Continuum Kac–Moody Algebras & their quantizations

Francesco Sala (Università di Pisa)

May 15, 2020

based on

- arXiv:1903.02813 (with Olivier Schiffmann)
- arXiv:1903.01413 (with Andrea Appel)
- arXiv:1812.08528 (with Andrea Appel and Olivier Schiffmann)

arXiv:1711.07391 (with Olivier Schiffmann; with an appendix by Tatsuki Kuwagaki)

Quiver $Q = (I, \mathcal{E})$: I = set of vertices, \mathcal{E} = set of edges.

Quiver $Q = (I, \mathcal{E})$: I = set of vertices, \mathcal{E} = set of edges. For example:

A_{N-1} quiver one-loop quiver

Quiver $Q = (I, \mathcal{E})$: I = set of vertices, \mathcal{E} = set of edges. For example:

 A_{N-1} quiver

one-loop quiver

Borcherds–Cartan datum for Q

- ▶ $\mathfrak{h} = \mathbb{C}^{\mathcal{I}} = \operatorname{span}_{\mathbb{C}} \{ \xi_i \, | \, i \in \mathcal{I} \}, \quad \{ \xi_i \, | \, i \in \mathcal{I} \} = \text{tautological basis of } \mathbb{C}^{\mathcal{I}}.$
- symmetric bilinear form

$$(\cdot,\cdot)\colon \mathbb{C}^{\mathcal{I}}\otimes\mathbb{C}^{\mathcal{I}}\to\mathbb{C}$$
, $(v,u):={}^{T}vAu \quad \forall v,u\in\mathbb{Z}^{\mathcal{I}}$

where

- $A := 2 \operatorname{Id} C {}^{T}C = \operatorname{Cartan matrix};$
- \triangleright $C = (c_{i,j}) =$ adjacency matrix; and

▶
$$c_{i,j} := #\{e \in \mathcal{E} \mid \mathsf{source}(e) = i \text{, } \mathsf{target}(e) = j\}, \forall i, j \in \mathcal{I}$$

Quiver $Q = (I, \mathcal{E})$: I = set of vertices, \mathcal{E} = set of edges. For example:

 A_{N-1} quiver

one-loop quiver

Borcherds–Cartan datum for Q

- ▶ $\mathfrak{h} = \mathbb{C}^{\mathcal{I}} = \operatorname{span}_{\mathbb{C}} \{ \xi_i \, | \, i \in \mathcal{I} \}, \quad \{ \xi_i \, | \, i \in \mathcal{I} \} = \text{tautological basis of } \mathbb{C}^{\mathcal{I}}.$
- symmetric bilinear form

$$(\cdot,\cdot)\colon \mathbb{C}^{\mathcal{I}}\otimes\mathbb{C}^{\mathcal{I}}\to\mathbb{C}$$
, $(v,u):={}^{T}vAu \quad \forall v,u\in\mathbb{Z}^{\mathcal{I}}$

where

- $A := 2 \operatorname{Id} C {}^{T}C = \operatorname{Cartan matrix};$
- \triangleright $C = (c_{i,j}) =$ adjacency matrix; and
- ► $c_{i,j} := #\{e \in \mathcal{E} \mid \mathsf{source}(e) = i, \mathsf{target}(e) = j\}, \forall i, j \in \mathcal{I}.$

We say that ξ_i is real / imaginary if $c_{i,i} = 0 / c_{i,i} \neq 0$.

Quiver $Q = (I, \mathcal{E})$: I = set of vertices, \mathcal{E} = set of edges. For example:

 A_{N-1} quiver

one-loop quiver

Borcherds–Cartan datum for Q

- ▶ $\mathfrak{h} = \mathbb{C}^{\mathcal{I}} = \operatorname{span}_{\mathbb{C}} \{ \xi_i \, | \, i \in \mathcal{I} \}, \quad \{ \xi_i \, | \, i \in \mathcal{I} \} = \text{tautological basis of } \mathbb{C}^{\mathcal{I}}.$
- symmetric bilinear form

$$(\cdot,\cdot)\colon \mathbb{C}^{\mathcal{I}}\otimes\mathbb{C}^{\mathcal{I}}\to\mathbb{C}$$
, $(v,u):={}^{T}vAu \quad \forall v,u\in\mathbb{Z}^{\mathcal{I}}$

where

- $A := 2 \operatorname{Id} C {}^{T}C = \operatorname{Cartan matrix};$
- \triangleright $C = (c_{i,j}) =$ adjacency matrix; and
- ▶ $c_{i,j} := #\{e \in \mathcal{E} \mid \mathsf{source}(e) = i, \mathsf{target}(e) = j\}, \forall i, j \in \mathcal{I}.$

We say that ξ_i is real / imaginary if $c_{i,i} = 0 / c_{i,i} \neq 0$. For example:

$$A_{\text{one-loop}} = (0)$$

Borcherds–Kac–Moody algebra of the quiver Q

Definition (Borcherds-Kac-Moody algebra)

 $\mathfrak{g}_{\mathcal{Q}}^{\mathsf{BKM}}$ = the Lie algebra generated by elements x_i^{\pm} , $i \in \mathcal{I}$, and \mathfrak{h} with relations

- Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_j^{\pm}] = \pm (\phi, \xi_j) x_j^{\pm}$.
- Double relations: $[x_i^+, x_j^-] = \delta_{i,j} \xi_i$.
- Serre relations:

$$\begin{split} [x_i^+, x_j^+] &= 0 = [x_i^-, x_j^-] & \text{if } (\xi_i, \xi_j) = 0 , \\ (\operatorname{\mathsf{ad}} x_j^+)^{1-(\xi_i, \xi_j)} x_i^+ &= 0 = (\operatorname{\mathsf{ad}} x_j^-)^{1-(\xi_i, \xi_j)} x_i^- & \text{if } \xi_j \text{ is real} \end{split}$$

for $\phi, \psi \in \mathfrak{h}$ and $\iota, \jmath \in \mathcal{I}$.

Definition (Borcherds-Kac-Moody algebra)

 $\mathfrak{g}_{\mathcal{Q}}^{\mathsf{BKM}}$ = the Lie algebra generated by elements x_{ι}^{\pm} , $\iota \in \mathcal{I}$, and \mathfrak{h} with relations

- Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_j^{\pm}] = \pm (\phi, \xi_j) x_j^{\pm}$.
- Double relations: $[x_i^+, x_j^-] = \delta_{i,j} \xi_i$.
- Serre relations:

$$\begin{split} [x_i^+, x_j^+] &= 0 = [x_i^-, x_j^-] & \text{if } (\xi_i, \xi_j) = 0 \text{,} \\ (\operatorname{ad} x_j^+)^{1-(\xi_i, \xi_j)} x_i^+ &= 0 = (\operatorname{ad} x_j^-)^{1-(\xi_i, \xi_j)} x_i^- & \text{if } \xi_j \text{ is real} \end{split}$$

for $\phi, \psi \in \mathfrak{h}$ and $\iota, \jmath \in \mathcal{I}$.

