ALGEBRA & REPRESENTATION THEORY SEMINAR Roma "Tor Vergata" — 24 April 2020

REAL FORMS of COMPLEX LIE SUPERALGEBRAS and SUPERGROUPS

Fabio GAVARINI Università di Roma "Tor Vergata"

arXiv:2003.10535 [math.RA] (2020)

joint work with Rita FIORESI (Bologna)

– HIGHLIGHTS –

(1) – Basic constructions: real structures & "real forms" on complex super vector spaces / commutative superalgebras / Lie superalgebras: *standard* version (Kac [1977], Parker [1980], Serganova [1983], Chuah [2013]), *graded* version (Pellegrini [2007]) — functorial formulation (Pellegrini [2007])

(1+) – Constructions on supergroups: real structures & "real forms" on complex supergroups (Pellegrini [2007] \rightsquigarrow Fioresi & G. [2020])

(2) – Unitarity & compactness: Hermitian forms on complex superspaces with real structures \implies associated *unitary* Lie superalgebras and supergroups $\xrightarrow{}$ $\xrightarrow{}$ *super-compact* / *compact* Lie superalgebras and supergroups (Fioresi & G. [2020])

(3) $- \exists!/\nexists$ results in the simple contragredient (=basic) cases:

— $\exists ! \text{ graded real form which is super-compact}$,

— \exists ! standard real form which is compact in types A and C (i.e., "type 1"),

1 – BASIC CONSTRUCTIONS

§ 1.1 – CONSTRUCTIONS ON SUPERSPACES

1.1.1 – Notations. We consider the following categories (with $\mathbb{K} \in {\mathbb{R}, \mathbb{C}}$):

$$\begin{split} (\operatorname{svec})_{\mathbb{K}} &:= \text{ super vector spaces over } \mathbb{K} \\ (\operatorname{salg})_{\mathbb{K}} &:= \text{ commutative superalgebras over } \mathbb{K} \\ (\operatorname{sLie})_{\mathbb{K}} &:= \text{ Lie superalgebras over } \mathbb{K} \\ (\mathbb{Z}_2 - \operatorname{vec})_{\mathbb{K}} &:= \mathbb{Z}_2 - \operatorname{graded vector spaces over } \mathbb{K} \\ (\mathbb{Z}_2 - \operatorname{alg})_{\mathbb{K}} &:= \mathbb{Z}_2 - \operatorname{graded commutative algebras over } \mathbb{K} \\ (\mathbb{Z}_2 - \operatorname{Lie})_{\mathbb{K}} &:= \mathbb{Z}_2 - \operatorname{graded Lie algebras over } \mathbb{K} \end{split}$$

1.1.2 – Real structure on $V \in (\operatorname{svec})_{\mathbb{C}}$: any $\phi \in \operatorname{End}_{(\operatorname{svec})_{\mathbb{R}}}(V)$ such that

$$\phi \text{ is } \mathbb{C}\text{-antilinear,} \quad \phi^2 \Big|_{V_{\bar{0}}} = id_{V_{\bar{0}}}, \quad \phi^2 \Big|_{V_{\bar{1}}} = \begin{cases} +id_{V_{\bar{1}}} & (standard \text{ case}) \\ -id_{V_{\bar{1}}} & (graded \text{ case}) \end{cases}$$

Rmk: pairs (V, ϕ) , with ϕ of fixed type, form a tensor subcategory of $(\operatorname{svec})^{\mathbb{Z}_4}_{\mathbb{C}}$ — the category of super vector spaces with \mathbb{Z}_4 -action — denoted $(\operatorname{svec})^{\bullet}_{\mathbb{C}}$ for $\bullet \in \{\mathrm{st}, \mathrm{gr}\}$.

N.B.: similar constructions apply to complex commutative superalgebras and Lie superalgebras, yielding categories $(salg)^{\bullet}_{\mathbb{C}}$ and $(sLie)^{\bullet}_{\mathbb{C}}$, for all $\bullet \in \{st, gr\}$.

For $A \in (salg)^{\bullet}_{\mathbb{C}}$ the real structure is called "conjugation" and denoted $a \mapsto \widetilde{a}$.

1.1.3 – What is a "real form" of $(V, \phi) \in (\operatorname{svec})^{\bullet}_{\mathbb{C}}$?

$$\begin{array}{l} -\text{ if } \bullet = \text{st } \Longrightarrow \ \left\{ \begin{array}{l} V^{\phi} := \left\{ v \in V \, \middle| \, \phi(v) = v \right\} \leq V \quad \text{in } (\operatorname{svec})_{\mathbb{R}} \\ & \text{and } \quad \mathbb{C} \otimes_{\mathbb{R}} V^{\phi} \cong V \quad \text{in } (\operatorname{svec})_{\mathbb{C}}^{\operatorname{st}} \end{array} \right\} \Longrightarrow \ \underline{OK!} \\ - \text{ if } \bullet = \text{gr } \Longrightarrow \text{ the above } \underline{fails} \text{, since } V_{\overline{1}}^{\phi} = \{0\} \end{array}$$

 \implies we need a new, generalized notion of "real form".

