Gradient estimates for boundary blow-up solutions and applications

Alessio Porretta
Universita’ di Roma Tor Vergata

AIMS Arlington, 19/5/2008
A huge literature has concerned the study of boundary blow-up solutions (also called large-solutions) of elliptic equations like

\[
\begin{aligned}
-\Delta u + g(u) &= f(x) \quad \text{in } \Omega, \\
u(x) &\to +\infty \quad \text{as} \quad d(x) \to 0 \quad [d(x) := \text{dist}(x, \partial \Omega)]
\end{aligned}
\]

since the works of J. Keller, R. Osserman, who proved that a solution exists if and only if

\[
\int_{-\infty}^{+\infty} \frac{1}{\sqrt{G(s)}} \, ds < \infty, \quad G(s) = \int_{0}^{s} g(t) \, dt
\]

Keller-Osserman condition
A huge literature has concerned the study of boundary blow-up solutions (also called large-solutions) of elliptic equations like

\[
\begin{cases}
-\Delta u + g(u) = f(x) & \text{in } \Omega, \\
u(x) \to +\infty & \text{as } d(x) \to 0
\end{cases}
\]

since the works of J. Keller, R. Osserman, who proved that a solution exists if and only if

\[\int^{+\infty} \frac{1}{\sqrt{G(s)}} ds < \infty, \quad G(s) = \int_0^s g(t) dt\]

Keller-Osserman condition

Fundamental problems: existence, asymptotic behavior and uniqueness
[Impossible here to recall all contributors, let us mention Loewner, Nirenberg, Bandle, Marcus, Véron, Lazer, McKenna, Lair, Wood, G. Diaz, Letelier, J. López-Gómez, Cirstea, Radulescu, Zhang,...]
New interest was raised recently on **qualitative properties of solutions**: multiplicity, symmetry, blow-up profile, second order terms, curvature effects

New interest was raised recently on **qualitative properties of solutions**: multiplicity, symmetry, blow-up profile, second order terms, curvature effects

Goal of this talk: show that **gradient estimates** lead to such qualitative results. Two examples will be discussed
New interest was raised recently on qualitative properties of solutions: multiplicity, symmetry, blow-up profile, second order terms, curvature effects [Del Pino-Letelier, Aftalion-Reichel, Aftalion-Del Pino-Letelier, Du-Guo, Du-Guo-Zhou, ...]

Goal of this talk: show that gradient estimates lead to such qualitative results. Two examples will be discussed

- **Radial symmetry in a ball for semilinear equations** (extension of the Gidas-Ni-Nirenberg result). Joint work with L. Véron
New interest was raised recently on qualitative properties of solutions: multiplicity, symmetry, blow-up profile, second order terms, curvature effects

Goal of this talk: show that gradient estimates lead to such qualitative results. Two examples will be discussed

- **Radial symmetry in a ball for semilinear equations** (extension of the Gidas-Ni-Nirenberg result). Joint work with L. Véron
- **Boundary blow-up solutions related to stochastic control problems** (viscous Hamilton-Jacobi equations). Joint work with T. Leonori (PHD at Roma Tor Vergata)
Recall the celebrated Gidas-Ni-Nirenberg result:

Let g be a locally Lipschitz function. Then any $u \in C^2(\Omega)$ which is a positive solution of

$$\begin{cases}
-\Delta u + g(u) = 0 & \text{in } B_R(0), \\
u = 0 & \text{on } \partial B_R(0),
\end{cases}$$

is radially symmetric and decreasing.
Radial symmetry: Gidas-Ni-Nirenberg for large solutions

Recall the celebrated Gidas-Ni-Nirenberg result:

Let g be a locally Lipschitz function. Then any $u \in C^2(\Omega)$ which is a positive solution of

$$
\begin{cases}
-\Delta u + g(u) = 0 & \text{in } B_R(0), \\
u = 0 & \text{on } \partial B_R(0),
\end{cases}
$$

is radially symmetric and decreasing.

Remark: Of course the same holds if $u|_{\partial \Omega} = m$ is constant and $u \leq m$ inside Ω.
Recall the celebrated Gidas-Ni-Nirenberg result:

Let g be a locally Lipschitz function. Then any $u \in C^2(\Omega)$ which is a positive solution of

$$\begin{cases}
-\Delta u + g(u) = 0 & \text{in } B_R(0), \\
u = 0 & \text{on } \partial B_R(0),
\end{cases}$$

is radially symmetric and decreasing.

Remark: Of course the same holds if $u|_{\partial \Omega} = m$ is constant and $u \leq m$ inside Ω.

A natural question is: if g also satisfies the Keller-Osserman condition at infinity, does a similar result holds for boundary blow-up solutions?