For example:

 $\mathfrak{g}_{A_{N-1}}^{\mathsf{BKM}} = \mathfrak{sl}(N)$ and $\mathfrak{g}_{\mathsf{one-loop}}^{\mathsf{BKM}} = \mathsf{Lie}$ algebra is generated by $\{x^{\pm}, \xi\}$ satisfying: $[\xi, x^{\pm}] = 0$ and $[x^+, x^-] = \xi$.

Continuum Borcherds–Cartan datum for \mathbb{R}

▶ $\mathfrak{h} := \operatorname{span}_{\mathbb{C}} \{\operatorname{characteristic functions} \mathbf{1}_{\alpha} \forall \alpha \in \operatorname{Int}(\mathbb{R})\}\$ where $\operatorname{Int}(\mathbb{R}) = \{\operatorname{open-closed intervals} \alpha = (a, b] \subset \mathbb{R} \text{ with } a \neq b\}.$

 $(\mathsf{Int}(\mathbb{R}) \text{ plays the role of a set } \mathcal{I} \text{ of "vertices"}).$

Continuum Borcherds–Cartan datum for \mathbb{R}

▶ $\mathfrak{h} := \operatorname{span}_{\mathbb{C}} \{\operatorname{characteristic functions } \mathbf{1}_{\alpha} \forall \alpha \in \operatorname{Int}(\mathbb{R}) \}$ where $\operatorname{Int}(\mathbb{R}) = \{\operatorname{open-closed intervals } \alpha = (a, b] \subset \mathbb{R} \text{ with } a \neq b \}.$ $(\operatorname{Int}(\mathbb{R}) \text{ plays the role of a set } \mathcal{I} \text{ of "vertices"}).$

 $\mathfrak{h} = \mathsf{Fun}(\mathbb{R}) \coloneqq \{ \text{locally constant, left-continuous functions } f \colon \mathbb{R} \to \mathbb{C} \text{ with finitely many points of discontinuity, and bounded support} \}$

Continuum Borcherds–Cartan datum for \mathbb{R}

▶ $\mathfrak{h} := \operatorname{span}_{\mathbb{C}} \{\operatorname{characteristic functions } \mathbf{1}_{\alpha} \forall \alpha \in \operatorname{Int}(\mathbb{R}) \}$ where $\operatorname{Int}(\mathbb{R}) = \{\operatorname{open-closed intervals } \alpha = (a, b] \subset \mathbb{R} \text{ with } a \neq b \}.$ $(\operatorname{Int}(\mathbb{R}) \text{ plays the role of a set } \mathcal{I} \text{ of "vertices"}).$

 $\mathfrak{h} = \mathsf{Fun}(\mathbb{R}) := \{ \text{locally constant, left-continuous functions } f : \mathbb{R} \to \mathbb{C} \text{ with finitely many points of discontinuity, and bounded support} \}$

$$\begin{array}{l} \blacktriangleright \quad (\cdot,\cdot) \colon \mathsf{Fun}(\mathbb{R}) \times \mathsf{Fun}(\mathbb{R}) \to \mathbb{C} \\ \langle f,g \rangle \coloneqq \sum_{x} f_{-}(x) \cdot (g_{-}(x) - g_{+}(x)) \;, \quad (f,g) \coloneqq \langle f,g \rangle + \langle g,f \rangle \quad \forall f,g \in \mathsf{Fun}_{\mathbb{Z}}(\mathbb{R}) \;. \end{array}$$

 $(h_{\pm}(x) \coloneqq \lim_{t>0, t\to 0} h(x \pm t).)$

Explicit examples

Continuum Borcherds–Cartan datum for \mathbb{R}

▶ $\mathfrak{h} := \operatorname{span}_{\mathbb{C}} \{\operatorname{characteristic functions } \mathbf{1}_{\alpha} \forall \alpha \in \operatorname{Int}(\mathbb{R}) \}$ where $\operatorname{Int}(\mathbb{R}) = \{\operatorname{open-closed intervals } \alpha = (a, b] \subset \mathbb{R} \text{ with } a \neq b \}$. $(\operatorname{Int}(\mathbb{R}) \text{ plays the role of a set } \mathcal{I} \text{ of "vertices"}).$

 $\mathfrak{h} = \mathsf{Fun}(\mathbb{R}) := \{ \text{locally constant, left-continuous functions } f : \mathbb{R} \to \mathbb{C} \text{ with finitely many points of discontinuity, and bounded support} \}$

$$\begin{array}{l} \blacktriangleright \quad (\cdot, \cdot) \colon \operatorname{Fun}(\mathbb{R}) \times \operatorname{Fun}(\mathbb{R}) \to \mathbb{C} :\\ \langle f, g \rangle \coloneqq \sum_{x} f_{-}(x) \cdot (g_{-}(x) - g_{+}(x)) \;, \quad (f, g) \coloneqq \langle f, g \rangle + \langle g, f \rangle \quad \forall f, g \in \operatorname{Fun}_{\mathbb{Z}}(\mathbb{R}) \;. \end{array}$$

 $(h_{\pm}(x) \coloneqq \lim_{t>0, t\to 0} h(x \pm t).)$

Explicit examples

Continuum Borcherds–Cartan datum for \mathbb{R}

▶ $\mathfrak{h} := \operatorname{span}_{\mathbb{C}} \{\operatorname{characteristic functions } \mathbf{1}_{\alpha} \forall \alpha \in \operatorname{Int}(\mathbb{R}) \}$ where $\operatorname{Int}(\mathbb{R}) = \{\operatorname{open-closed intervals } \alpha = (a, b] \subset \mathbb{R} \text{ with } a \neq b \}$. $(\operatorname{Int}(\mathbb{R}) \text{ plays the role of a set } \mathcal{I} \text{ of "vertices"}).$

 $\mathfrak{h} = \mathsf{Fun}(\mathbb{R}) := \{ \text{locally constant, left-continuous functions } f : \mathbb{R} \to \mathbb{C} \text{ with finitely many points of discontinuity, and bounded support} \}$

$$(\cdot, \cdot) : \operatorname{Fun}(\mathbb{R}) \times \operatorname{Fun}(\mathbb{R}) \to \mathbb{C}:$$

$$\langle f, g \rangle := \sum_{x} f_{-}(x) \cdot (g_{-}(x) - g_{+}(x)) , \quad (f, g) := \langle f, g \rangle + \langle g, f \rangle \quad \forall f, g \in \operatorname{Fun}_{\mathbb{Z}}(\mathbb{R}) .$$