§ 1.2 – FUNCTORIAL FORMULATION

1.2.1 – Superfunctors. Each $V \in (\operatorname{svec})_{\mathbb{K}}$ is described by the "functor of points" $\mathcal{L}_{V} : (\operatorname{salg})_{\mathbb{K}} \longrightarrow (\mathbb{Z}_{2} - \operatorname{vec})_{\mathbb{K}}, A \mapsto (A \otimes_{\mathbb{K}} V)_{\overline{0}} = (\underbrace{A_{\overline{0}} \otimes_{\mathbb{K}} V_{\overline{0}}}_{\operatorname{degree} \overline{0}}) \oplus (\underbrace{A_{\overline{1}} \otimes_{\mathbb{K}} V_{\overline{1}}}_{\operatorname{degree} \overline{1}})$

Rmks: (a) the functor \mathcal{L}_V is *representable*, being represented by $S(V^*)$; (b) set $X_A := \underline{Spec}(A) = \text{affine superscheme associated with } A \in (\text{salg})_{\mathbb{K}}$. Then $\mathcal{L}_V(A) = Hom_{(\text{salg})}(S(V^*), A) \cong Hom_{(\text{ssch})}(X_A, V) =:$ $=: \{\text{morphisms } X_A \longrightarrow V \text{ as superschemes}\} \implies \mathcal{L}_V(A) \text{ is a "map space".}$ Similarly, $\mathcal{L}_R(A)$ and $\mathcal{L}_g(A)$ are "map algebras" when $R \in (\text{salg})_{\mathbb{K}}$ and $g \in (\text{sLie})_{\mathbb{K}}$. **1.2.2 – Functorial real structures.** We have two possible approaches:

$$(V, \phi) \longrightarrow \widetilde{\mathcal{L}}_V^{\bullet} = ``\mathcal{L}_V \text{ endowed with (involutive) real structure''}$$

Rmks: (1) $\widetilde{\mathcal{L}}^{\bullet}_{V}$ enjoys some "special properties" (SP): *involutivity* and $\mathcal{A}_{\bar{0}}$ -*linearity*. *Conversely*, any $\widetilde{\mathcal{L}}^{\bullet}$: $(salg)^{\bullet}_{\mathbb{C}} \longrightarrow (\mathbb{Z}_{2}\text{-vec})^{re}_{\mathbb{C}}$ enjoying (SP) and s. t. $\mathcal{F}_{*} \circ \widetilde{\mathcal{L}}^{\bullet} = \mathcal{L}_{V}$, with $(\mathbb{Z}_{2}\text{-vec})^{re}_{\mathbb{C}} \xrightarrow{\mathcal{F}_{*}} (\mathbb{Z}_{2}\text{-vec})_{\mathbb{C}}$ the forgetful functor, yields a real structure ϕ on V.

(2) Similarly,

$$\begin{split} V &= R \in (\operatorname{salg})^{\bullet}_{\mathbb{C}} & \longleftrightarrow & \widetilde{\mathcal{L}}^{\bullet}_{R} : (\operatorname{salg})^{\bullet}_{\mathbb{C}} \longrightarrow (\mathbb{Z}_{2} - \operatorname{alg})^{\operatorname{re}}_{\mathbb{C}} \text{ enjoying (SP)} \\ V &= \mathfrak{g} \in (\operatorname{sLie})^{\bullet}_{\mathbb{C}} & \longleftrightarrow & \widetilde{\mathcal{L}}^{\bullet}_{\mathfrak{g}} : (\operatorname{salg})^{\bullet}_{\mathbb{C}} \longrightarrow (\mathbb{Z}_{2} - \operatorname{Lie})^{\operatorname{re}}_{\mathbb{C}} \text{ enjoying (SP)} \end{split}$$

[2] Consider the "scalar restriction" functor $(\mathbb{Z}_2 - \operatorname{vec})_{\mathbb{C}} \xrightarrow{\mathcal{R}} (\mathbb{Z}_2 - \operatorname{vec})_{\mathbb{R}}$, and for any $(V, \phi) \in (\operatorname{svec})_{\mathbb{C}}^{\bullet}$ set $\mathcal{L}_V^{\bullet} := \mathcal{R} \circ \mathcal{L}_V \circ \mathcal{F} : (\operatorname{salg})_{\mathbb{C}}^{\bullet} \longrightarrow (\mathbb{Z}_2 - \operatorname{vec})_{\mathbb{R}}$. Then (notation as above)

$$\varphi := \left\{ \varphi_A := \phi_A \right\}_{A \in (\operatorname{salg})^{\bullet}_{\mathbb{C}}} : \mathcal{L}_V^{\bullet} \longrightarrow \mathcal{L}_V^{\bullet}$$

is a *natural transformation* enjoying special properties (SP).