(Answer is not trivial: to what extent $u = +\infty$ is constant tangentially?...)
Recall the key points in the GNN approach (as well as in many later symmetry results)

- Hopf boundary lemma
- Moving plane method: compare u with its reflection
Recall the key points in the GNN approach (as well as in many later symmetry results)

- Hopf boundary lemma
- moving plane method: compare u with its reflection

Comparing u with its reflection is not easy when solutions blow-up at the boundary:
- how the difference $u - u_{\lambda}$ behaves near the corner points?
- how can we replace the information of Hopf lemma?
With L. Véron, we adopt the following strategy:

(i) we prove that the Gidas-Ni-Nirenberg argument works for boundary blow-up solutions provided one knows that the normal gradient is dominant:

\[
\begin{align*}
\lim_{|x| \to R} \frac{\partial u}{\partial \nu} &= \infty \\
\frac{\partial u}{\partial \tau} &= o \left(\frac{\partial u}{\partial \nu} \right) \quad \text{as } |x| \to R,
\end{align*}
\]

where \(\frac{\partial u}{\partial \nu} \) is the normal derivative and \(\frac{\partial u}{\partial \tau} \) is any tangential derivative of \(u \).
With L. Véron, we adopt the following strategy:

(i) we prove that the Gidas-Ni-Nirenberg argument works for boundary blow-up solutions provided one knows that the normal gradient is dominant:

\[
\begin{align*}
\lim_{|x| \to R} \frac{\partial u}{\partial \nu} &= \infty \\
\frac{\partial u}{\partial \tau} &= o \left(\frac{\partial u}{\partial \nu} \right) \quad \text{as} \quad |x| \to R,
\end{align*}
\]

(1)

where $\frac{\partial u}{\partial \nu}$ is the normal derivative and $\frac{\partial u}{\partial \tau}$ is any tangential derivative of u.

In some sense we use (1) as a version of Hopf lemma for boundary blow-up solutions.
With L. Véron, we adopt the following strategy:

(i) we prove that the Gidas-Ni-Nirenberg argument works for boundary blow-up solutions provided one knows that the normal gradient is dominant:

\[
\begin{array}{ll}
\lim_{|x| \to R} \frac{\partial u}{\partial \nu} = \infty \\
\frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right) \quad \text{as} \quad |x| \to R,
\end{array}
\]

where \(\frac{\partial u}{\partial \nu} \) is the normal derivative and \(\frac{\partial u}{\partial \tau} \) is any tangential derivative of \(u \).

In some sense we use (1) as a version of Hopf lemma for boundary blow-up solutions

(ii) we turn our attention to conditions under which (1) can be proved to hold true.
Theorem (Porretta-Véron, J. Functional Anal. '06)

Let g be a locally Lipschitz continuous function. Assume that

(i) Exists a $a > 0$ such that g is positive and convex on $[a, \infty)$

(ii) g satisfies the Keller-Osserman condition at infinity.

Then any $u \in C^2(\Omega)$ solution of

$$\begin{cases}
-\Delta u + g(u) = 0 \quad \text{in } B_R(0), \\
\lim_{|x| \to R} u(x) = +\infty
\end{cases}$$

is radially symmetric and increasing.
Theorem (Porretta-Véron, J. Functional Anal. ’06)

Let \(g \) be a locally Lipschitz continuous function. Assume that

(i) Exists \(a > 0 \) such that \(g \) is positive and convex on \([a, \infty)\)

(ii) \(g \) satisfies the Keller-Osserman condition at infinity.

Then any \(u \in C^2(\Omega) \) solution of

\[
\begin{cases}
-\Delta u + g(u) = 0 & \text{in } B_R(0), \\
\lim_{|x| \to R} u(x) = +\infty
\end{cases}
\]

is radially symmetric and increasing.

Rmk: The result allows to characterize all solutions in several situations where uniqueness fails:
Ex: Changing sign \(g \), like \(g(u) = u(u-a)(u-1) \) [Aftalion-Reichel, Aftalion-Del Pino-Letelier ’03]; \(g(u) = u^2 \) [Pohozaev ’61]
Some comments:

- Partial results were previously proved by McKenna-Reichel-Walter [Nolin. Anal. '97] by using *second order expansion* of solutions. However, that approach requires stronger assumptions on g: indeed,

proving second order expansion for $u \Rightarrow$ proving first order for ∇u
Some comments:

- Partial results were previously proved by McKenna-Reichel-Walter [Nolin. Anal. '97] by using second order expansion of solutions. However, that approach requires stronger assumptions on g: indeed,

 proving second order expansion for $u \Rightarrow$ proving first order for ∇u

- We use the assumption that $g(s)$ is “convex at infinity” in order to prove the estimates for derivatives. i.e. $\frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right)$.

