = (0)



gBKM = the Lie algebra generated by elements x;*, 1 € Z, and b with relations
» Diagonal action: [¢, ] =0, [¢, x]i] ==£(¢, Cj)x]i.

» Double relations: [x}, x| = 4, &

= Serre relations:
[ xf1=0=[x",x7] if(G¢) =0,

(ad x]*')l_(";”i:l)x,+ =0=(ad x]_)l_(’;"gf)x,_ if ¢ is real ,

forg,p € hand1,j € 7.



gBKM = the Lie algebra generated by elements x;*, 1 € Z, and b with relations
» Diagonal action: [¢, ] =0, [¢, x]i] ==£(¢, Cj)x]i.

» Double relations: [x}, x| = 4, &
" Serre relations:
[ l=0=[ 2]  if(@.§)=0,
(ad x]*')l_(’g”gf)xﬁ' =0=(ad x]_)l_(’;”gf)x,_ if ¢ is real ,
forg,p € hand1,j € 7.

For example:

BKM _ o

[t (N) and ggKM,,, = Lie algebra is generated by {x*, ¢} satisfying:

[Exf]=0 and [x*,x7]=¢.



b := spanc{characteristic functions 1, V« € Int(R)}
where Int(R) = {open—closed intervals « = (2,b] C R witha # b}.

(Int(IR) plays the role of a set Z of “vertices”).
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“Continuum” version of s[(N): the Lie algebra of the line R

Continuum Borcherds—Cartan datum for R

b := spanc{characteristic functions 1, Va € Int(R)}
where Int(R) = {open—closed intervals « = (a,b] C R witha # b}.

(Int(RR) plays the role of a set Z of “vertices”).

h = Fun(R) := {locally constant, left-continuous functions f: R — C with

finitely many points of discontinuity, and bounded support}
(-,+): Fun(R) x Fun(R) — C:

Zf -g+(®), (£, =(8 +(8f) Vfg€Funz(R).
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“Continuum” version of s[(N): the Lie algebra of the line R

Continuum Borcherds—Cartan datum for R

b := spanc{characteristic functions 1, Va € Int(R)}
where Int(R) = {open—closed intervals « = (4,b] C R witha # b}.

(Int(R) plays the role of a set 7 of “vertices”).

h = Fun(R) := {locally constant, left-continuous functions f: R — C with

finitely many points of discontinuity, and bounded support}
(-,+): Fun(R) % Fun(R) — C:
(f.8)=2f-(0)(8-(x) —g+(x)), (£,.8) ={(f.8)+(8f) Vf.g€Funz(R).
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“Continuum” version of s[(N): the Lie algebra of the line R

Continuum Borcherds—Cartan datum for R

b := spanc{characteristic functions 1, Va € Int(R)}
where Int(R) = {open—closed intervals « = (4,b] C R witha # b}.

(Int(R) plays the role of a set 7 of “vertices”).

h = Fun(R) := {locally constant, left-continuous functions f: R — C with

finitely many points of discontinuity, and bounded support}
(-,+): Fun(R) % Fun(R) — C:
(f.8)=2f-(0)(8-(x) —g+(x)), (£,.8) ={(f.8)+(8f) Vf.g€Funz(R).
x

(h+(x) = limysq, 150 h(x ££).)

Explicit examples
Attention: Int(IR) has an extra algebraic structure that we have to consider:

o
concatenation of intervals: 3 ‘B 3
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Continuum Borcherds—Cartan datum for R (continuation)
Partial operations on Int(R):

@ = sum of intervals:

{zxuﬁ ifaUBent(R)andaNp =2
adp=

n.d. otherwise

[
adp= > > or

WV
~

© = difference of intervals:

axp iffCaanda~p € Int(R)
aSp=
n.d. otherwise

o

aOp=7:q 5 2 ﬁ_)

2

Continuum Borcherds-Cartan datum for R: ((Int(R), ®,8), Fun(R), (-, -))



5[(R) = the Lie algebra generated by x5, a € Int(IR), and Fun(RR) with relations:

» Diagonal action: [¢, ¢] = 0, [, xF] = £(¢, 1)

» Double relations: [x;, x5] = 0,,1a



5[(R) = the Lie algebra generated by x5, a € Int(IR), and Fun(RR) with relations:

» Diagonal action: [¢, ¢] = 0, [, xF] = £(¢, 1)

» Double relations: [x}',x;] = Onpla +(—1) () (1a,1p) (x;r@ﬂ = Xgoa)-



Definition (Continuum Lie algebra of the line IR)
s[(R) = the Lie algebra generated by xif, # € Int(R), and Fun(RR) with relations:

Diagonal action: [¢, ] = 0, [¢, x| = (¢, Lo )i
Double relations: [x}',xg} = Onpla +(=1){1a1p) (1o, 1p) (x;reﬁ - xgm).
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5[(R) = the Lie algebra generated by xif, « € Int(R), and Fun(RR) with relations:
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Definition (Continuum Lie algebra of the line R)
5[(R) = the Lie algebra generated by xif, « € Int(R), and Fun(RR) with relations:

Diagonal action: [¢, ¥)] = 0, [¢, xF] = (¢, 1a) 2.
Double relations: [x;[,xlﬂ = 0y,pla +(=1){1a1p) (1a,1p) (x;lp - Y/;a)

Serre relations: [xai,xﬁ = i(fl)uﬁ’l”‘)x;t@ﬁ.
for ¢, € Fun(R) and a, B € Int(RR). Here, if fia © B, then xmi@/S = 0.

Explicit examples

Remark

intervals with endpoints € K
R~K=2Z0Q<
€ Funz(R) with discontinuity points € K

Serre relations are only quadratic (!).

s(K) has a structure of a (topological) Lie bialgebra — this will be explained later ()
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Consider the Lie algebra homomorphism ¢y : s[(2) — sl(k) with k > 2:

(xi,g) — (xét,é’g) where 6 = highest root in sl(k)
“Pack together”:
@ sI(N) — sl(ky + -+ k1 — 1) where k = (ky, ..., kn—1)

(57, €)= (o, (7)) o1, (81, @1, (x77)) where1=1,...,N—1

An example
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The Lie algebra homomorphisms ¢y form a directed system (sI(N), i). Moreover,

colimg, sI(N) =~ s((Q)  as Lie algebras
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» sl(R) = example of continuum Kac-Moody Lie algebra g(X).

X = 1D topological manifold.

> the construction of g(X) is a Ia Kac:

Lie algebra
max. ideal which trivially intersects the Cartan subalgebra

9(X) =

" colimit realization of g(X) via Borcherds—-Kac-Moody algebras



" X =ad-hoc (1-dim) oriented top. manifold: spaghetti-space (as named by
Kuwagaki).
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Continuum quivers Qx = (Int(X), ®, S, (+,)x)

X = ad-hoc (1-dim) oriented top. manifold: spaghetti-space (as named by
Kuwagaki). For example:

1 -
’
, ’
- — P
<
N ’
+ -’
' -

Int(X) = { intervalson X }

interval on X = any concatenation (=: @) of open—closed intervals in IR possibly
across different spaghetti-lines

T=—>— P= f

© as before.
Fun(X) is spanned by characteristic functions 1, € Int(X).
(-, -) is the natural extension of (-, -) from R to X such that

(1066,3/ 17) = (La, 17) + (1ﬁ, 17) .



Let §(X) be the Lie algebra generated by xi, & € Int(X), and Fun(X) subject to the
relations

» Diagonal action: [¢, ] = 0, [¢, xF] = (¢, 1a) x5,

» Double relations: [x;f,x;] =0upla + (—1)"ep) (lﬁflﬁ)(x:eﬁ —Xgoa)s
for ¢, € Fun(X) and &, B € Int(X).