DEF.: real structure on $\mathcal{L}_V :=$ any natural transformation $\mathcal{L}_V^{\bullet} \xrightarrow{\varphi} \mathcal{L}_V^{\bullet}$ enjoying (SP).

Proposition: For any $V \in (svec)_{\mathbb{C}}$, \exists bijections between the following:

$$(a) \quad \big\{ \text{real structures } \phi \text{ on } V \big\}$$

$$(b) \quad \left\{ \text{ functors } (\operatorname{salg})^{\bullet}_{\mathbb{C}} \xrightarrow{\mathcal{L}^{\bullet}} (\mathbb{Z}_2 \text{-vec})^{\mathsf{re}}_{\mathbb{C}} \mid \mathcal{F}_* \circ \widetilde{\mathcal{L}}^{\bullet} = \mathcal{L}_V \,, \, \widetilde{\mathcal{L}}^{\bullet} \text{ enjoys } (\mathsf{SP}) \right\}$$

(c)
$$\left\{ ext{ real structures } arphi ext{ on } \mathcal{L}_V
ight\}$$

DEF.: \forall real structure φ on \mathcal{L}_V , we call *real form* for it the functor of its "fixed points", that is $\mathcal{L}_V^{\varphi}: (\operatorname{salg})^{\bullet}_{\mathbb{C}} \longrightarrow (\mathbb{Z}_2 \operatorname{-vec})_{\mathbb{R}}$ given by $(A, (\ \)) \mapsto \mathcal{L}_V(A)^{\varphi_A}$.

Fact: In the standard case $\mathcal{L}_{V}^{\varphi} = ((\cdot)^{\sim} \otimes_{\mathbb{R}} V^{\phi})_{\bar{0}}$, i.e. $\mathcal{L}_{V}(A)^{\varphi_{A}} = (A^{\sim} \otimes_{\mathbb{R}} V^{\phi})_{\bar{0}}$ for $A \in (\operatorname{salg})^{\bullet}_{\mathbb{C}}$. In the graded case instead this <u>fails</u>... Nevertheless, the following holds:

Theorem 1 [Fioresi-G. (2020)]: For all $(V, \phi) \in (\operatorname{svec})^{\bullet}_{\mathbb{C}}$ — so $\exists \varphi$ on \mathcal{L}_V — \mathcal{L}_V^{φ} is representable, namely it is represented by $(S(V^*), S(\phi^*))$ in $(\operatorname{salg})^{\bullet}_{\mathbb{C}}$.

1.2.3 – The case of Lie superalgebras. If $V = \mathfrak{g} \in (sLie)_{\mathbb{C}}$, then in the previous construction "every step must be *Lie-upgraded*", namely

- the functor of points $\mathcal{L}_\mathfrak{g}$ takes values in $(\mathbb{Z}_2\text{-}\mathrm{Lie})_\mathbb{K}$,
- real structures are bracket-preserving,
- the functor $\widetilde{\mathcal{L}}_{\mathfrak{g}}^{\bullet}$ takes values in $(\mathbb{Z}_2\text{-Lie})_{\mathbb{C}}^{\mathsf{re}}$,
- the "fixed points" functor $\mathcal{L}^{arphi}_{\mathfrak{g}}$ takes values in $(\mathbb{Z}_2 ext{-Lie})_{\mathbb{R}}$,
- etc. etc.

§ 1.3 - REAL STRUCTURES & FORMS for SUPERGROUPS

Memo: (1) (algebraic) supergroup on \mathbb{K} is any functor $\mathbf{G} : (\operatorname{salg})_{\mathbb{K}} \longrightarrow (\operatorname{grps})$ with extra properties (EP) — roughly, local representability. Set $(\operatorname{sgrps})_{\mathbb{K}}$ for their category. (2) there exists a natural forgetful functor $\mathcal{F} : (\operatorname{salg})^{\bullet}_{\mathbb{C}} \longrightarrow (\operatorname{salg})_{\mathbb{C}}$.

DEF.: for $\mathbf{G} \in (\operatorname{sgrps})_{\mathbb{C}}$, set $\mathbf{G}^{\bullet} := \mathbf{G} \circ \mathcal{F} : (\operatorname{salg})^{\bullet}_{\mathbb{C}} \longrightarrow (\operatorname{grps})$. We define <u>real structure</u> on \mathbf{G} any natural transformation $\Phi : \mathbf{G}^{\bullet} \longrightarrow \mathbf{G}^{\bullet}$ enjoying (SP') (=involutivity and "tangent $\mathcal{A}_{\bar{0}}$ -linearity"); \longrightarrow this yields the category $(\operatorname{sgrps})^{\bullet}_{\mathbb{C}}$.

