Tutorato di Probabilità 1, IV a.a. 2003/2004

Esercizio 1. All'inizio di ogni mese un commerciante ordina un certo prodotto per le vendite di tutto il mese. Egli può plausibilmente supporre che il numero di unità di quel prodotto richieste in un mese segua una legge di Poisson, di parametro $\lambda = 4$. Qual è il numero minimo di unità che deve ordinare perché al 90% non resti senza quel prodotto¹?

Esercizio 2. Sia X una v.a. con funzione di distribuzione F_X . Dimostrare che², per ogni $a \le b$, $a, b \in \mathbb{R}$,

(a)
$$\mathbb{P}(X > a) = 1 - F_X(a);$$

(b)
$$\mathbb{P}(a < X \le b) = F_X(b) - F_X(a);$$

(c)
$$\mathbb{P}(a \le X \le b) = F_X(b) - F_X(a^-);$$

(d)
$$\mathbb{P}(a \le X < b) = F_X(b^-) - F_X(a^-);$$

(e)
$$\mathbb{P}(a < X < b) = F_X(b^-) - F_X(a)$$
.

Esercizio 3. Siano date le seguenti funzioni³:

$$\begin{split} F_1(x) &= \left(1 - \frac{1}{2+x}\right) \mathbf{1}_{\{x \geq 0\}}, \qquad F_2(x) = \left(1 - \frac{1}{2+x}\right) \mathbf{1}_{\{x > 0\}}, \\ F_3(x) &= \left(1 - e^{-\lambda x}\right) \mathbf{1}_{\{x > 0\}}, \qquad F_4(x) = \left(1 - e^{-\lambda x}\right) \mathbf{1}_{\{x \geq 0\}}, \\ F_5(x) &= \frac{1}{2} \mathbf{1}_{\{-8 \leq x < -1\}} + \frac{3}{4} \mathbf{1}_{\{-1 \leq x \leq 72\}} + \mathbf{1}_{\{x > 72\}}, \\ F_6(x) &= -\frac{3}{4} \mathbf{1}_{\{x < -8\}} - \frac{1}{4} \mathbf{1}_{\{-8 \leq x < -1\}} + \frac{3}{4} \mathbf{1}_{\{x < 72\}} + \mathbf{1}_{\{x \geq 72\}}, \\ F_7(x) &= \frac{1}{2} \mathbf{1}_{\{-8 \leq x < -1\}} + \frac{3}{4} \mathbf{1}_{\{x < 72\}} + \frac{1}{8}. \end{split}$$

Per ogni $i=1,\ldots,7$, disegnare F_i e dire se F_i può essere la funzione di ripartizione di qualche v.a. X_i e in caso affermativo, dire quanto vale $\mathbb{P}(X_i=x)$ per ogni $x\in\mathbb{R}$.

Potrebbe essere utile usare la seguente tabella: se $X \sim \text{Po}(4)$ allora, posto $p_X(k) = \mathbb{P}(X = k)$ con $k = 0, 1, \ldots$,

²Si ricorda che $F_X(x^-) = \lim_{n \to \infty} F_X(x - 1/n)$.

 $^{^3{\}rm Si}$ ricorda che, per $A\subset\mathbb{R},$ $1_{\{x\in A\}}$ o anche $1_A(x)$ vale 1 per $x\in A$ e 0 altrimenti.

Esercizio 4. Sia X una v.a discreta, a valori in E_X , con densità discreta $p_X(x)$, $x \in E_X$, e funzione di distribuzione $F_X(x)$, $x \in \mathbb{R}$. Fissato $N \ge 1$, siano Y_N e Z_N due "troncamenti" di X:

$$Y_N = \begin{cases} -N & \text{se } X < -N \\ X & \text{se } |X| \le N \\ N & \text{se } X > N \end{cases} \qquad Z_N = \begin{cases} X & \text{se } |X| \le N \\ 0 & \text{se } |X| > N \end{cases}$$

- o, equivalentemente, $Y_N = -N \mathbf{1}_{\{X < -N\}} + X \mathbf{1}_{\{|X| \le N\}} + N \mathbf{1}_{\{X > N\}}$ e $Z_N = X \mathbf{1}_{\{|X| \le N\}}$
 - (a) Dire quali valori possono assumere Y_N e Z_N e con quale probabilità. Giustificare il termine "troncamento".
 - (b) Disegnare le funzioni di ripartizione G_N e H_N rispettivamente di Y_N e Z_N .
 - (c) Come si comportano G_N e H_N quando $N \to +\infty$?