 $(h_{\pm}(x) \coloneqq \lim_{t>0, t\to 0} h(x \pm t).)$

Explicit examples

Attention: $Int(\mathbb{R})$ has an extra algebraic structure that we have to consider:

concatenation of intervals:
$$\alpha \beta$$

Continuum Borcherds–Cartan datum for \mathbb{R} (continuation)

Partial operations on Int(R):

 \oplus = sum of intervals:

$$\alpha \oplus \beta = \begin{cases} \alpha \cup \beta & \text{if } \alpha \cup \beta \in \mathsf{Int}(\mathbb{R}) \text{ and } \alpha \cap \beta = \emptyset \\ n.d. & \text{otherwise} \end{cases}$$
$$\alpha \oplus \beta = \xrightarrow{\alpha \qquad \beta \qquad \text{or} \qquad \xrightarrow{\beta \qquad \alpha \qquad } \end{cases}$$

Continuum Borcherds–Cartan datum for \mathbb{R} (continuation)

Partial operations on $Int(\mathbb{R})$:

 \oplus = sum of intervals:

$$\alpha \oplus \beta = \begin{cases} \alpha \cup \beta & \text{if } \alpha \cup \beta \in \mathsf{Int}(\mathbb{R}) \text{ and } \alpha \cap \beta = \emptyset \\ n.d. & \text{otherwise} \end{cases}$$
$$\alpha \oplus \beta = \xrightarrow{\alpha \qquad \beta \qquad \text{or} \qquad \xrightarrow{\beta \qquad \alpha \qquad }}$$

 \ominus = difference of intervals:

$$\alpha \ominus \beta = \begin{cases} \alpha \smallsetminus \beta & \text{if } \beta \subset \alpha \text{ and } \alpha \smallsetminus \beta \in \mathsf{Int}(\mathbb{R}) \\ n.d. & \text{otherwise} \end{cases}$$
$$\alpha \ominus \beta = \gamma : \begin{cases} \xrightarrow{\alpha} & \text{or} & \xrightarrow{\alpha} \\ \overrightarrow{\gamma} & \xrightarrow{\beta} & \text{or} & \xrightarrow{\beta} & \xrightarrow{\gamma} \end{cases}$$

Continuum Borcherds–Cartan datum for \mathbb{R} (continuation)

Partial operations on $Int(\mathbb{R})$:

 \oplus = sum of intervals:

$$\alpha \oplus \beta = \begin{cases} \alpha \cup \beta & \text{if } \alpha \cup \beta \in \mathsf{Int}(\mathbb{R}) \text{ and } \alpha \cap \beta = \emptyset \\ n.d. & \text{otherwise} \end{cases}$$
$$\alpha \oplus \beta = \xrightarrow{\alpha \qquad \beta \qquad \text{or} \qquad \xrightarrow{\beta \qquad \alpha \qquad }}$$

 \ominus = difference of intervals:

$$\alpha \ominus \beta = \begin{cases} \alpha \smallsetminus \beta & \text{if } \beta \subset \alpha \text{ and } \alpha \smallsetminus \beta \in \mathsf{Int}(\mathbb{R}) \\ n.d. & \text{otherwise} \end{cases}$$
$$\alpha \ominus \beta = \gamma : \begin{cases} \xrightarrow{\alpha} & \text{or} & \xrightarrow{\alpha} \\ \gamma \xrightarrow{\beta} & \text{or} & \xrightarrow{\beta} & \gamma \end{cases}$$

Continuum Borcherds–Cartan datum for \mathbb{R} **:** $((Int(\mathbb{R}), \oplus, \ominus), Fun(\mathbb{R}), (\cdot, \cdot))$

 $\mathfrak{sl}(\mathbb{R})$ = the Lie algebra generated by x_{α}^{\pm} , $\alpha \in Int(\mathbb{R})$, and $Fun(\mathbb{R})$ with relations:

- Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$.
- Double relations: $[x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha}$

 $\mathfrak{sl}(\mathbb{R})$ = the Lie algebra generated by x_{α}^{\pm} , $\alpha \in Int(\mathbb{R})$, and $Fun(\mathbb{R})$ with relations:

b Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$.

► Double relations: $[x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^+ - x_{\beta \ominus \alpha}^-).$

 $\mathfrak{sl}(\mathbb{R})$ = the Lie algebra generated by x^{\pm}_{α} , $\alpha \in Int(\mathbb{R})$, and $Fun(\mathbb{R})$ with relations:

- **b** Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$.
- $\blacktriangleright \text{ Double relations: } [x_{\alpha}^{+}, x_{\beta}^{-}] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^{+} x_{\beta \ominus \alpha}^{-}).$

Serre relations:
$$[x_{\alpha}^{\pm}, x_{\beta}^{\pm}] = \pm (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} x_{\alpha \oplus \beta}^{\pm}$$

for $\phi, \psi \in \operatorname{Fun}(\mathbb{R})$ and $\alpha, \beta \in \operatorname{Int}(\mathbb{R})$. Here, if $\nexists \alpha \oplus \beta$, then $x_{\alpha \oplus \beta}^{\pm} \coloneqq 0$.

Explicit examples

 $\mathfrak{sl}(\mathbb{R})$ = the Lie algebra generated by x_{α}^{\pm} , $\alpha \in Int(\mathbb{R})$, and $Fun(\mathbb{R})$ with relations:

- Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$.
- ► Double relations: $[x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^+ x_{\beta \ominus \alpha}^-).$

Serre relations:
$$[x^{\pm}_{\alpha}, x^{\pm}_{\beta}] = \pm (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} x^{\pm}_{\alpha \oplus \beta}$$

for $\phi, \psi \in \operatorname{Fun}(\mathbb{R})$ and $\alpha, \beta \in \operatorname{Int}(\mathbb{R})$. Here, if $\nexists \alpha \oplus \beta$, then $x_{\alpha \oplus \beta}^{\pm} \coloneqq 0$.