This assumption is satisfied by any “reasonable” example of function enjoying the Keller-Osserman condition (recall that K-O condition \Rightarrow superlinearity at infinity). However, the most general result (assuming only K-O condition) is open.
This is a special case of a general problem: in a smooth domain Ω, prove that boundary blow-up solutions of

$$\begin{cases} -\Delta u + H(u, \nabla u) = f(x) \quad \text{in } \Omega , \\ u(x) \to +\infty \quad \text{as} \quad d(x) \to 0 \end{cases}$$

satisfy $\frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right)$.

A. Porretta
Gradient estimates for blow-up solutions
This is a special case of a general problem: in a smooth domain Ω, prove that boundary blow-up solutions of

$$\begin{cases}
-\Delta u + H(u, \nabla u) = f(x) \quad \text{in } \Omega, \\
u(x) \to +\infty \quad \text{as} \quad d(x) \to 0
\end{cases}$$

satisfy $\frac{\partial u}{\partial \tau} = o\left(\frac{\partial u}{\partial \nu}\right)$.

Many situations can be dealt with using asymptotic estimates and blow-up arguments [Bandle-Essen, Bandle-Marcus, Porretta-Véron]
This is a special case of a general problem: in a smooth domain Ω, prove that boundary blow-up solutions of

$$
\begin{cases}
-\Delta u + H(u, \nabla u) = f(x) & \text{in } \Omega, \\
u(x) \to +\infty & \text{as } d(x) \to 0
\end{cases}
$$

satisfy $\frac{\partial u}{\partial \tau} = o\left(\frac{\partial u}{\partial \nu}\right)$.

Many situations can be dealt with using asymptotic estimates and blow-up arguments [Bandle-Essen, Bandle-Marcus, Porretta-Véron]

If one can prove that $u(x) \sim \psi(d(x))$ where ψ satisfies the associated ODE

$$
\begin{cases}
\psi'' = H(\psi, \psi') , \\
\psi(0) = +\infty
\end{cases}
$$

then the strategy is:

scaling and blow–up near a point $x_0 \in \partial \Omega$: $u_\delta = \psi(\delta) u(x_0 + \delta \xi)$

elliptic $W^{2,p}$–estimates on u_δ $\Rightarrow C^1$–compactness

$\Rightarrow \nabla u \sim \psi'(d(x)) \nabla d(x) = -\psi'(d) \nu$

(Related topics: symmetry/uniqueness results in half spaces)
We consider now the problem

\[
\begin{aligned}
-\Delta u + u + |\nabla u|^q &= f(x) \quad \text{in } \Omega, \\
 u(x) &\to +\infty \quad \text{as } \quad d(x) \to 0
\end{aligned}
\]

(2)

A. Porretta

Gradient estimates for blow-up solutions
Boundary blow-up in viscous Hamilton-Jacobi equations

We consider now the problem

\[
\begin{cases}
-\Delta u + u + |\nabla u|^q = f(x) & \text{in } \Omega, \\
u(x) \to +\infty & \text{as } d(x) \to 0
\end{cases}
\]

\(\Omega\) is a bounded smooth subset in \(\mathbb{R}^N\), \(f\) is (at least) bounded

\(1 < q \leq 2\)
We consider now the problem

\[
\begin{cases}
 -\Delta u + u + |\nabla u|^q = f(x) & \text{in } \Omega, \\
 u(x) \to +\infty & \text{as } d(x) \to 0
\end{cases}
\]

(2)

- Ω is a bounded smooth subset in \mathbb{R}^N, f is (at least) bounded
- $1 < q \leq 2$
 (this range is necessary: no such solutions if $q > 2$ or $q \leq 1$)
Boundary blow-up in viscous Hamilton-Jacobi equations

We consider now the problem

\[
\begin{cases}
-\Delta u + u + |\nabla u|^q = f(x) & \text{in } \Omega, \\
u(x) \to +\infty & \text{as } d(x) \to 0
\end{cases}
\] (2)

- Ω is a bounded smooth subset in \mathbb{R}^N, f is (at least) bounded
- $1 < q \leq 2$
 (this range is necessary: no such solutions if $q > 2$ or $q \leq 1$)

Motivation & origin of this model is a state constraint problem for the Brownian motion

“constraining a Brownian motion in a given domain by controlling its drift”
Given a Brownian motion B_t and the SDE

\[
\begin{cases}
 dX_t = a(X_t) dt + \sqrt{2} dB_t, \\
 X_0 = x \in \Omega,
\end{cases}
\]

find an optimal feedback control $a \in C(\Omega)$ such that X_t does never leave the domain Ω.
Given a Brownian motion B_t and the SDE

$$\begin{cases} dX_t = a(X_t) dt + \sqrt{2} dB_t, \\ X_0 = x \in \Omega, \end{cases}$$

find an optimal feedback control $a \in C(\Omega)$ such that X_t does never leave the domain Ω. Admissible controls:

$$a \in \mathcal{A} = \{ a \in C(\Omega) : X_t \in \Omega, \forall t > 0 \text{ a.s.} \}$$
Given a Brownian motion B_t and the SDE

\[
\begin{aligned}
 dX_t &= a(X_t)dt + \sqrt{2} dB_t, \\
 X_0 &= x \in \Omega,
\end{aligned}
\]

find an optimal **feedback control** $a \in C(\Omega)$ such that X_t does never leave the domain Ω. Admissible controls:

\[
a \in A = \{a \in C(\Omega) : X_t \in \Omega, \forall t > 0 \text{ a.s.}\}
\]