Soluzioni

1) Sia X il numero di richieste di quel dato prodotto. Per ipotesi, $X \sim Po(4)$:

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Allora, il numero minimo di quantità da ordinare perché al 90% il negoziante possa soddisfare tutte le richieste è il più piccolo valore di n tale che $\mathbb{P}(X \leq n) \simeq 0.9$. Ora,

$$\mathbb{P}(X \le n) = \sum_{k=0}^{n} \mathbb{P}(X = k) = \sum_{k=0}^{n} p_X(k)$$

e usando la tabella, otteniamo:

Quindi, per stare tranquillo basterà ordinare più o meno 6 unità di quel prodotto.

2) (a) Si ha $\mathbb{P}(X > a) = 1 - \mathbb{P}(X \le a) = 1 - F_X(a)$. Inoltre, si noti che, per ogni $x \in \mathbb{R}$,

$$\mathbb{P}(X < x) = \mathbb{P}\left(\bigcup_{n} \left\{X \le x - \frac{1}{n}\right\}\right) = \lim_{n \to \infty} \mathbb{P}\left(X \le x - \frac{1}{n}\right) = \lim_{n \to \infty} F_X\left(x - \frac{1}{n}\right) = F_X(x^-),$$

quindi (b), (c), (d), (e) sono vere perché:

$$\mathbb{P}(a < X \le b) = \mathbb{P}(X \le b) - P(X \le a) = F_X(b) - F_X(a),$$

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(X \le b) - P(X < a) = F_X(b) - F_X(a^-),$$

$$\mathbb{P}(a \le X < b) = \mathbb{P}(X < b) - P(X < a) = F_X(b^-) - F_X(a^-)$$

$$\mathbb{P}(a < X < b) = \mathbb{P}(X < b) - P(X \le a) = F_X(b^-) - F_X(a).$$

3) Ciascuna F_i è monotona, non decrescente ed inoltre, per ogni $i \neq 7$, $\lim_{x \to -\infty} F_i(x) = 0$ e $\lim_{x \to +\infty} F_i(x) = 1$. Se invece i = 7: $\lim_{x \to -\infty} F_7(x) = \frac{7}{8} \neq 0$ e $\lim_{x \to +\infty} F_7(x) = \frac{1}{8} \neq 1$, da cui segue immediatamente che F_7 non è una funzione di distribuzione.

Ora, i = 1, ... 6, perché F_i sia una funzione di ripartizione, dev'essere continua a destra, cioè $F_i(x^+) = F_i(x)$.

i=1,2: F_1 e F_2 coincidono ovunque tranne che in x=0 e sono continue per $x\neq 0$. Inoltre, $F_1(0^+)=\frac{1}{2}=F_1(0)$ e $F_2(0^+)=\frac{1}{2}\neq 0=F_2(0)$: F_1 è una funzione di distribuzione mentre F_2 non lo è.

Inoltre, poiché F_1 salta solo in x = 0, si ha

$$\mathbb{P}(X_1 = 0) = \Delta F_1(0) = \frac{1}{2}, \quad \mathbb{P}(X_1 = x) = \Delta F_1(x) = 0 \text{ per ogni } x \neq 0.$$

i=3,4: $F_3(x)=F_4(x)$ per ogni x e sono funzioni continue, quindi $F_i(x^+)=F_i(x^-)=F_i(x)$: F_3 e F_4 sono funzioni di distribuzione tali che $\mathbb{P}(X_i=x)=\Delta F_i(x)=0$ per ogni $x\in\mathbb{R}$.