Explicit examples

 $\mathfrak{sl}(\mathbb{R})$ = the Lie algebra generated by x_{α}^{\pm} , $\alpha \in Int(\mathbb{R})$, and $Fun(\mathbb{R})$ with relations:

- Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$.
- ► Double relations: $[x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^+ x_{\beta \ominus \alpha}^-).$
- Serre relations: $[x_{\alpha}^{\pm}, x_{\beta}^{\pm}] = \pm (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} x_{\alpha \oplus \beta}^{\pm}$.

for $\phi, \psi \in \mathsf{Fun}(\mathbb{R})$ and $\alpha, \beta \in \mathsf{Int}(\mathbb{R})$. Here, if $\nexists \alpha \oplus \beta$, then $x_{\alpha \oplus \beta}^{\pm} \coloneqq 0$.

Explicit examples

Remark

 $\blacktriangleright \mathbb{R} \rightsquigarrow \mathbb{K} = \mathbb{Z}, \mathbb{Q} \Leftrightarrow \begin{cases} \text{intervals with endpoints} \in \mathbb{K} \\ f \in \mathsf{Fun}_{\mathbb{Z}}(\mathbb{R}) \text{ with discontinuity points} \in \mathbb{K} \end{cases}$

 $\mathfrak{sl}(\mathbb{R})$ = the Lie algebra generated by x_{α}^{\pm} , $\alpha \in Int(\mathbb{R})$, and $Fun(\mathbb{R})$ with relations:

- Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$.
- ► Double relations: $[x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^+ x_{\beta \ominus \alpha}^-).$
- Serre relations: $[x_{\alpha}^{\pm}, x_{\beta}^{\pm}] = \pm (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} x_{\alpha \oplus \beta}^{\pm}$.

for $\phi, \psi \in \mathsf{Fun}(\mathbb{R})$ and $\alpha, \beta \in \mathsf{Int}(\mathbb{R})$. Here, if $\nexists \alpha \oplus \beta$, then $x_{\alpha \oplus \beta}^{\pm} \coloneqq 0$.

Explicit examples

Remark

- $\blacktriangleright \mathbb{R} \rightsquigarrow \mathbb{K} = \mathbb{Z}, \mathbb{Q} \Leftrightarrow \begin{cases} \text{intervals with endpoints} \in \mathbb{K} \\ f \in \mathsf{Fun}_{\mathbb{Z}}(\mathbb{R}) \text{ with discontinuity points} \in \mathbb{K} \end{cases}$
 - Serre relations are only quadratic (!).

 $\mathfrak{sl}(\mathbb{R})$ = the Lie algebra generated by x_{α}^{\pm} , $\alpha \in Int(\mathbb{R})$, and $Fun(\mathbb{R})$ with relations:

- Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$.
- $\blacktriangleright \text{ Double relations: } [x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^+ x_{\beta \ominus \alpha}^-).$
- Serre relations: $[x_{\alpha}^{\pm}, x_{\beta}^{\pm}] = \pm (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} x_{\alpha \oplus \beta}^{\pm}$.

for $\phi, \psi \in \mathsf{Fun}(\mathbb{R})$ and $\alpha, \beta \in \mathsf{Int}(\mathbb{R})$. Here, if $\nexists \alpha \oplus \beta$, then $x_{\alpha \oplus \beta}^{\pm} \coloneqq 0$.

Explicit examples

Remark

- $\blacktriangleright \mathbb{R} \rightsquigarrow \mathbb{K} = \mathbb{Z}, \mathbb{Q} \Leftrightarrow \begin{cases} \text{intervals with endpoints} \in \mathbb{K} \\ f \in \mathsf{Fun}_{\mathbb{Z}}(\mathbb{R}) \text{ with discontinuity points} \in \mathbb{K} \end{cases}$
- Serre relations are only quadratic (!).
- ▶ $\mathfrak{sl}(\mathbb{K})$ has a structure of a (topological) Lie bialgebra \implies this will be explained later (!)

Consider the Lie algebra homomorphism $\varphi_k : \mathfrak{sl}(2) \mapsto \mathfrak{sl}(k)$ with $k \ge 2$:

 $(x^{\pm},\xi) \mapsto (x^{\pm}_{\theta},\xi_{\theta})$ where $\theta = \text{highest root in } \mathfrak{sl}(k)$

Consider the Lie algebra homomorphism $\varphi_k \colon \mathfrak{sl}(2) \mapsto \mathfrak{sl}(k)$ with $k \ge 2$:

$$(x^{\pm}, \xi) \mapsto (x^{\pm}_{\theta}, \xi_{\theta})$$
 where $\theta = \text{highest root in } \mathfrak{sl}(k)$

"Pack together":

$$\begin{split} \varphi_{\underline{k}} \colon \mathfrak{sl}(N) &\longrightarrow \mathfrak{sl}(k_1 + \dots + k_{N-1} - 1) & \text{where } \underline{k} = (k_1, \dots, k_{N-1}) \\ (x_i^+, \xi_i, x_i^-) &\mapsto \left(\varphi_{k_i}(x_i^+), \varphi_{k_i}(\xi_i), \varphi_{k_i}(x_i^-)\right) & \text{where } i = 1, \dots, N-1 \end{split}$$

An example

Consider the Lie algebra homomorphism $\varphi_k \colon \mathfrak{sl}(2) \mapsto \mathfrak{sl}(k)$ with $k \ge 2$:

$$(x^{\pm}, \xi) \mapsto (x^{\pm}_{\theta}, \xi_{\theta})$$
 where $\theta = \text{highest root in } \mathfrak{sl}(k)$

"Pack together":

$$\begin{split} \varphi_{\underline{k}} \colon \mathfrak{sl}(N) &\longrightarrow \mathfrak{sl}(k_1 + \dots + k_{N-1} - 1) & \text{where } \underline{k} = (k_1, \dots, k_{N-1}) \\ (x_i^+, \xi_i, x_i^-) &\mapsto \left(\varphi_{k_i}(x_i^+), \varphi_{k_i}(\xi_i), \varphi_{k_i}(x_i^-)\right) & \text{where } i = 1, \dots, N-1 \end{split}$$

An example

Consider the Lie algebra homomorphism $\varphi_k : \mathfrak{sl}(2) \mapsto \mathfrak{sl}(k)$ with $k \ge 2$:

$$(x^{\pm}, \xi) \mapsto (x^{\pm}_{\theta}, \xi_{\theta})$$
 where $\theta = \text{highest root in } \mathfrak{sl}(k)$

"Pack together":

$$\begin{split} \varphi_{\underline{k}} \colon \mathfrak{sl}(N) &\longrightarrow \mathfrak{sl}(k_1 + \dots + k_{N-1} - 1) \qquad \text{where } \underline{k} = (k_1, \dots, k_{N-1}) \\ (x_i^+, \xi_i, x_i^-) &\mapsto \left(\varphi_{k_i}(x_i^+), \varphi_{k_i}(\xi_i), \varphi_{k_i}(x_i^-)\right) \qquad \text{where } i = 1, \dots, N-1 \end{split}$$