Rmk: in order to constrain a diffusion one needs **vector fields** $a(x)$ which blow-up at $\partial \Omega$.
Given a Brownian motion B_t and the SDE

\[\begin{cases} dX_t = a(X_t)dt + \sqrt{2} dB_t, \\ X_0 = x \in \Omega, \end{cases}\]

find an optimal feedback control $a \in C(\Omega)$ such that X_t does never leave the domain Ω. Admissible controls:

\[a \in \mathcal{A} = \{a \in C(\Omega) : X_t \in \Omega, \forall t > 0 \text{ a.s.}\}\]

Rmk: in order to constrain a diffusion one needs vector fields $a(x)$ which blow-up at $\partial \Omega$.

Given the cost functional

\[J(x, a) = E \int_0^\infty \left\{ f(X_t) + \gamma_q |a(X_t)|^{q'} \right\} e^{-t} dt\]

where $q' = \frac{q}{q - 1}$, then the value function

\[u(x) = \inf_{a \in \mathcal{A}} J(x, a),\]

is a solution of (2) if $1 < q \leq 2$ (dynamic programming principle).
Theorem (JM. Lasry-PL. Lions)

Let $1 < q \leq 2$. Then the value function u is the unique solution (in $W^{2,p}_{1\text{oc}}(\Omega)$ for every $p < \infty$) of

$$
\begin{aligned}
-\Delta u + u + |\nabla u|^q &= f(x) \quad \text{in } \Omega, \\
 u(x) &\to +\infty \quad \text{as } d(x) \to 0
\end{aligned}
$$
Theorem (JM. Lasry-PL. Lions)

Let $1 < q \leq 2$. Then the value function u is the unique solution (in $W^{2,p}_{\text{loc}}(\Omega)$ for every $p < \infty$) of

\[
\begin{cases}
-\Delta u + u + |\nabla u|^q = f(x) & \text{in } \Omega, \\
u(x) \to +\infty & \text{as } d(x) \to 0
\end{cases}
\]

and

\[a(x) = -q|\nabla u(x)|^{q-2}\nabla u(x)\]

is the unique optimal control law.
Theorem (JM. Lasry-PL. Lions)

Let $1 < q \leq 2$. Then the value function u is the unique solution (in $W^{2,p}_{\text{loc}}(\Omega)$ for every $p < \infty$) of

\[
\begin{cases}
-\Delta u + u + |\nabla u|^q = f(x) & \text{in } \Omega, \\
u(x) \to +\infty & \text{as } d(x) \to 0
\end{cases}
\]

and

\[a(x) = -q|\nabla u(x)|^{q-2} \nabla u(x)\]

is the unique optimal control law.

Moreover u satisfies, as $d(x) \to 0$,

\[
\begin{cases}
u(x) \sim C_q d(x)^{-\frac{2-q}{q-1}} & \text{if } 1 < q < 2, \\
u(x) \sim -\log(d(x)) & \text{if } q = 2,
\end{cases}
\]

where C_q is a universal constant, $(C_q = \frac{(q-1)^{-\frac{2-q}{q-1}}}{2-q})$.
After [LL], one knows that the constrained dynamics

\[
\begin{cases}
 dX_t = a(X_t)dt + \sqrt{2} dB_t, \\
 X_0 = x \in \Omega,
\end{cases}
\]

is determined by the unique optimal control

\[
a(X_t) = -q |\nabla u(X_t)|^{q-2} \nabla u(X_t)
\]

where \(u \) is the boundary blow-up solution of the viscous Hamilton-Jacobi equation

\[
\begin{cases}
 -\Delta u + u + |\nabla u|^q = f(x) \quad \text{in } \Omega, \\
 u(x) \to +\infty \quad \text{as } \quad d(x) \to 0
\end{cases}
\]
After [LL], one knows that the constrained dynamics

\[
\begin{cases}
 dX_t = a(X_t) dt + \sqrt{2} dB_t, \\
 X_0 = x \in \Omega,
\end{cases}
\]

is determined by the unique optimal control

\[a(X_t) = -q|\nabla u(X_t)|^{q-2} \nabla u(X_t) \]

where \(u \) is the boundary blow-up solution of the viscous Hamilton-Jacobi equation

\[
\begin{cases}
 -\Delta u + u + |\nabla u|^q = f(x) \quad \text{in} \ \Omega, \\
 u(x) \to +\infty \quad \text{as} \quad d(x) \to 0
\end{cases}
\]

