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AIM OF THE TALK

Coxeter matroids

I Generalization of Whitney’s (ordinary) matroids

I Introduced by I. Gelfand and V. Serganova in 1987

I Studied by many people such as V. Borovik, I. Gelfand, M. Goresky, R.
MacPherson, V. Serganova, A. Vince, N. White, A. Zelevinsky...

I Lies at the intersection of Combinatorics, Algebra, Geometry,
Optimization Theory

We want to tell you about:
Theorem (Caselli-D’Adderio-M). Bruhat intervals of finite Coxeter
groups are Coxeter matroids

Main new tool in the proof of the theorem:
Weak generalized lifting property
(true for all finite and infinite Coxeter groups)



NOTATION

� (W,S) Coxeter system

• W Coxeter group
• S = {s1, . . . , sn} Coxeter generators

• relations:

ß
s2i = e (involutions)

(sisj)
mij = e mij ∈ N≥2 ∪∞

� Finite Coxeter groups are Reflection Groups
W acting on a real vector space V

� `(w) := min{k : w is a product of k generators} length

� Φ = Φ+ t Φ− (positive and negative) roots

� T reflections

T
∼←→ Φ+ bijection

t 7→ αt



� ≤ Bruhat order on W

it is the transitive closure of u� v ⇐⇒ ∃t ∈ T :

®
v = tu

`(v) = `(u) + 1

Properties:

I the identity e is the bottom element

I the poset is ranked by length function `

I there exists a top element iff W is finite

� Hasse diagram: upword edge from u to v iff u� v
We also lable the edge with the positive root αt corresponding to t

u

v = tu

αt



EXAMPLE: S3

(W,S = {s1, s2}) relations: s21 = s22 = (s1s2)3 = e
W = {e, s1, s2, s1s2, s2s1, s1s2s1 = s2s1s2} ' symmetric group S3

s1

s2

s1s2s1

α1

α1 + α2α2

Hasse diagram

e

s1 s2

s1s2 s2s1

s1s2s1

α1 α2

α1 + α2 α1 + α2

α1
α2

α2 α1



EXAMPLE: S4

W of type A3: the symmetric group S4



A POLYTOPE

Let (W,S) be finite, J ⊆ S.

� WJ := 〈J〉 parabolic subgroup generated by J

� W J := {w ∈W : ws > w ∀s ∈ J} minimal left coset representatives

There is a unique decomposition
W

∼←→ W J ×WJ

w 7→ wJ · wJ

W J ∼←→W/WJ bijection

Fix p ∈ V s. t. (p, αs)

®
= 0 if s ∈ J
< 0 if s /∈ J

δp : W/WJ → V
vWJ 7→ v(p)

well-defined since WJ fixes p

Given ∅ 6=M⊆W/WJ , define a polytope associated with M:

∆M(p) = convex hull of δp(M) shorthand: ∆M(p) = ∆M



EXAMPLE: THE PERMUTOHEDRON

If W = Sn, J = ∅, M = W , then ∆M is the classical permutohedron.



COXETER MATROIDS

w-Bruhat order on W :

u ≤w v ⇐⇒ w−1u ≤ w−1v

Note: ≤e =≤

w-Bruhat order on W/WJ :
Theorem/Definition: Every A ∈W/WJ has a minw and a maxw w.r.t.
≤w.
Let A,B ∈W/WJ , w ∈W . TFAE:

I A ≤w B

I minw A ≤w minw B

I maxw A ≤w maxw B

I a ≤w b for some a ∈ A and b ∈ B

∅ 6=M⊆W/WJ is a Coxeter matroid for W and J if it satisfies the
Maximality Property

� for all w ∈W , there exists A ∈M s. t. B ≤w A for all B ∈M



EXAMPLE: ORDINARY MATROIDS

I (W,S) of type An−1

I W ' Sn the symmetric group on [n] := {1, . . . , n}
I S = {s1, s2, . . . , sn−1} with si = (i, i+ 1).

If J = S \ {sk} then

I WJ ' Sk × Sn−k

I every b ∈W/WJ corresponds to a subset B of [n] of cardinality k

W/WJ
∼←→
Ç

[n]

k

å
bijection

With these choises:

{Coxeter matroids for W and J}={ordinary matroids on [n] of rank k}

The B’s are the bases of the matroid



GELFAND–SERGANOVA THEOREM

The theorem translates the definition of a Coxeter matroid into geometric
terms.