Rmk: \exists several alternative characterizations of real structures on **G**, e. g.:

(a) Φ is a real structure for ${f G}\iff \left(\,d\Phi\,$ is a real structure for ${\cal L}_{{\it Lie}({f G})}\,$ & $\Phi^2={f 1}\,
ight)$;

(b) if **G** is described/defined as a (classical) algebraic group $\mathbf{G}_{\bar{0}}$ with a structure sheaf \mathcal{O} of commutative superalgebras, then a real structure on it is given by a (classical) real structure on $\mathbf{G}_{\bar{0}}$ coupled with a "real structure" $\boldsymbol{\Phi}: \mathcal{O} \longrightarrow \mathcal{O}$ on the structure sheaf;

(c) if **G** is affine, hence described by its Hopf superalgebra $\mathcal{O}(\mathbf{G})$, then a real structure on **G** is equivalent on a real structure on the complex Hopf superalgebra $\mathcal{O}(\mathbf{G})$.

(d) similar constructions can be done when G is a complex Lie supergroup.

DEF.: \forall real structure Φ on \mathbf{G} , we call *real form* for it the functor of "fixed points" $\mathbf{G}^{\Phi} : (\operatorname{salg})^{\bullet}_{\mathbb{C}} \longrightarrow (\operatorname{grps})$, $(A, (\)) \mapsto \mathbf{G}(A)^{\Phi_{A}}$ It is said *standard*, resp. *graded* — as well as the form itself — if $\bullet = \operatorname{st}$, resp. $\bullet = \operatorname{gr}$.

Problem: can we describe the real form \mathbf{G}^{Φ} of \mathbf{G} ?

 $\textbf{Fact: } \exists \ \textbf{equivalence} \ \ (\operatorname{sgrps})_{\mathbb{K}} \longleftrightarrow (\operatorname{sHCp})_{\mathbb{K}} \ (:= \textbf{cat. of } \textit{super Harish-Chandra pairs})$

$$\begin{array}{ll} (\longrightarrow) & \mathbf{G} \ \mapsto \ \left(\ \mathbf{G}_{\bar{0}} \ , Lie\left(\mathbf{G}\right) \right) & \text{with} & \mathbf{G}_{\bar{0}} : \left(\text{alg} \right)_{\mathbb{K}} \longrightarrow \left(\text{salg} \right)_{\mathbb{K}} \stackrel{\mathbf{G}}{\longrightarrow} \left(\text{grps} \right) \\ (\longleftarrow) & \left(\ \mathcal{G}_{+} \ , \mathfrak{g} \right) \ \mapsto \ \mathbf{G} := \ \mathcal{G}_{+} \times \mathcal{L}_{\mathfrak{g}_{\bar{1}}} & \text{i.e.} & \mathbf{G}(\mathcal{A}) := \ \mathcal{G}_{+} \left(\mathcal{A}_{\bar{0}} \right) \times \left(\mathcal{A}_{\bar{1}} \otimes \mathfrak{g}_{\bar{1}} \right) \\ \end{array}$$

Theorem 2 [Fioresi-G. (2020)]: If $(\mathbf{G}, \Phi) \in (\operatorname{sgrps})^{\mathbb{C}}_{\mathbb{C}}$ with $\mathfrak{g} := Lie(\mathbf{G})$, then (a) if \mathbf{G} is affine (=representable), then \mathbf{G}^{Φ} is affine too; (b) $\mathbf{G}^{\Phi} = \mathbf{G}_{\bar{0}}^{\Phi_{\bar{0}}} \times \mathcal{L}_{\mathfrak{g}_{\bar{1}}}^{d\Phi}$, i. e. $\mathbf{G}^{\Phi}(A) = \mathbf{G}_{\bar{0}}^{\Phi_{\bar{0}}}(A_{\bar{0}}) \times (A_{\bar{1}} \otimes \mathfrak{g}_{\bar{1}})^{(\widetilde{}) \otimes \phi} \quad \forall A$

2 – UNITARITY & COMPACTNESS

IDEA: "models" of *compact* real groups are unitary groups $U(n) \rightarrow$ "super version"???

§ 2.1 – SPECIAL FORMS on SUPERSPACES

DEF:
$$\forall V \in (\operatorname{svec})_{\mathbb{C}}$$
, we say that:
(a) a map $f: V \times V \longrightarrow \mathbb{C}$ is consistent iff $f(x, y) = 0 \quad \forall |x| \neq |y|$.
(b) a \mathbb{C} -bilinear form $V \times V \xrightarrow{\langle , , \rangle} \mathbb{C}$ is supersymetric iff $\langle x, y \rangle = (-1)^{|x||y|} \langle y, x \rangle$.
(c) a map $B: V \times V \longrightarrow \mathbb{C}$ is super Hermitian form iff
 B is \mathbb{C} -sesquilinear and $B(x, y) = (-1)^{|x||y|} \overline{B(y, x)}$.