An example

Theorem (S.-Schiffmann)

The Lie algebra homomorphisms φ_k *form a directed system* ($\mathfrak{sl}(N), \varphi_k$)*. Moreover,*

 $\operatorname{colim}_{\varphi_k} \mathfrak{sl}(N) \simeq \mathfrak{sl}(\mathbb{Q})$ as Lie algebras

Consider the Lie algebra homomorphism $\varphi_k : \mathfrak{sl}(2) \mapsto \mathfrak{sl}(k)$ with $k \ge 2$:

$$(x^{\pm}, \xi) \mapsto (x^{\pm}_{\theta}, \xi_{\theta})$$
 where $\theta = \text{highest root in } \mathfrak{sl}(k)$

"Pack together":

$$\begin{split} \varphi_{\underline{k}} \colon \mathfrak{sl}(N) &\longrightarrow \mathfrak{sl}(k_1 + \dots + k_{N-1} - 1) \qquad \text{where } \underline{k} = (k_1, \dots, k_{N-1}) \\ (x_i^+, \xi_i, x_i^-) &\mapsto \left(\varphi_{k_i}(x_i^+), \varphi_{k_i}(\xi_i), \varphi_{k_i}(x_i^-)\right) \qquad \text{where } i = 1, \dots, N-1 \end{split}$$

An example

Theorem (S.-Schiffmann)

The Lie algebra homomorphisms φ_k *form a directed system* ($\mathfrak{sl}(N), \varphi_k$)*. Moreover,*

 $\operatorname{colim}_{\varphi_k} \mathfrak{sl}(N) \simeq \mathfrak{sl}(\mathbb{Q})$ as Lie algebras

What will we see next?

- ▶ $\mathfrak{sl}(\mathbb{R})$ = example of continuum Kac–Moody Lie algebra $\mathfrak{g}(X)$.
 - X = 1D topological manifold.

What will we see next?

sl(ℝ) = example of continuum Kac–Moody Lie algebra g(X).
 X = 1D topological manifold.

• the construction of $\mathfrak{g}(X)$ is à la Kac:

 $\mathfrak{g}(X) = \frac{\text{Lie algebra}}{\text{max. ideal which trivially intersects the Cartan subalgebra}}$

What will we see next?

sl(ℝ) = example of continuum Kac–Moody Lie algebra g(X).
 X = 1D topological manifold.

• the construction of $\mathfrak{g}(X)$ is à la Kac:

 $\mathfrak{g}(X) = \frac{\text{Lie algebra}}{\text{max. ideal which trivially intersects the Cartan subalgebra}}$

colimit realization of $\mathfrak{g}(X)$ via Borcherds–Kac–Moody algebras

Continuum quivers $Q_X = (Int(X), \oplus, \ominus, (\cdot, \cdot)_X)$

X = ad-hoc (1-dim) oriented top. manifold: spaghetti-space (as named by Kuwagaki).

Continuum quivers $Q_X = (Int(X), \oplus, \ominus, (\cdot, \cdot)_X)$

X = ad-hoc (1–dim) oriented top. manifold: spaghetti–space (as named by Kuwagaki). For example:

Continuum quivers $Q_X = (Int(X), \oplus, \ominus, (\cdot, \cdot)_X)$

X = ad-hoc (1-dim) oriented top. manifold: spaghetti-space (as named by Kuwagaki). For example:

 $\vdash \operatorname{Int}(X) = \{ \operatorname{intervals} \operatorname{on} X \}$

interval on *X* = any concatenation ($=: \oplus$) of open–closed intervals in \mathbb{R} possibly across different spaghetti–lines

 \triangleright \ominus as before.

- Fun(*X*) is spanned by characteristic functions $\mathbf{1}_{\alpha}$, $\alpha \in Int(X)$.
- (.,.) is the natural extension of (.,.) from \mathbb{R} to X such that $(\mathbf{1}_{\alpha \oplus \beta_{\ell}}, \mathbf{1}_{\gamma}) = (\mathbf{1}_{\alpha}, \mathbf{1}_{\gamma}) + (\mathbf{1}_{\beta_{\ell}}, \mathbf{1}_{\gamma}).$

The continuum Kac–Moody Lie algebra $\mathfrak{g}(X)$ (Appel–S.–Schiffmann)

Let $\tilde{\mathfrak{g}}(X)$ be the Lie algebra generated by x^{\pm}_{α} , $\alpha \in Int(X)$, and Fun(X) subject to the relations

► Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$,

► Double relations: $[x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^+ - x_{\beta \ominus \alpha}^-),$ for $\phi, \psi \in \operatorname{Fun}(X)$ and $\alpha, \beta \in \operatorname{Int}(X)$.

The continuum Kac–Moody Lie algebra $\mathfrak{g}(X)$ (Appel–S.–Schiffmann)

Let $\tilde{\mathfrak{g}}(X)$ be the Lie algebra generated by x^{\pm}_{α} , $\alpha \in Int(X)$, and Fun(X) subject to the relations

► Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$,

► Double relations:
$$[x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^+ - x_{\beta \ominus \alpha}^-),$$

for $\phi, \psi \in \mathsf{Fun}(X)$ and $\alpha, \beta \in \mathsf{Int}(X)$.

Set

$$\mathfrak{g}(X)\coloneqq \widetilde{\mathfrak{g}}(X)/\mathfrak{r}_X$$
 ,

where \mathfrak{r}_X is the maximal (graded) two–sided ideal in $\tilde{\mathfrak{g}}(X)$ which intersects trivially the Cartan subalgebra Fun(X).

Theorem (Appel–S.–Schiffmann)

The ideal \mathfrak{r}_X is generated by the Serre relations

$$[x_{\alpha}^{\pm}, x_{\beta}^{\pm}] = \pm (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} x_{\alpha \oplus \beta}^{\pm}$$

where $(\alpha, \beta) \in \text{Serre}(X)$.

Def. $di \operatorname{Serre}(X)$

The continuum Kac–Moody Lie algebra $\mathfrak{g}(X)$ (Appel–S.–Schiffmann)

Let $\tilde{\mathfrak{g}}(X)$ be the Lie algebra generated by x^{\pm}_{α} , $\alpha \in Int(X)$, and Fun(X) subject to the relations

► Diagonal action: $[\phi, \psi] = 0$, $[\phi, x_{\alpha}^{\pm}] = \pm (\phi, \mathbf{1}_{\alpha}) x_{\alpha}^{\pm}$,

► Double relations: $[x_{\alpha}^+, x_{\beta}^-] = \delta_{\alpha,\beta} \mathbf{1}_{\alpha} + (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} (\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}) (x_{\alpha \ominus \beta}^+ - x_{\beta \ominus \alpha}^-),$ for $\phi, \psi \in \mathsf{Fun}(X)$ and $\alpha, \beta \in \mathsf{Int}(X)$.