Theorem (Gelfand–Serganova). Let ∅ 6=M⊆W/WJ . TFAE

I M is a Coxeter matroid

I for every edge of ∆M, there exists a reflection of W that flips that edge

I every edge of ∆M is parallel to a root in Φ

I One of the most important tool of the theory

I Geometric interpretation of Coxeter matroids as polytopes with certain
symmetry property

I Surprisingly simple (although cryptomorphic) definition of a Coxeter
matroid

I This is why roots play a fundamental role.



W = S3 J = ∅

s1

s2

s1s2s1

α1

α1 + α2α2

p s1(p)

e

s1 s2

s1s2 s2s1

s1s2s1



s1

s2

s1s2s1

α1

α1 + α2α2

p s1(p)

e

s1 s2

s1s2 s2s1

s1s2s1

M = {s1, s2, s1s2, s2s1} is not a Coxeter matroid.



s1

s2

s1s2s1

α1

α1 + α2α2

p s1(p)

e

s1 s2

s1s2 s2s1

s1s2s1

M = {s1, s1s2, s2s1, s1s2s1} is a Coxeter matroid.



A THEOREM

Theorem (Caselli-D’Adderio-M).
Let (W,S) be a finite Coxeter system. For all J ⊆ S and all x, y ∈W J with
x ≤ y, the parabolic Bruhat interval

{z ∈W J : x ≤ z ≤ y}

is a Coxeter matroid.

I In 2015, Kodama and Williams prove the theorem for W of type A and
J = ∅.



IDEA OF THE PROOF OF THE THEOREM FOR J = ∅

Let M be a Bruhat interval:

M = [x, y] = {z ∈W : x ≤ z ≤ y}

∆M is the Bruhat interval polytope corresponding to M

To prove the theorem, we

I translate the problem into geometric terms using Gelfand–Serganova
Theorem

I need to prove that the edges of ∆M are parallel to roots

I study actually all faces of ∆M

I use several algebro-combinatorial tools in the theory of Coxeter groups

I use a new tool: the Weak Generalized Lifing Property



LIFTING PROPERTIES

Classical Lifting Property (Verma). Let u, v ∈W with u < v and
s ∈ S. If u� su and sv � v, then su ≤ v and u ≤ sv

Pros. Characterizes Bruhat order. Has many consequences: e.g. the
interval is closed under multiplication by s
Cons. For some u, v ∈W , there are no such s ∈ S.



Generalized Lifting Property For all u, v ∈W with u < v, there
exists t ∈ T s.t. u� tu ≤ v and u ≤ tv � v

Pros. Existence of such t. It holds for W = Sn (Tsukerman–Williams ’15)
and, more generally, for W simply laced (Caselli–Sentinelli ’17)
Cons. It doesn’t hold for W not simply laced (Caselli–Sentinelli ’17)



Weak Generalized Lifting Property (C-D-M) Given u, v ∈W with
u < v, let Rv = {αt ∈ Φ+ : u ≤ tv � v} and Ru = {βr ∈ Φ+ : u� rv ≤ v}.
Then Cone(Rv) ∩ Cone(Ru) 6= {0}.

Cons. It is “weak”
Pros. It holds for all (finite and infinite) Coxeter systems



A LEMMA

Lemma. Let F be a face of ∆[x,y](p). If F contains u(p) and v(p) for some
subinterval [u, v], then there exists a complete chain C from u to v such
that z(p) ∈ F for all z ∈ C.

I By induction on `(v)− `(u).

I Let f ∈ V ∗ be such that f = c is
the hyperplane containing F ,
and f < c is the halfspace
containing ∆[x,y](p) \ F .

I By the Weak Generalized Lifting
Property∑

i∈I

biβri =
∑
j∈J

ajαtj 6= 0

with u� riu ≤ v, u ≤ tjv � v,
and aj , bi > 0



I Recall
ri(u(p)) = u(p) + ciβri
tj(v(p)) = v(p)− djαtj

with ci, dj > 0

I Since all points ri(u(p)) and tj(v(p))
belong to ∆[x,y](p)

f(βri) ≤ 0 f(αtj ) ≥ 0

Thus f(
∑

biβri) = f(
∑

ajαtj ) = 0, and

f(βri) = f(αtj ) = 0

therefore, all points riu(p) and tjv(p) lie
in F .

I By the induction hypothesis, there is a
complete chain C′ from r1u to v such
that z(p) ∈ F for all z ∈ C′. Take the
chain C = C′ ∪ {u}.



GRAZIE!