Next goal: study the qualitative behavior (near the boundary) of \(\nabla u \) to understand the control mechanism
First order asymptotics of the gradient

As a particular case of results in [Porretta-Véron, Adv. Nonlin. Stud. ’06] we have:

$$\lim_{x \to \partial \Omega} d(x) \frac{1}{q-1} \nabla u(x) = \tilde{c}_q \nu(x)$$

where $\nu(x)$ is the outward unit normal on $\partial \Omega$, and $\tilde{c}_q = (q-1)^{-\frac{1}{q-1}}$.
First order asymptotics of the gradient

As a particular case of results in [Porretta-Véron, Adv. Nonlin. Stud. '06] we have:

$$\lim_{x \to \partial \Omega} d(x) \frac{1}{q-1} \nabla u(x) = \tilde{c}_q \nu(x)$$

where $\nu(x)$ is the outward unit normal on $\partial \Omega$, and $\tilde{c}_q = (q-1)^{-\frac{1}{q-1}}$. In particular this implies:

$$\frac{\partial u}{\partial \nu} \sim \frac{\tilde{c}_q}{d(x)^{\frac{1}{q-1}}} \quad \text{and} \quad \frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right).$$
First order asymptotics of the gradient

As a particular case of results in [Porretta-Véron, Adv. Nonlin. Stud. '06] we have:

$$\lim_{x \to \partial \Omega} d(x)^{\frac{1}{q-1}} \nabla u(x) = \tilde{c}_q \nu(x)$$

where $\nu(x)$ is the outward unit normal on $\partial \Omega$, and $\tilde{c}_q = (q-1)^{-\frac{1}{q-1}}$. In particular this implies:

$$\frac{\partial u}{\partial \nu} \sim \frac{\tilde{c}_q}{d(x)^{\frac{1}{q-1}}} \quad \text{and} \quad \frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right).$$

As before, this is the scaling of the asymptotics of u: set $\alpha = \frac{2-q}{q-1}$

$$\begin{cases}
\text{if } 1 < q < 2, \quad u \sim C_q d(x)^{-\alpha} \quad \rightarrow \quad \nabla u \sim -\tilde{c}_q C_q \alpha d(x)^{-(\alpha+1)} \nabla d(x) \\
\text{if } q = 2, \quad u \sim -\log(d(x)) \quad \rightarrow \quad \nabla u \sim -\frac{1}{d(x)} \nabla d(x)
\end{cases}$$

(note that $\alpha + 1 = \frac{1}{q-1}$, $\tilde{c}_q = C_q \frac{2-q}{q-1}$ and $\nabla d(x) = -\nu$)
We recover the typical result: the first order behavior of u and ∇u is independent of Ω and is described by the associated ODE

$$
\psi'' = |\psi'|^q + \psi
$$
We recover the typical result: the first order behavior of u and ∇u is independent of Ω and is described by the associated ODE

$$\psi'' = |\psi'|^q + \psi$$

Recently, for the equation $\Delta u = u^p$, [Del Pino-Letelier '02], [Bandle-Marcus '05] showed that the influence of the domain in the blow–up appears in second order terms (with curvature effects). Proof is through sub–super solutions which provide a detailed (second order) expansion of u.
We recover the typical result: the first order behavior of u and ∇u is independent of Ω and is described by the associated ODE

$$\psi'' = |\psi'|^q + \psi$$

Recently, for the equation $\Delta u = u^p$, [Del Pino-Letelier '02], [Bandle-Marcus '05] showed that the influence of the domain in the blow–up appears in second order terms (with curvature effects). Proof is through sub–super solutions which provide a detailed (second order) expansion of u.

Natural question for our model is: how the feedback control process depends on the geometry of domain?

To get an answer:

▶ Give a precise description of the blow–up of ∇u
 (role of normal and tangential components, second order terms...)

A. Porretta
Gradient estimates for blow-up solutions
Second order terms: curvature effects

Theorem (Leonori–Porretta SIAM J. Math. Anal. '07)

Let $Ω$ be a smooth bounded open subset of \mathbb{R}^N, and let u be the unique solution of (2).
Second order terms: curvature effects

Let Ω be a smooth bounded open subset of \mathbb{R}^N, and let u be the unique solution of (2).
Set \overline{x} the projection of x onto $\partial \Omega$ and by $H(\overline{x})$ the mean curvature of $\partial \Omega$ computed at \overline{x}.
Second order terms: curvature effects

Let Ω be a smooth bounded open subset of \mathbb{R}^N, and let u be the unique solution of (2).

Set \overline{x} the projection of x onto $\partial \Omega$ and by $H(\overline{x})$ the mean curvature of $\partial \Omega$ computed at \overline{x}.