Set

$$\mathfrak{g}(X)\coloneqq \widetilde{\mathfrak{g}}(X)/\mathfrak{r}_X$$
 ,

where \mathfrak{r}_X is the maximal (graded) two–sided ideal in $\tilde{\mathfrak{g}}(X)$ which intersects trivially the Cartan subalgebra $\operatorname{Fun}(X)$.

Theorem (Appel–S.–Schiffmann)

The ideal r_X is generated by the Serre relations

$$[x_{\alpha}^{\pm}, x_{\beta}^{\pm}] = \pm (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} x_{\alpha \oplus \beta}^{\pm}$$

where $(\alpha, \beta) \in \text{Serre}(X)$.

Def. $di \operatorname{Serre}(X)$

'Colimit' realization of $\mathfrak{g}(X)$ and Borcherds–Kac–Moody algebras

Consider a set of intervals $\mathcal{J} \subset Int(X)$ such that:

- ▶ for any $\alpha \in \mathcal{J} \rightsquigarrow \alpha = a$ 'tree' of (contractible) intervals or $\alpha = S^1$;
- $\alpha, \beta \in \mathcal{J}$ do not overlap except in the case $\alpha \subset \beta = S^1$.

'Colimit' realization of $\mathfrak{g}(X)$ and Borcherds–Kac–Moody algebras

Consider a set of intervals $\mathcal{J} \subset Int(X)$ such that:

▶ for any $\alpha \in \mathcal{J} \rightsquigarrow \alpha = a$ 'tree' of (contractible) intervals or $\alpha = S^1$;

• $\alpha, \beta \in \mathcal{J}$ do not overlap except in the case $\alpha \subset \beta = S^1$.

We can define 2 Lie algebras:

- $\blacktriangleright \ \mathfrak{g}(X;\mathcal{J}) \coloneqq \langle \mathbf{1}_{\alpha}, x_{\alpha}^{\pm} \mid \alpha \in \mathcal{J} \rangle \subset \mathfrak{g}(X)$
- ▶ quiver $Q = (\mathcal{J}, \mathcal{E})$, Borcherds–Cartan matrix $A_{\mathcal{J}} = ((\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}))_{\alpha, \beta \in \mathcal{J}}$

 \rightsquigarrow corresponding Borcherds–Kac–Moody algebra $\mathfrak{g}^{\mathsf{BKM}}(\mathcal{J})$

Proposition (Appel-S.-Schiffmann)

 $\mathfrak{g}^{\mathsf{BKM}}(\mathcal{J})$ is isomorphic to $\mathfrak{g}(X;\mathcal{J})$ via

$$(x^{\pm}_{\alpha},\xi_{\alpha})\mapsto (x^{\pm}_{\alpha},\mathbf{1}_{\alpha})$$

'Colimit' realization of $\mathfrak{g}(X)$ and Borcherds–Kac–Moody algebras

Consider a set of intervals $\mathcal{J} \subset Int(X)$ such that:

▶ for any $\alpha \in \mathcal{J} \rightsquigarrow \alpha = a$ 'tree' of (contractible) intervals or $\alpha = S^1$;

• $\alpha, \beta \in \mathcal{J}$ do not overlap except in the case $\alpha \subset \beta = S^1$.

We can define 2 Lie algebras:

- $\blacktriangleright \ \mathfrak{g}(X;\mathcal{J}) \coloneqq \langle \mathbf{1}_{\alpha}, x_{\alpha}^{\pm} \mid \alpha \in \mathcal{J} \rangle \subset \mathfrak{g}(X)$
- ▶ quiver $Q = (\mathcal{J}, \mathcal{E})$, Borcherds–Cartan matrix $A_{\mathcal{J}} = ((\mathbf{1}_{\alpha}, \mathbf{1}_{\beta}))_{\alpha, \beta \in \mathcal{J}}$

 \rightsquigarrow corresponding Borcherds–Kac–Moody algebra $\mathfrak{g}^{\mathsf{BKM}}(\mathcal{J})$

Proposition (Appel-S.-Schiffmann)

 $\mathfrak{g}^{\mathsf{BKM}}(\mathcal{J})$ is isomorphic to $\mathfrak{g}(X;\mathcal{J})$ via

$$(x^{\pm}_{lpha},\xi_{lpha})\mapsto (x^{\pm}_{lpha},\mathbf{1}_{lpha})$$

Remark

Our quadratic Serre relations \implies Serre relations of the Borcherds-Kac-Moody algebra.

Remark

We obtain always (!) simply-laced diagrams with at most 1 (!) loop at each vertex.

Theorem (Appel-S.-Schiffmann)

Let \mathcal{J} , \mathcal{J}' be two (finite) sets of intervals in X (as before).

▶ If $\mathcal{J}' \subseteq \mathcal{J}$, there is a canonical (obvious) embedding

$$\phi'_{\mathcal{J},\mathcal{J}'} \colon \mathfrak{g}(X;\mathcal{J}') \hookrightarrow \mathfrak{g}(X;\mathcal{J})$$
.

► If

$$\gamma \in \mathcal{J}'$$
, $\gamma = \alpha \oplus \beta$, $\mathcal{J} = (\mathcal{J}' \smallsetminus \{\gamma\}) \cup \{\alpha, \beta\}$,

there is a canonical embedding

$$\phi''_{\mathcal{J},\mathcal{J}'} \colon \mathfrak{g}(X;\mathcal{J}') \hookrightarrow \mathfrak{g}(X;\mathcal{J})$$
,

which sends

$$\begin{split} & x_{\alpha}^{\pm} \mapsto x_{\alpha}^{\pm} , \mathbf{1}_{\alpha} \mapsto \mathbf{1}_{\alpha} \quad \textit{for } \alpha \in \mathcal{J}' \smallsetminus \{\gamma\} , \\ & \mathbf{1}_{\gamma} \mapsto \mathbf{1}_{\alpha} + \mathbf{1}_{\beta} , \\ & x_{\gamma}^{+} \mapsto (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} \left[x_{\alpha}^{+}, x_{\beta}^{+} \right] , \quad x_{\gamma}^{-} \mapsto (-1)^{\langle \mathbf{1}_{\alpha}, \mathbf{1}_{\beta} \rangle} \left[x_{\alpha}^{-}, x_{\beta}^{-} \right] . \end{split}$$

► The collection of all possible embeddings $\phi'_{\mathcal{J},\mathcal{J}'}, \phi''_{\mathcal{J},\mathcal{J}'}$ form a direct system. Moreover, $\operatorname{colim}_{\mathcal{J}} \mathfrak{g}(X;\mathcal{J}) \simeq \mathfrak{g}(X)$ as Lie algebras.