Let §(X) be the Lie algebra generated by xi, & € Int(X), and Fun(X) subject to the
relations

» Diagonal action: [¢, ] = 0, [¢, xF] = (¢, 1a) x5,
» Double relations: [x],x5] = 0,61 + (—1)"ep) (1,,6,1,3)(x,;fel5 —Xgou)s
for ¢, € Fun(X) and &, B € Int(X).
Set
9(X) =8(X)/rx,

where ty is the maximal (graded) two-sided ideal in §(X) which intersects trivially the
Cartan subalgebra Fun(X).

The ideal v is generated by the Serre relations

o

[, xg] = i(—l)(lﬁ’l“>xf®ﬁ

where («, B) € Serre(X). Def. di Serre(X)



Let §(X) be the Lie algebra generated by xi, & € Int(X), and Fun(X) subject to the
relations

» Diagonal action: [¢, ] = 0, [¢, xF] = (¢, 1a) x5,
» Double relations: [x],x5] = 0,61 + (—1)"ep) (1,,6,1,3)(x,;fel5 —Xgou)s
for ¢, € Fun(X) and &, B € Int(X).
Set
9(X) =8(X)/rx,

where ty is the maximal (graded) two-sided ideal in §(X) which intersects trivially the
Cartan subalgebra Fun(X).

The ideal vx is generated by the Serre relations

o

[, xg] = i(—l)(lﬁ’l“>xf®ﬁ

where («, B) € Serre(X). Def. di Serre(X)
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» &, B € J donot overlap except in the case « C g = S'.



Consider a set of intervals 7 C Int(X) such that:
> forany & € J ~» a = a ‘tree’ of (contractible) intervals or a = S;

» &, B € J donot overlap except in the case « C g = S'.

We can define 2 Lie algebras:

F X T) = (L xg e € T) Ca(X)

> quiver Q= (7, £), Borcherds—Cartan matrix Ay = ((1a, 15))% e
~+ corresponding Borcherds-Kac-Moody algebra gBXM(7)

gBKM(7) is isomorphic to g(X; J) via

(xf,ij,x) — (xf,l,x)



Consider a set of intervals 7 C Int(X) such that:
> forany & € J ~» a = a ‘tree’ of (contractible) intervals or a = S;

» &, B € J donot overlap except in the case « C g = S'.

We can define 2 Lie algebras:

F X T) = (L xg e € T) Ca(X)

> quiver Q= (7, £), Borcherds—Cartan matrix Ay = ((1a, 15))% e
~+ corresponding Borcherds-Kac-Moody algebra gBXM(7)

gBKM(7) is isomorphic to g(X; J) via

(xf,ij,x) — (xf,l,x)

Our quadratic Serre relations = Serre relations of the Borcherds—-Kac-Moody algebra.
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Configuration of intervals Borcherds—Cartan quiver

O

Remark

We obtain always (!) simply-laced diagrams with at most 1 (!) loop at each vertex.



Theorem (Appel-S.-Schiffmann)
Let J, J’ be two (finite) sets of intervals in X (as before).
IfJ' C J, there is a canonical (obvious) embedding
¢ 7 8(GT) = e(XT).
If
ve€J, y=a@®p, J=(I'~{1})U{xp},
there is a canonical embedding
¢ 78X T) = (X T),
which sends
X xE a1, fora e I N {7},
1, 1, +1p,

x5 e ()W ], g

= (D)8 2]
The collection of all possible embeddings ¢f7 g1 (pg 1 form a direct system. Moreover,

colimy g(X; J) ~ g(X) as Lie algebras .
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Assume that X # S! ~ (-, -) is non-degenerate

en X = S!, dimker(-,-) = 1~ extend the Cartan subalgebra of g(5') (1))
8



Let Qx = (Int(X), ®, S, (-, -)) be a continuum quiver.

Assume that X # S! ~ (-, -) is non-degenerate

(When X = S', dimker(-, -) = 1~ extend the Cartan subalgebra of g(S!) (1))

The continuum Kac—Moody algebra g(X) has the structure of a topological (!) quasi—triangular
Lie bialgebra such that the topological cobracket

8: 9(X) = 9(X)@g(X)
is defined on the generators by

(1) =0 and 8(xF) =1, AXE+ Y (—1)<1ﬁ/1a)(1f3,1a)x§ /\th .
BOY=0
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Let Qx = (Int(X), ®, S, (-, -)) be a continuum quiver.