i=5,6: F_5 e F_6 sono costanti a tratti, quindi continue ovunque tranne che nei punti di salto x=-8,-1,72. Studiamo tali punti. Si ha

$$F_5(-8^+) = \frac{1}{2} = F_5(-8), \qquad F_5(-1^+) = \frac{3}{4} = F_5(-1), \qquad F_5(72^+) = 1 \neq \frac{3}{4} = F_5(72),$$

quindi F_5 non è una funzione di distribuzione perché $F_5(72^+) \neq F_5(72)$. Per quanto riguarda F_6 , basta osservare che F_6 coincide con F_5 per ogni $x \neq 72$ e $F_5(72^+) = 1 = F_5(72)$, dunque F_6 è una funzione di distribuzione e

$$\mathbb{P}(X_6 = -8) = \Delta F_6(-8) = \frac{1}{2}, \qquad \mathbb{P}(X_6 = -1) = \Delta F_6(-1) = \frac{1}{4},$$

$$\mathbb{P}(X_6 = 72) = \Delta F_6(72) = \frac{1}{4}, \qquad \mathbb{P}(X_6 = x) = \Delta F_6(x) = 0 \text{ per ogni } x \neq -8, -1, 72.$$

4) (a) Sia Y_N che Z_N coincidono con X su (-N,N); se $X \notin (-N,N)$, Y_N viene "congelata" in N o in -N mentre Z_N viene "congelata" in 0. Ecco perché si usa il termine "troncamento".

Detti E_{Y_N} e E_{Z_N} rispettivamente i valori che possono assumere Y_N e Z_N , dev'essere

$$E_{Y_N} = (E_X \cap (-N, N)) \cup \{-N, N\}$$
 $E_{Z_N} = (E_X \cap (-N, N)) \cup \{0\}.$

Studiamone la distribuzione.

Sia $y \in E_{Y_N}$: se $y \neq \pm N$, allora $\{Y_N = y\} = \{X = y\}$; se invece y = N allora $\{Y_N = N\} = \{X = N\} \cup \{X > N\} = \{X \geq N\}$; analogamente, se y = -N si ha $\{Y_N = -N\} = \{X = -N\} \cup \{X < -N\} = \{X \leq -N\}$. Quindi,

$$p_{Y_N}(y) = \begin{cases} p_X(y) & \text{se} \quad y \in E_X \cap (-N, N), \\ \mathbb{P}(X \ge N) & \text{se} \quad y = N, \\ \mathbb{P}(X \le -N) & \text{se} \quad y = -N. \end{cases}$$

Per quanto riguarda Z_N , sia $z \in E_{Z_N}$: se $z \neq 0$, allora $\{Z_N = z\} = \{X = z\}$; se invece z = 0 allora $\{Z_N = 0\} = \{X = 0\} \cup \{X > N\} \cup \{X < -N\}$. Quindi,

$$p_{Z_N}(z) = \begin{cases} p_X(z) & \text{se} \quad z \in E_X \cap (-N, N), \ z \neq 0, \\ \mathbb{P}(X = 0) + \mathbb{P}(X \ge N) + \mathbb{P}(X \le -N) & \text{se} \quad z = 0. \end{cases}$$

(b) Ovviamente sia Y_N che Z_N sono v.a. discrete, che possono assumere un numero finito di valori (anche se la cardinalità di E_X può essere numerabile), quindi la funzione di ripartizione è non decrescente, continua a destra, costante a tratti e salta nei punti che tali v.a. possono assumere, con salto pari alla probabilità che tali punti siano assunti.

Studiamo G_N :

$$G_N(y) = \mathbb{P}(Y_N \le y) = \mathbb{P}(Y_N \le y, X < -N) + \mathbb{P}(Y_N \le y, |X| \le N) + \mathbb{P}(Y_N \le y, X > N)$$

$$= \mathbb{P}(-N \le y, X < -N) + \mathbb{P}(X \le y, |X| \le N) + \mathbb{P}(N \le y, X > N)$$

$$= \begin{cases} 0 & \text{se} \quad y < -N \\ \mathbb{P}(X \le y) & \text{se} \quad -N \le y < N \\ 1 & \text{se} \quad y \ge N \end{cases}$$