Being ν and τ the normal and tangent vectors, we have, as $d(x) \to 0$,

$$\frac{\partial u}{\partial \nu} = \frac{\tilde{c}_q}{d(x)^{\frac{1}{q-1}}} \left[1 + \frac{(N-1)}{2} H(\overline{x}) d(x) + o(d(x)) \right], \quad \forall 1 < q \leq 2,$$
Second order terms: curvature effects

Let Ω be a smooth bounded open subset of \mathbb{R}^N, and let u be the unique solution of (2).
Set \overline{x} the projection of x onto $\partial \Omega$ and by $H(\overline{x})$ the mean curvature of $\partial \Omega$ computed at \overline{x}.
Being ν and τ the normal and tangent vectors, we have, as $d(x) \to 0$,

$$\frac{\partial u}{\partial \nu} = \frac{\tilde{c}_q}{d(x)^{\frac{1}{q-1}}} \left[1 + \frac{(N-1)}{2} H(\overline{x}) d(x) + o(d(x)) \right], \quad \forall 1 < q \leq 2,$$

and

$$\begin{cases}
\frac{\partial u}{\partial \tau} \in L^\infty(\Omega) & \text{if } \frac{3}{2} < q \leq 2, \\
\frac{\partial u}{\partial \tau} = O(|\log d|) & \text{if } q = \frac{3}{2}, \\
\frac{\partial u}{\partial \tau} = O\left(\frac{1}{d^{\frac{3-2q}{q-1}}}\right) & \text{if } 1 < q < \frac{3}{2}.
\end{cases}$$
Corollary (Representation of the optimal control)

Let \(a(x) = -q|\nabla u(x)|^{q-2}\nabla u(x) \) be the optimal control for the state constraint problem.

As \(d(x) \to 0 \), we have: for any \(1 < q < 2 \)

\[
a(x) = -\left[\frac{q'}{d(x)} + \frac{q'(N-1)}{2} H(\vec{x}) \right] \nu(x) + o(1)
\]
Corollary (Representation of the optimal control)

Let \(a(x) = -q|\nabla u(x)|^{q-2}\nabla u(x) \) be the optimal control for the state constraint problem.

As \(d(x) \to 0 \), we have: for any \(1 < q < 2 \)

\[
a(x) = - \left[\frac{q'}{d(x)} + \frac{q'(N-1)}{2} H(\varphi) \right] \nu(x) + o(1)
\]

For \(q = 2 \) we have

\[
a(x) = - \left[\frac{2}{d(x)} + (N-1) H(\varphi) + o(1) \right] \nu(x) + \psi(x) \tau(x)
\]

where \(\psi \in L^\infty(\Omega) \).
Corollary (Representation of the optimal control)

Let \(a(x) = -q|\nabla u(x)|^{q-2}\nabla u(x) \) be the optimal control for the state constraint problem.

As \(d(x) \to 0 \), we have: for any \(1 < q < 2 \)

\[
a(x) = - \left[\frac{q'}{d(x)} + \frac{q'(N-1)}{2} H(\overline{x}) \right] \nu(x) + o(1)
\]

For \(q = 2 \) we have

\[
a(x) = - \left[\frac{2}{d(x)} + (N-1) H(\overline{x}) + o(1) \right] \nu(x) + \psi(x) \tau(x)
\]

where \(\psi \in L^\infty(\Omega) \).

Note in particular:

(i) The control tangentially is zero on \(\partial\Omega \) if \(q \neq 2 \), bounded if \(q = 2 \).
Corollary (Representation of the optimal control)

Let \(a(x) = -q|\nabla u(x)|^{q-2}\nabla u(x) \) be the optimal control for the state constraint problem.

As \(d(x) \to 0 \), we have: for any \(1 < q < 2 \)

\[
a(x) = -\left[\frac{q'}{d(x)} + \frac{q'(N-1)}{2} H(\bar{x}) \right] \nu(x) + o(1)
\]

For \(q = 2 \) we have

\[
a(x) = -\left[\frac{2}{d(x)} + (N-1) H(\bar{x}) + o(1) \right] \nu(x) + \psi(x) \tau(x)
\]

where \(\psi \in L^\infty(\Omega) \).

Note in particular:

(i) The control tangentially is zero on \(\partial \Omega \) if \(q \neq 2 \), bounded if \(q = 2 \).

(ii) On the hypersurfaces parallel to \(\partial \Omega \), the control is maximum where the domain has a maximal mean curvature.
The “constrained dynamics”

Near the boundary, the dynamics looks like

\[
\begin{aligned}
dX_t &= \left[\frac{q'}{d(x_t)} + \frac{q'(N-1)}{2} H(x_t) \right] \nabla d(x_t) dt + \sqrt{2} dB_t , \\
X_0 &= x \in \Omega ,
\end{aligned}
\]

The control (i.e. the drift) has to be stronger where the domain is more curved.
Method of proof: asymptotic expansion of the gradient

Remarks (with respect to first order asymptotics):

- The second order expansion of the gradient cannot be obtained here just using sub–super solutions nor “rescaling from the expansion of \(u \)

(it may happen that \(u - C_q d(x)^{-\alpha} \) has a non trivial trace on \(\partial \Omega \), the second order behavior of \(u \) cannot be determined)
Method of proof: asymptotic expansion of the gradient

Remarks (with respect to first order asymptotics):

- The second order expansion of the gradient cannot be obtained here just using sub–super solutions nor “rescaling from the expansion of u”.