Rmk: every $B: V \times V \longrightarrow \mathbb{C}$ consistent and sesquilinear can be written as $B = B_{\bar{0}} + i B_{\bar{1}}$ for some (!) sesquilinear forms $B_{\bar{z}}$ on $V_{\bar{z}} \times V_{\bar{z}}$; then

B is super Hermitian $\iff B_{\bar{0}}$ and $B_{\bar{1}}$ are (classical) Hermitian

DEF: $\forall V \in (\text{svec})_{\mathbb{C}}$ and $B: V \times V \longrightarrow \mathbb{C}$ consistent super Hermitian, we say that B is non-degenerate, or that it is positive definite, if — writing $B = B_{\overline{0}} + i B_{\overline{1}}$ as above both $B_{\bar{0}}$ and $B_{\bar{1}}$ are non-degenerate, or are positive definite, respectively.

DEF: \forall (V, ϕ) \in (svec) $\stackrel{\circ}{\leftarrow}$, any bilinear form $\langle , \rangle : V \times V \longrightarrow \mathbb{C}$ is called ϕ -invariant if it is a morphism of superspaces with real structures (i.e. of \mathbb{Z}_4 -modules), that is

$$\overline{\langle\, v\,,w\,
angle}\,=\,\left\langle \phi(v)\,,\phi(w)
ight
angle \qquad$$
 for all $\,\,v,w\in V\,$.

The following sets a *link* among the previous notions:

Lemma: Let $(V, \phi) \in (\operatorname{svec})^{\bullet}_{\mathbb{C}}$ and let $\langle , \rangle : V \times V \longrightarrow \mathbb{C}$ be \mathbb{C} -bilinear, consistent, supersymmetric and ϕ -invariant. Then the formula

$$B_{\phi}^{\pm}(x,y) := (\pm i)^{\nu_{\bullet} |x| |y|} \langle x, \phi(y) \rangle \quad \text{with} \quad \nu_{\bullet} := \begin{cases} \bar{0} & \text{if } \bullet = \mathsf{st} \\ \bar{1} & \text{if } \bullet = \mathsf{gr} \end{cases}$$

defines two consistent super Hermitian forms on V.

st

§ 2.2 - EXAMPLES

[1] for $V := \mathbb{C}^{m|n}$, there exist consistent, supersymmetric, super Hermitian forms $B^{\pm}((\mathbf{z}, \zeta), (\mathbf{z}', \zeta')) := \mathbf{z} \cdot \overline{\mathbf{z}'} \pm i \zeta \cdot \overline{\zeta'}$

 $\begin{array}{l} \label{eq:product} \textbf{[2]} & - (a) \mbox{ for } V := \mathbb{C}^{m|2t} \mbox{, there exist real structures} \\ \phi_{\rm st}(\textbf{z}, \boldsymbol{\zeta}) := \left(\, \overline{\textbf{z}} \,, \overline{\boldsymbol{\zeta}} \, \right) \mbox{ (standard), } \phi_{\rm gr}(\textbf{z}, \boldsymbol{\zeta}_+, \boldsymbol{\zeta}_-) := \left(\, \overline{\textbf{z}} \,, + \overline{\boldsymbol{\zeta}_-} \,, - \overline{\boldsymbol{\zeta}_+} \, \right) \mbox{ (graded)} \end{array}$

— (b) there \exists a \mathbb{C} -bilinear, consistent, supersymmetric, ϕ_{\bullet} -invariant form \langle , \rangle on V $\langle (\mathbf{z}, \zeta_{+}, \zeta_{-}), (\mathbf{z}', \zeta'_{+}, \zeta'_{-}) \rangle := \mathbf{z} \cdot \mathbf{z}' + \zeta_{+} \cdot \zeta'_{-} - \zeta_{-} \cdot \zeta'_{+}$

 $\begin{array}{ll} - (c) & [(a) + (b) + \text{Lemma}] \implies \exists \text{ consistent, super Hermitian forms on } V \\ & B^{\pm}_{\phi_{\text{st}}} \big((\mathbf{z}, \zeta_{+}, \zeta_{-}), \, (\mathbf{z}', \zeta_{+}', \zeta_{-}') \big) \ \coloneqq \mathbf{z} \cdot \overline{\mathbf{z}'} + \zeta_{+} \cdot \overline{\zeta_{-}'} - \zeta_{-} \cdot \overline{\zeta_{+}'} \\ & B^{\pm}_{\phi_{\text{gr}}} \big((\mathbf{z}, \zeta_{+}, \zeta_{-}), \, (\mathbf{z}', \zeta_{+}', \zeta_{-}') \big) \ \coloneqq \mathbf{z} \cdot \overline{\mathbf{z}'} \mp i \left(\zeta_{+} \cdot \overline{\zeta_{+}'} + \zeta_{-} \cdot \overline{\zeta_{-}'} \right) \\ & = \mathbf{z} \cdot \overline{\mathbf{z}'} \mp i \zeta \cdot \overline{\zeta'} \end{array}$