Quindi $G_N(y)$ coincide con $\mathbb{P}(X \leq y) = F_X(y)$ per $y \in [-N, N)$, vale 0 quando y < N e 1 se $y \geq N$. Usando le funzioni indicatrici, possiamo scrivere

$$G_N(y) = F_X(y) 1_{\{y \in [-N,N)\}} + 1_{\{y > N\}}. \tag{1}$$

Per disegnare G_N , basta disegnare il grafico di F_X su [-N, N), porre poi $G_N \equiv 0$ quando y < N e $G_N \equiv 1$ se $y \geq N$.

Vediamo H_N :

$$H_{N}(z) = \mathbb{P}(Z_{N} \leq z) = \mathbb{P}(Z_{N} \leq z, X < -N) + \mathbb{P}(Z_{N} \leq z, |X| \leq N) + \mathbb{P}(Z_{N} \leq z, X > N)$$

$$= \mathbb{P}(0 \leq z, X < -N) + \mathbb{P}(X \leq z, |X| \leq N) + \mathbb{P}(0 \leq z, X > N)$$

$$= \begin{cases} 0 & \text{se } z < -N \\ \mathbb{P}(-N \leq X \leq z) & \text{se } -N \leq z < 0 \\ \mathbb{P}(X \leq z) + \mathbb{P}(X > N) & \text{se } 0 \leq z < N \\ 1 & \text{se } z > N \end{cases}$$

Quindi H_N vale 0 e 1 rispettivamente su z < -N e $z \ge N$; vale $\mathbb{P}(-N \le X \le z) = F_X(z) - F_X(-N)$ su [-N, 0) e vale $\mathbb{P}(X \le z) + \mathbb{P}(X > N) = F_X(z) + 1 - F_X(N)$ per $z \in [0, N)$, ovvero

$$H_N(z) = \left(F_X(z) - F_X(-N)\right) 1_{\{z \in [-N,0)\}} + \left(F_X(z) + 1 - F_X(N)\right) 1_{\{z \in [0,N)\}} + 1_{\{z \ge N\}}$$

$$= \left(F_X(z) + 1 - F_X(N)\right) 1_{\{z \in [0,N)\}} + 1_{\{z \ge N\}}.$$
(2)

Per disegnare H_N , basta disegnare il grafico di F_X su [-N,N); traslare F_X di $F_X(-N)$ (si noti che se X assume valori più grandi di -N, questa traslazione di fatto non c'è) per $z \in [-N,0)$ e traslare F_X di $1-F_X(N)$ per $z \in [0,N)$ (si noti che se X assume valori più piccoli di N, questa traslazione di fatto non c'è); porre $H_N \equiv 0$ quando z < N e $H_N \equiv 1$ se $z \geq N$.

(c) Per $N \to +\infty$, sia G_N che H_N tendono a coincidere con F_X , ovvero Y_N e Z_N si "schiacciano" su X. Infatti, fissati $y,z \in \mathbb{R}$, esiste un N_0 tale che per ogni $N \geq N_0$ si abbia $y,z \in [-N,N)$. Quindi, da (1) segue che $G_N(y) = F_X(y)$ per ogni $N \geq N_0$ e

$$\lim_{N \to +\infty} G_N(y) = \lim_{N \to +\infty} F_X(y) = F_X(y);$$

usando (2), se z<0, per ogni $N\geq N_0$ si ha $H_N(z)=F_X(z)-F_X(-N)$ e

$$\lim_{N \to +\infty} H_N(z) = \lim_{N \to +\infty} \left(F_X(z) - F_X(-N) \right) = F_X(z)$$

perché $\lim_{N\to +\infty} F_X(-N)=0.$ Sempre usando (2), se $z\geq 0,$ $H_N(z)=F_X(z)+1-F_X(N)$ e

$$\lim_{N \to +\infty} H_N(z) = \lim_{N \to +\infty} \left(F_X(z) + 1 - F_X(N) \right) = F_X(z)$$

perché $\lim_{N\to+\infty} F_X(N) = 1$.