Let $Q_X = (Int(X), \oplus, \ominus, (\cdot, \cdot))$ be a continuum quiver.

Assume that $X \neq S^1 \rightsquigarrow (\cdot, \cdot)$ is non–degenerate

Let $Q_X = (Int(X), \oplus, \ominus, (\cdot, \cdot))$ be a continuum quiver.

Assume that $X \neq S^1 \rightsquigarrow (\cdot, \cdot)$ is non–degenerate

(When $X = S^1$, dim ker $(\cdot, \cdot) = 1 \rightsquigarrow$ extend the Cartan subalgebra of $\mathfrak{g}(S^1)$ (!))

Let $Q_X = (Int(X), \oplus, \ominus, (\cdot, \cdot))$ be a continuum quiver.

Assume that $X \neq S^1 \rightsquigarrow (\cdot, \cdot)$ is non–degenerate

(When $X = S^1$, dim ker $(\cdot, \cdot) = 1 \rightarrow \text{extend}$ the Cartan subalgebra of $\mathfrak{g}(S^1)$ (!))

Theorem (Appel-S.)

The continuum Kac–Moody algebra $\mathfrak{g}(X)$ has the structure of a topological (!) quasi–triangular Lie bialgebra such that the topological cobracket

 $\delta \colon \mathfrak{g}(X) \to \mathfrak{g}(X) \widehat{\otimes} \mathfrak{g}(X)$

is defined on the generators by

$$\delta(\mathbf{1}_{\alpha}) \coloneqq 0 \quad and \quad \delta(x_{\alpha}^{\pm}) \coloneqq \mathbf{1}_{\alpha} \wedge x_{\alpha}^{\pm} + \sum_{\beta \oplus \gamma = \alpha} (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} (\mathbf{1}_{\beta}, \mathbf{1}_{\alpha}) \, x_{\beta}^{\pm} \wedge x_{\gamma}^{\pm} \, .$$

Let $Q_X = (Int(X), \oplus, \ominus, (\cdot, \cdot))$ be a continuum quiver.

Assume that $X \neq S^1 \rightsquigarrow (\cdot, \cdot)$ is non–degenerate

(When $X = S^1$, dim ker $(\cdot, \cdot) = 1 \rightarrow \text{extend}$ the Cartan subalgebra of $\mathfrak{g}(S^1)$ (!))

Theorem (Appel-S.)

The continuum Kac–Moody algebra $\mathfrak{g}(X)$ has the structure of a topological (!) quasi–triangular Lie bialgebra such that the topological cobracket

 $\delta \colon \mathfrak{g}(X) \to \mathfrak{g}(X) \widehat{\otimes} \mathfrak{g}(X)$

is defined on the generators by

$$\delta(\mathbf{1}_{\alpha}) \coloneqq 0 \quad and \quad \delta(x_{\alpha}^{\pm}) \coloneqq \mathbf{1}_{\alpha} \wedge x_{\alpha}^{\pm} + \sum_{\beta \oplus \gamma = \alpha} (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} (\mathbf{1}_{\beta}, \mathbf{1}_{\alpha}) \, x_{\beta}^{\pm} \wedge x_{\gamma}^{\pm} \, .$$

Remark

 $\operatorname{colim}_{\mathcal{J}} \mathfrak{g}(X; \mathcal{J}) \simeq \mathfrak{g}(X)$ is not (!) an isomorphism of bialgebras but only of Lie algebras.

Let $Q_X = (Int(X), \oplus, \ominus, (\cdot, \cdot))$ be a continuum quiver.

Assume that $X \neq S^1 \rightsquigarrow (\cdot, \cdot)$ is non–degenerate

(When $X = S^1$, dim ker $(\cdot, \cdot) = 1 \rightarrow \text{extend}$ the Cartan subalgebra of $\mathfrak{g}(S^1)$ (!))

Theorem (Appel-S.)

The continuum Kac–Moody algebra $\mathfrak{g}(X)$ has the structure of a topological (!) quasi–triangular Lie bialgebra such that the topological cobracket

 $\delta \colon \mathfrak{g}(X) \to \mathfrak{g}(X) \widehat{\otimes} \mathfrak{g}(X)$

is defined on the generators by

$$\delta(\mathbf{1}_{\alpha}) \coloneqq 0 \quad and \quad \delta(x_{\alpha}^{\pm}) \coloneqq \mathbf{1}_{\alpha} \wedge x_{\alpha}^{\pm} + \sum_{\beta \oplus \gamma = \alpha} (-1)^{\langle \mathbf{1}_{\beta}, \mathbf{1}_{\alpha} \rangle} (\mathbf{1}_{\beta}, \mathbf{1}_{\alpha}) \, x_{\beta}^{\pm} \wedge x_{\gamma}^{\pm} \, .$$

Remark

 $\operatorname{colim}_{\mathcal{J}} \mathfrak{g}(X; \mathcal{J}) \simeq \mathfrak{g}(X)$ is not (!) an isomorphism of bialgebras but only of Lie algebras.

Theorem (Appel-S.)

There exists a topological quasi-triangular Hopf algebra $\mathbf{U}_{v}\mathfrak{g}(X)$ *which quantizes* $\mathfrak{g}(X)$ *.*

Theorem (S.-Schiffmann)

Let $\mathbb{K} = \mathbb{Q}$, \mathbb{R} , \mathbb{Q}/\mathbb{Z} , $S^1 = \mathbb{R}/\mathbb{Z}$.

There exists an Hall algebra realization of $\mathbf{U}_{v}\mathfrak{sl}(\mathbb{K})$ via the abelian category $\operatorname{Rep}_{\mathbb{F}_{q}}(\mathbb{K})$ of finite-dimensional (coherent) representations of \mathbb{K} (called also coherent persistent modules of \mathbb{K}).

Representation theory

Fock space of $\mathbf{U}_{v}\mathfrak{sl}(\mathbb{R})$ and corresponding action of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$

via continuum version of partitions.

(due to S.-Schiffmann)

symmetric tensor representations $V_{g,r}$ of $\mathbf{U}_{v}\mathfrak{sl}(S^1)$.

(due to S.-Schiffmann)

Conjecture: Fock space = limit of $V_{0,r}$.

Representation theory

Fock space of $\mathbf{U}_{v}\mathfrak{sl}(\mathbb{R})$ and corresponding action of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$

via continuum version of partitions.