§ 2.3 – FUNCTORIAL FORMULATION

DEF.: $\forall (V, \phi) \in (\operatorname{svec})^{\circ}_{\mathbb{C}}$, we call *Hermitian form* for \mathcal{L}_{V} — or also for the functor $\mathcal{L}_{V}^{\bullet} : (\operatorname{salg})^{\bullet}_{\mathbb{C}} \longrightarrow (\mathbb{Z}_{2} - \operatorname{vec})_{\mathbb{R}}$ — any natural transformation $\mathcal{B} : \mathcal{L}_{V}^{\bullet} \times \mathcal{L}_{V}^{\bullet} \longrightarrow \mathcal{L}_{\mathbb{C}}^{\bullet}$ s. t. (1) \mathcal{B} is " $\mathcal{A}_{\bar{0}}$ -sesquilinear", i.e. $\mathcal{B}(aX, Y) = a\mathcal{B}(X, Y)$ and $\mathcal{B}(X, aY) = \tilde{a}\mathcal{B}(X, Y)$ (2) $\mathcal{B}(X, Y) = (-1)^{(\bar{1}-\nu_{\bullet})[X][Y]} \mathcal{B}(Y, X)$ $(\forall X, Y \in \mathcal{L}_{V}^{\bullet}(A), a \in A_{\bar{0}})$ Such a \mathcal{B} is called *consistent* iff $\mathcal{B}(X, Y) = 0$ for $[X] \neq [Y]$.

Question: what is the link (if any) with super Hermitian forms on V?

Proposition: $\forall (V, \phi) \in (\operatorname{svec})^{\bullet}_{\mathbb{C}}$, there exists a bijection

 $\left\{\begin{array}{l} \text{consistent super} \\ \text{Hermitian forms on } V\end{array}\right\} \longleftrightarrow \left\{\begin{array}{l} \text{consistent Hermitian} \\ \text{forms on } \mathcal{L}_V\end{array}\right\}$ given by $B_V \mapsto \mathcal{B}_{\mathcal{L}_V} \ : \ \mathcal{B}_{\mathcal{L}_V}(ax, by) := i^{|x||y|} \ a \ \widetilde{b} \ B_V(x, y)$

 \implies **<u>DEF.</u>**: $\mathcal{B}_{\mathcal{L}_V}$ is called *non-degenerate* or *positive definite* iff the associated B_V is.

§ 2.4 – UNITARITY

DEF.: Given $(V, \phi) \in (\operatorname{svec})^{\mathbb{C}}_{\mathbb{C}}$ and a non-degenerate, consistent, Hermitian form \mathcal{B} on \mathcal{L}_V , the *adjoint* of $M \in (End(V))(A)$ is the unique $M^* \in (End(V))(A)$ such that $\mathcal{B}(X, M^*(Y)) = (-1)^{(\overline{1}-\nu_{\bullet})[X][Y]} \mathcal{B}(M(X), Y)$

Rmk: the sign vanishes in the graded case, which then looks more "natural"...

Lemma: (notations as above)

The "adjoint operator" enjoys the following properties:

$$M^{**} = M , \qquad (a M)^{*} = \tilde{a} M^{*} , \qquad (-M)^{*} = -(M^{*})$$
$$(M + N)^{*} = M^{*} + N^{*} , \qquad (M N)^{*} = N^{*} M^{*} , \qquad (J^{-1})^{*} = (J^{*})^{-1}$$
$$[M, N]^{*} = (-1)^{(\bar{1} - \nu_{\bullet})[M][N]} [N^{*}, M^{*}]$$

N.B.: the properties above directly imply the next, key result...

Theorem 3 [Fioresi-G. (2020)]:

The natural transformation $\circledast: \mathcal{L}_{\mathfrak{gl}(V)}^{\bullet} \longrightarrow \mathcal{L}_{\mathfrak{gl}(V)}^{\bullet}$ given on objects by $M \mapsto M^{\circledast} := \begin{cases} -M^{\star} & \text{if } [M] = \overline{0} \\ i M^{\star} & \text{if } [M] = \overline{1} \end{cases}$, or $M \mapsto M^{\circledast} := -M^{\star} \quad \forall M$ $(\underline{standard})$ (\underline{graded})

is a real structure — standard or graded, following • — on the functor $\mathcal{L}_{\mathfrak{gl}(V)}$, hence it corresponds to a real structure on $\mathfrak{gl}(V)$ and one on $\mathbf{GL}(V)$, both denoted by \circledast again.