Assume that X # S! ~ (-, -) is non-degenerate

(When X = S', dimker(-, -) = 1~ extend the Cartan subalgebra of g(S!) (1))

The continuum Kac—Moody algebra g(X) has the structure of a topological (!) quasi—triangular
Lie bialgebra such that the topological cobracket

9(X) = a(X)®g(X)
is defined on the generators by

(1) =0 and 8(xF) =1, AXE+ Y (—1)<1ﬁ/1a)(1f3,1a)x§ /\x$
BOY=0

colimy g(X; J) ~ g(X) is not (!) an isomorphism of bialgebras but only of Lie algebras.

There exists a topological quasi—triangular Hopf algebra U,g(X) which quantizes g(X).



LetK=Q,R,Q/Z, S' =R/Z.

There exists an Hall algebra realization of U,s|(IK) via the abelian category Repy, (K) of

finite-dimensional (coherent) representations of K (called also coherent persistent modules of
K).
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> Fock space of Uys!(IR) and corresponding action of U,sl(S!)

via continuum version of partitions.
(due to S.-Schiffmann)

» symmetric tensor representations Vg, of Uysl(S?).
(due to S.-Schiffmann)

Conjecture: Fock space = limit of Vg ,.
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~» Goal: Dirac deltas € weight lattice.
Q. Weights are distributions on Fun(X)?
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What do we know and what is it open?

Representation theory
Fock space of Uys!(IR) and corresponding action of U,sl(S!)

via continuum version of partitions.

(due to S.-Schiffmann)

symmetric tensor representations Vg, of U,sl(Sh).
(due to S.-Schiffmann)

Conjecture: Fock space = limit of V.

Q. general definition of highest weight modules?

Generalization of g(X) via enlargement of Fun(X)?

Cartan subalgebra generated by locally—constant functions f: R — C with
bounded support

~» Goal: Dirac deltas € weight lattice.
Q. Weights are distributions on Fun(X)?

Generalization of g(X) via Hall algebras? We need abelian categories of
topology: finite-dimensional representations of X (i.e., persistence modules of X).
algebraic geometry: generalized parabolic sheaves with weights in X.

(torsion parabolic sheaves with weights in S! = finite-dimensional coherent
representations of S'.)



Thank you for the attention!



Intervals (1o, 1) | (1, 1a) | (Ta,1g) = (1o, 1) + (15, 1a)
a
3 1 1 2
B
«
P -1 0 -1

Return back



Intervals Relations
a
? Mo, xf ] =257, [La, %3] = —2x5 , [, 2] = 1u = sl(2)-triple

[L.,1g] =0, [la,xz{] = —x}' Mgl =xp [ a1 =0
« B Our Serre rel: [x}',xz{] = xi’uﬁ Jxaxg] = =2
Our Serre rel = Usual Serre rel: [xf, [xf,xi]] = :t[xf,xfuﬁ] =0

(Attention: tUB = a & Band fa S a & p)

« [1a,15] =0, [1a,x5] =0, [, 5] = 0, [, x5] = 0

ﬁ (Our Serre rels = Usual Serre rels) [x,f , x;] =0

Return back



P2 sl(3) — sl(2+3 1) =sl(4)

such that
(. &) = (51, 8)
x5 = £, ]
Gar G+ 83
Pictorially:
1 2
Aj-quiver: o °
| P N
As-quiver: o o Y
1 2 3

Return back



Serre(X) is the set of pairs (&, B) of intervals such that either
" wisa “tree” of (contractible) intervals, and

aC,Ble, or iﬂa@ﬁ, or adp does not contain S! ZapB,

or
» Pa®Bandanp=0Q.

In Serre(X), we do have:
“ & S
B a= x=
[ x5] = Fxep b 2] = £, [, x5 =0

In Serre(X), we do not have:

Return back
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