(due to S.-Schiffmann)

symmetric tensor representations $V_{g,r}$ of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$.

(due to S.-Schiffmann)

Conjecture: Fock space = limit of $V_{0,r}$.

Q. general definition of highest weight modules?

Representation theory

Fock space of $\mathbf{U}_{v}\mathfrak{sl}(\mathbb{R})$ and corresponding action of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$

via continuum version of partitions.

(due to S.-Schiffmann)

symmetric tensor representations $V_{g,r}$ of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$.

(due to S.-Schiffmann)

Conjecture: Fock space = limit of $V_{0,r}$.

Q. general definition of highest weight modules?

Generalization of g(X) via enlargement of Fun(X)?

▶ Cartan subalgebra generated by locally–constant functions $f : \mathbb{R} \to \mathbb{C}$ with bounded support

→ **Goal:** Dirac deltas \in weight lattice.

▶ **Q.** Weights are distributions on Fun(*X*)?

Representation theory

► Fock space of $\mathbf{U}_{v}\mathfrak{sl}(\mathbb{R})$ and corresponding action of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$

via continuum version of partitions.

(due to S.-Schiffmann)

symmetric tensor representations $V_{g,r}$ of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$.

(due to S.-Schiffmann)

Conjecture: Fock space = limit of $V_{0,r}$.

Q. general definition of highest weight modules?

Generalization of g(X) via enlargement of Fun(X)?

▶ Cartan subalgebra generated by locally–constant functions $f : \mathbb{R} \to \mathbb{C}$ with bounded support

→ **Goal:** Dirac deltas \in weight lattice.

Q. Weights are distributions on Fun(*X*)?

Generalization of $\mathfrak{g}(X)$ via Hall algebras?

Representation theory

Fock space of $\mathbf{U}_{v}\mathfrak{sl}(\mathbb{R})$ and corresponding action of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$

via continuum version of partitions.

(due to S.-Schiffmann)

symmetric tensor representations $V_{g,r}$ of $\mathbf{U}_{v}\mathfrak{sl}(S^{1})$.

(due to S.-Schiffmann)

Conjecture: Fock space = limit of $V_{0,r}$.

Q. general definition of highest weight modules?

Generalization of g(X) via enlargement of Fun(X)?

▶ Cartan subalgebra generated by locally–constant functions $f : \mathbb{R} \to \mathbb{C}$ with bounded support

→ **Goal:** Dirac deltas \in weight lattice.

Q. Weights are distributions on Fun(*X*)?

Generalization of g(X) via Hall algebras? We need abelian categories of

- ▶ topology: finite-dimensional representations of *X* (i.e., persistence modules of *X*).
- algebraic geometry: generalized parabolic sheaves with weights in X. (torsion parabolic sheaves with weights in S¹ = finite-dimensional coherent representations of S¹.)

Thank you for the attention!

Intervals	$\langle 1_{\alpha}, 1_{\beta} \rangle$	$\langle 1_{eta},1_{lpha} angle$	$(1_{lpha},1_{eta}):=\langle1_{lpha},1_{eta} angle+\langle1_{eta},1_{lpha} angle$
$\xrightarrow{\alpha}_{\beta}$	1	1	2
$\xrightarrow{\alpha \beta} $	-1	0	-1
$\xrightarrow{\alpha} \xrightarrow{\beta}$	0	0	0

Return back

Intervals	Relations		
$\xrightarrow{\alpha}_{\beta}$	$[1_{\alpha}, x_{\alpha}^{+}] = 2 x_{\alpha}^{+}, [1_{\alpha}, x_{\alpha}^{-}] = -2 x_{\alpha}^{-}, [x_{\alpha}^{+}, x_{\alpha}^{-}] = 1_{\alpha} \implies \mathfrak{sl}(2)\text{-triple}$		
α β	$\begin{cases} [1_{\alpha}, 1_{\beta}] = 0, [1_{\alpha}, x_{\beta}^{+}] = -x_{\beta}^{+}, [1_{\alpha}, x_{\beta}^{-}] = x_{\beta}^{-}, [x_{\alpha}^{+}, x_{\beta}^{-}] = 0\\ \text{Our Serre rel:} [x_{\alpha}^{+}, x_{\beta}^{+}] = x_{\alpha \cup \beta}^{+}, [x_{\alpha}^{-}, x_{\beta}^{-}] = -x_{\alpha \cup \beta}^{-}\\ \text{Our Serre rel} \Rightarrow \text{Usual Serre rel:} [x_{\alpha}^{\pm}, [x_{\alpha}^{\pm}, x_{\beta}^{\pm}]] = \pm [x_{\alpha}^{\pm}, x_{\alpha \cup \beta}^{\pm}] = 0\\ \text{(Attention: } \alpha \cup \beta = \alpha \oplus \beta \text{ and } \nexists \alpha \oplus \alpha \oplus \beta) \end{cases}$		
$\xrightarrow{\alpha} \xrightarrow{\beta}$	$\begin{cases} [1_{\alpha}, 1_{\beta}] = 0 , [1_{\alpha}, x_{\beta}^{+}] = 0 , [1_{\alpha}, x_{\beta}^{-}] = 0 , [x_{\alpha}^{+}, x_{\beta}^{-}] = 0 \\ \\ \text{(Our Serre rels = Usual Serre rels)} [x_{\alpha}^{\pm}, x_{\beta}^{\pm}] = 0 \end{cases}$		

An example of the morphism φ_k

Case:
$$N = 3$$
, $k_1 = 2$, and $k_2 = 3$

$$\varphi_{(1,2)} \colon \mathfrak{sl}(3) \longrightarrow \mathfrak{sl}(2+3-1) = \mathfrak{sl}(4)$$

such that

$$(x_1^{\pm}, \xi_1) \mapsto (x_1^{\pm}, \xi_1)$$
$$x_2^{\pm} \mapsto \pm [x_2^{\pm}, x_3^{\pm}]$$
$$\xi_2 \mapsto \xi_2 + \xi_3$$

Pictorially:

Return back

Definition

Serre(*X*) is the set of pairs (α , β) of intervals such that either

 \triangleright α is a "tree" of (contractible) intervals, and

$$\alpha \subset \beta = S^1$$
, or $\nexists \alpha \oplus \beta$, or $\alpha \oplus \beta$ does not contain $S^1 \not\subseteq \alpha, \beta$,

or $\blacktriangleright \nexists \alpha \oplus \beta \text{ and } \alpha \cap \beta = \emptyset.$

In Serre(X), we do have:

In Serre(X), we do not have:

Return back