DEF.: Let (V, ϕ) and \mathcal{B} be as above.

(a) We call unitary Lie superalgebra of (V, ϕ, \mathcal{B}) the real form of $(\mathcal{L}_{\mathfrak{gl}(V)}, \circledast)$. (b) We call unitary supergroup of (V, ϕ, \mathcal{B}) the real form of $(\mathbf{GL}(V), \circledast)$. The notation will be $\mathfrak{u}_{\mathcal{B}}(V) := \mathcal{L}_{\mathfrak{gl}(V)}^{\circledast}$ for (a) and $\mathbf{U}_{\mathcal{B}}(V) := \mathbf{GL}(V)^{\circledast}$ for (b).

Rmk ©: the "even part" of a unitary superobject is direct product of unitary (classical) objects, namely $\mathfrak{u}_{\mathcal{B}}(V)_{\bar{0}} = \mathfrak{u}_{\mathcal{B}_{\bar{0}}}(V_{\bar{0}}) \oplus \mathfrak{u}_{\mathcal{B}_{\bar{1}}}(V_{\bar{1}})$ and $U_{\mathcal{B}}(V)_{\bar{0}} = U_{\mathcal{B}_{\bar{0}}}(V_{\bar{0}}) \times U_{\mathcal{B}_{\bar{1}}}(V_{\bar{1}})$.

§ 2.5 – (SUPER-)COMPACTNESS

Memo: Any Lie group K is *compact* $\iff K \leq U(W)$ for some $W \in (\operatorname{vec})^{\operatorname{re}}_{\mathbb{C}}$ with a positive definite Hermitian form. Then also $\mathfrak{k} = Lie(K)$ for some compact Lie group $K \iff \mathfrak{k} \leq \mathfrak{u}(W)$ for some $W \in (\operatorname{vec})^{\operatorname{re}}_{\mathbb{C}}$ with a positive definite Hermitian form.

DEF.: (a) Any $(\mathbf{G}, \Phi) \in (\operatorname{sgrps})^{\bullet}_{\mathbb{C}}$ — or its integral form \mathbf{G}^{Φ} alike — is called (a.-) compact iff $\mathbf{G}^{\Phi}_{\bar{0}} \leq U(W)$ for some $W \in (\operatorname{vec})^{\operatorname{re}}_{\mathbb{C}}$ with positive definite Hermitian form — or, equivalently, iff the (classical) group $\mathbf{G}^{\Phi}_{\bar{0}}$ is compact;

(a.+) super-compact iff $\mathbf{G}^{\Phi} \leq \mathbf{U}_{\mathcal{B}}(V)$ for some $V \in (\operatorname{svec})^{\bullet}_{\mathbb{C}}$ with a positive definite super Hermitian form.

(b) Any $(\mathfrak{g}, \phi) \in (\mathrm{sLie})^{\bullet}_{\mathbb{C}}$ — or its integral form $\mathcal{L}^{\varphi}_{\mathfrak{g}}$ alike — is called

(b.-) compact iff $(\mathcal{L}_{\mathfrak{g}}^{\varphi})_{\overline{0}} \leq \mathfrak{u}(W)$ for some $W \in (\operatorname{vec})_{\mathbb{C}}^{\operatorname{re}}$ with a positive definite Hermitian form;

(b.+) super-compact iff $\mathcal{L}_{\mathfrak{g}}^{\varphi} \leq \mathfrak{u}_{\mathcal{B}}(V)$ for some $V \in (\operatorname{svec})^{\bullet}_{\mathbb{C}}$ with a positive definite super Hermitian form.

Rmk: due to $\underline{\mathsf{Rmk}}$ above, we have "super-compact" \implies "compact"

3 – EXISTENCE(!) & NON-EXISTENCE RESULTS

<u>**HPs:**</u> (a) $\mathfrak{g} := \operatorname{cmplx}(f.d.)$ contragr. Lie superalgebra, with gen.s x_i^+ , h_i , x_i^- ($i \in I$) (b) $\mathbf{G} :=$ connected, simply connected, complex supergroup with $Lie(\mathbf{G}) = \mathfrak{g}$

Proposition: $\exists !$ a *graded* real structure ω on \mathfrak{g} given (for all $i \in I$) by

 $\omega(h_i) \ = \ -h_i \ , \qquad \omega \bigl(x_i^\pm \bigr) \ = \ -x_i^\mp \quad \text{if } \ \Bigl| x_i^\pm \bigr| = \bar{\mathbf{0}} \ , \qquad \omega \bigl(x_i^\pm \bigr) \ = \ \pm x_i^\mp \quad \text{if } \ \Bigl| x_i^\pm \bigr| = \bar{\mathbf{1}}$

Moreover, $\exists ! graded$ real structure Ω on **G** corresponding to ω .