(it may happen that $u - C_q d(x)^{-\alpha}$ has a non trivial trace on $\partial \Omega$, the second order behavior of u cannot be determined)

Our approach relies instead on a regularity result, and we obtain the previous statements by proving a complete asymptotic expansion for ∇u with respect to $d(x)$:
Method of proof: asymptotic expansion of the gradient

Remarks (with respect to first order asymptotics):
- The second order expansion of the gradient cannot be obtained here just using sub–super solutions nor “rescaling from the expansion of \(u \).”

(it may happen that \(u - C_q d(x)^{-\alpha} \) has a non trivial trace on \(\partial \Omega \), the second order behavior of \(u \) cannot be determined)

Our approach relies instead on a regularity result, and we obtain the previous statements by proving a complete asymptotic expansion for \(\nabla u \) with respect to \(d(x) \):

- introduce a formal asymptotic expansion \(S \)
- prove directly that \(u - S \) is Lipschitz
 (without knowing the boundary value of \(u - S \)): this is possible thanks to a priori estimates and approximation with Neumann-type boundary condition
It sounds similar to a *corrector result*:
It sounds similar to a \textit{corrector result}: Let here $q < 2$: we already know that

$$ u(x) \sim C_q d(x)^{-\alpha} $$

$$ \alpha = \frac{2 - q}{q - 1} $$
It sounds similar to a *corrector result*:
Let here $q < 2$: we already know that

$$u(x) \sim C_q d(x)^{-\alpha} \quad \alpha = \frac{2 - q}{q - 1}$$

Then we introduce as a *corrector*

$$S = d(x)^{-\alpha} \sum_{k=0}^{m_\alpha} \sigma_k(x)d(x)^k$$

and look for a result of the type

$$u - S \text{ is Lipschitz in } \Omega.$$
It sounds similar to a *corrector result*:

Let here $q < 2$: we already know that

$$u(x) \sim C_q \, d(x)^{-\alpha} \quad \alpha = \frac{2 - q}{q - 1}$$

Then we introduce as a *corrector*

$$S = d(x)^{-\alpha} \sum_{k=0}^{m_{\alpha}} \sigma_k(x) d(x)^k$$

and look for a result of the type

$$u - S \quad \text{is Lipschitz in } \Omega.$$

Of course one has that $\sigma_0 = C_q$ is known, and σ_k, $k = 1, \ldots, m$ are smooth functions to be determined.
Indeed, we will prove that there exists a unique choice of the functions σ_k such that

$$u - S$$

is Lipschitz

where $S = d(x)^{-\alpha} \sum_{k=0}^{m\alpha} \sigma_k(x)d(x)^k$.

A. Porretta

Gradient estimates for blow-up solutions
Indeed, we will prove that there exists a unique choice of the functions σ_k such that

$$u - S \quad \text{is Lipschitz}$$

where $S = d(x)^{-\alpha} \sum_{k=0}^{m_{\alpha}} \sigma_k(x)d(x)^k$.

The coefficients σ_k can be explicitly computed, hence we deduce all singular terms of the expansion, since

$$\nabla u - \nabla S \in L^\infty$$
Indeed, we will prove that there exists a unique choice of the functions σ_k such that

$$u - S \quad \text{is Lipschitz}$$

where $S = d(x)^{-\alpha} \sum_{k=0}^{m_{\alpha}} \sigma_k(x) d(x)^k$.

The coefficients σ_k can be explicitly computed, hence we deduce all singular terms of the expansion, since

$$\nabla u - \nabla S \in L^\infty$$

In particular, the computation of σ_k gives

$$\sigma_1(x) = \frac{\tilde{c}_q}{1 - \alpha} \frac{\Delta d(x)}{2},$$

hence the mean curvature in second order terms

$$(\Delta d(x))_{\partial \Omega} = -(N - 1)H(x))$$
Key point: Lipschitz estimates on the reduced (“linearized”) equation.
Key point: Lipschitz estimates on the reduced ("linearized") equation.

(a) Take \(S = d(x)^{-\alpha} \sum_{k=0}^{m} \sigma_k(x)d(x)^k \) and look at the equation satisfied by \(z = u - S \)

Using the first order behavior \[\frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right) \] and an asymptotic development near the boundary the equation for \(z \) looks like

\[-\Delta z + z - \frac{\alpha+2}{d(x)} \nabla z \nabla d(x) + O(d^\alpha |\nabla z|^2) = f(x) + g(x),\]

\[g = \Delta S - S - |\nabla S|^q \]
Key point: Lipschitz estimates on the reduced (“linearized”) equation.