<u>**HPs+:**</u> (a) \mathfrak{g} := complex (f.d.) contragredient *simple*, i.e. complex simple of <u>basic</u> type (b) **G** := connected, simply connected, complex supergroup with $Lie(\mathbf{G}) = \mathfrak{g}$

Overview: standard real structures on such g were *classified* by Kac (1977), Parker (1980), Serganova (1983) and Chuah (2013); Serganova classified also graded ones. Later on, Pellegrini (2007) looked for *compact* (real) forms, noting (via case by case inspection) that every basic g has a *compact graded* real structure (and form). Our work [Fioresi-G. (2020)] largely improves Pellegrini's results on the existence (and uniqueness) of compact forms, finding a deeper motivation. **Theorem 4 [Fioresi-G. (2020)]:** (\exists ! super-compact, graded real str. on \mathfrak{g}/G)

Let \mathfrak{g} be complex simple of *basic* type, and **G** connected simply conn. s.t. $Lie(\mathbf{G}) = \mathfrak{g}$. Then the graded real structure ω on \mathfrak{g} given above is *super-compact*; similarly, the graded real structure Ω on **G** is *super-compact*.

In particular, \exists super-compact graded real structures on both \mathfrak{g} and \mathbf{G} . Moreover, both structures are unique up to inner automorphisms.

<u>*Proof (sketch):*</u> Let κ be the Cartan-Killing form of \mathfrak{g} : it is \mathbb{C} -bilinear, consistent and super-symmetric; moreover, κ is also ω -invariant. Therefore \Longrightarrow

 $\implies \kappa$ and ω jointly define — applying our general recipe — a consistent, super Hermitian form B_{κ} on \mathfrak{g} ; moreover, this B_{κ} is also positive definite; \implies

 \implies letting \mathcal{B}_{κ} be the Hermitian form on $\mathcal{L}_{\mathfrak{g}}$ corresponding to \mathcal{B}_{κ} on \mathfrak{g} , we have a well-defined unitary Lie superalgebra $\mathfrak{u}_{\mathcal{B}_{\mu}}(\mathfrak{g})$ inside $\mathfrak{gl}(\mathfrak{g})$.

 $\begin{array}{c} \textcircled{2}\\ \end{array} The form <math>\kappa \text{ is } ad\text{-invariant} \implies \text{the image of } ad : \mathfrak{g} \hookrightarrow \mathfrak{gl}(\mathfrak{g}) \text{ sits in } \mathfrak{u}_{\mathcal{B}_{\kappa}}(\mathfrak{g}) \implies \\ \implies \mathfrak{g} \text{ embeds into } \mathfrak{u}_{\mathcal{B}_{\kappa}}(\mathfrak{g}), \text{ hence } (\mathfrak{g}, \omega) \text{ is graded super-compact.} \qquad \Box$

N.B.: The above accounts for the *graded* case, and proves the importance of such a notion. What for *standard* structures instead? The answer is twofold:

Theorem 5 [Fioresi-G. (2020)]: $(\exists!/\nexists \text{ (super-)compact, standard r. s. on } \mathfrak{g}/\mathbf{G})$

Let \mathfrak{g} be complex simple of *basic* type $T \in \{A, B, C, D, F, G\}$, and let **G** be connected simply connected such that $Lie(\mathbf{G}) = \mathfrak{g}$. Then:

(a) if $T \in \{A, C\}$ — i.e. g is "of type 1" — then \exists a standard compact real structure on g and on **G**, that is unique up to inner automorphisms;

(b) if $T \in \{B, D, F, G\}$ — i.e. g is "of type 2" — then \nexists standard compact real structures on g nor on **G**.

Proof (sketch): (a) We provide a concrete example for both cases.

(b) It follows — with a rather different approach — from Chuah's work.

Open quest.: in type 1, \exists a real struct. on $\mathfrak{g} / \mathbf{G}$ that is *standard* and *super-compact*?

– REFERENCES –

[1] V. G. Kac, *Lie superalgebras*, Advances in Mathematics 26 (1977), 8–96.

[2] M. Parker, *Classification of real simple Lie superalgebras of classical type*, Journal of Mathematical Physics **21** (1980), 689–698.

[3] V. Serganova, *Classification of real simple Lie superalgebras and symmetric superspaces*, Functional Analysis and its Applications **17** (1983), 200–207.

[4] F. Pellegrini, *Real forms of complex Lie superalgebras and complex algebraic supergroups*, Pacific Journal of Mathematics **229** (2007), 485–498.

[5] M.-K. Chuah, *Cartan automorphisms and Vogan superdiagrams*, Mathematische Zeitschrift **273** (2013), 793–800.

[6] R. Fioresi, F. Gavarini, *Real forms of complex Lie superalgebras and supergroups*, preprint arXiv:2003.10535 [math.RA] (2020), 26 pages.

— THANKS for your attention! —

&

BUONA FESTA DELLA LIBERAZIONE!!!