(a) Take $S = d(x)^{-\alpha} \sum_{k=0}^{m} \sigma_k(x)d(x)^k$ and look at the equation satisfied by $z = u - S$

Using the first order behavior $[\frac{\partial u}{\partial \tau} = o\left(\frac{\partial u}{\partial \nu}\right)$] and an asymptotic development near the boundary the equation for z looks like

$$-\Delta z + z - \frac{\alpha+2}{d(x)} \nabla z \nabla d(x) + O(d^{\alpha} |\nabla z|^2) = f(x) + g(x),$$

$$g = \Delta S - S - |\nabla S|^q$$

(b) Using Bernstein’s method we get estimates for $|\nabla z|^2$ depending on the regularity of f and $g.$
Key point: Lipschitz estimates on the reduced (“linearized”) equation.

(a) Take $S = d(x)^{-\alpha} \sum_{k=0}^{m} \sigma_k(x)d(x)^k$ and look at the equation satisfied by $z = u - S$

Using the first order behavior $\left[\frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right) \right]$ and an asymptotic development near the boundary the equation for z looks like

$$-\Delta z + z - \frac{\alpha + 2}{d(x)} \nabla z \nabla d(x) + O(d^\alpha |\nabla z|^2) = f(x) + g(x),$$

$$g = \Delta S - S - |\nabla S|^q$$

(b) Using Bernstein’s method we get estimates for $|\nabla z|^2$ depending on the regularity of f and g. Next two ingredients:

(i) Choose the coefficients $\sigma_k(x)$ of S in a way that g is smooth (this gives a unique choice of the corrector S)
Key point: Lipschitz estimates on the reduced ("linearized") equation.

(a) Take $S = d(x)^{-\alpha} \sum_{k=0}^{m} \sigma_k(x)d(x)^k$ and look at the equation satisfied by $z = u - S$

Using the first order behavior $[\frac{\partial u}{\partial \tau} = o \left(\frac{\partial u}{\partial \nu} \right)....]$ and an asymptotic development near the boundary the equation for z looks like

$$-\Delta z + z - \frac{\alpha+2}{d(x)} \nabla z \nabla d(x) + O(d^\alpha |\nabla z|^2) = f(x) + g(x),$$

$$g = \Delta S - S - |\nabla S|^q$$

(b) Using Bernstein's method we get estimates for $|\nabla z|^2$ depending on the regularity of f and g. Next two ingredients:
(i) Choose the coefficients $\sigma_k(x)$ of S in a way that g is smooth (this gives a unique choice of the corrector S)
(ii) In order to get global Lipschitz estimates in Ω, we approximate $u - S$ with solutions satisfying Neumann boundary conditions.
Comments, extensions, work in progress
The result extends to inhomogeneous diffusions

\[
\begin{cases}
 dX_t = a(X_t)dt + \sqrt{2} \sigma(X_t)dB_t, \\
 X_0 = x \in \Omega,
\end{cases}
\]

with associated HJB equation

\[-\text{tr} (A(x)D^2 u) + \lambda u + |\nabla u|^q = f(x)\]

where \(A(x) = \sigma(x)\sigma^T(x)\).
The result extends to inhomogeneous diffusions
\[
\begin{cases}
 dX_t = a(X_t)dt + \sqrt{2} \sigma(X_t)dB_t , \\
 X_0 = x \in \Omega ,
\end{cases}
\]
with associated HJB equation
\[
-\text{tr} (A(x)D^2 u) + \lambda u + |\nabla u|^q = f(x)
\]
where \(A(x) = \sigma(x)\sigma^T(x) \).
Assuming \(A(x) \) elliptic and smooth, one can use the same approach
replacing the distance function \(d(x) \) with the solution of the first
order equation
\[
\begin{cases}
 A(x)\nabla \rho \nabla \rho = \gamma |\nabla \rho|^q \quad \text{in } \Omega \\
 \rho > 0 , \\
 \rho = 0 \quad \text{on } \partial \Omega .
\end{cases}
\]
Things to be done (or in progress)...

- Existence/blow-up of explosive solutions in singular domains
 (link with Wiener criteria for the Brownian motion)
Things to be done (or in progress)...

- **Existence/blow–up of explosive solutions in singular domains**
 (link with Wiener criteria for the Brownian motion)

- **general diffusions**, possibly non smooth and/or degenerate. ⇒
 approach by viscosity solutions
 (cfr. degenerate state constraint problems [Katsoulakis],
 [Ishii–Loreti], [Barles-Burdeau, Barles-Rouy, B-R-Souganidis]...)

A. Porretta

Gradient estimates for blow-up solutions