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Mean field game theory: what is about ?

MFG theory was introduced since 2006 by J-M Lasry and P-L Lions.
A similar model developed independently by [Huang-Caines-Malhamé].

Goal: study Nash equilibria in large populations of rational agents with
weak interaction

large population  infinite number (a continuum) of similar players

rational agents  each agent is controlling his own dynamical state

weak interaction  each single agent has no influence on the others’.
But everyone takes into account the collective behavior through the
distribution law (empirical density) of the states.

Applications: finance, macroeconomics (oil market, wealth-growth
models...), engineering (smart grids...), crowd dynamics...

Basic idea: export the principle of statistical mechanics to (non
cooperative) strategic interactions within rational particles

→ Limit of Nash equilibria of symmetric N-players games will satisfy, as
N →∞, a system of PDEs coupling the equation for the individual
strategies with the equation for the distribution law
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Macroscopic (mean-field) description{
dXs = α(Xs)ds +

√
2 dBs ,

Xt = x

**

dynamics of each agent

u(t, x) = inf
{α(·)}

E
∫ T

t
L(Xs , α(Xs), µs) + G (XT , µT )

where {µt} is an exogenous family of measures

HJB
��

−∂tu −∆u + H(x , µ,Du) = 0

α∗(·) = −Hp(·, µt ,Du(t, ·))︸ ︷︷ ︸
optimal policy

,
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HJB
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−∂tm −∆m + div (αm) = 0
m(t) = L(Xt)
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−∂tu −∆u + H(x , µ,Du) = 0
α∗t = −Hp(Xt , µt ,Du(t,Xt))︸ ︷︷ ︸
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��

Nash equilibrium: L(X ∗t ) = µt

∂tm −∆m − div(mHp(x ,m,Du)) = 0 −∂tu −∆u + H(x ,m,Du) = 0
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The MFG system of PDEs

Model case (here Hp stands for ∂H(x,p)
∂p ){

−∂tu −∆u + H(x ,Du) = F (x ,m) in (0,T )× Ω

∂tm −∆m − div(mHp(x ,Du)) = 0 in (0,T )× Ω ,

usually complemented with initial-terminal conditions:

-m(0) = m0 (initial distribution of the agents)

-u(T ) = G (x ,m(T )) (final pay-off)

+ boundary conditions (here for simplicity assume periodic b.c.)

Rmk 1: This is not the most general structure.

Cost criterion L(Xt , αt ,m(t))→ H(x ,m,Du).

Rmk 2: The special structure H = H(x ,Du)− F (x ,m) gives to the
system a variational structure → optimality system
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Link with optimal control systems

MFG as optimality system (optimal control with Fokker-Planck state eq.).

Ex: Optimize in terms of the field α

∂tm = ∆m + div (αm) , m(0) = m0

−→ infα
∫ T

0

∫
Ω
{L(x , α)m + Φ(m(s))} dt + G(m(T ))

where Φ′(m) = F (m) and G′(m) = G (m).

First order optimality conditions give the adjoint state u:{
Du + Lα(x , α) = 0 (m − q.o.)

−∂tu −∆u − α · Du − L(x , α) = F (m)
⇔

αopt = −Hp(x ,Du(t, x))

−∂tu −∆u + H(x ,Du) = F (m)

Rmk: F (m),G (m) nondecreasing ⇒ convexity of the functional
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−∂tu −∆u + H(x ,Du) = F (x ,m) in (0,T )× Ω

∂tm −∆m − div(mHp(x ,Du)) = 0 in (0,T )× Ω ,

m(0) = m0 , u(T ) = G (x ,m(T ))

Key-assumption: F ,G nondecreasing → uniqueness, stability...

Use the adjoint structure of the system: (u1,m1), (u2,m2) solutions,

− d

dt

[∫
Ω

(u1 − u2)(m1 −m2)

]
=

∫
Ω

[F (m1)− F (m2)] (m1 −m2)

+

∫
Ω

[H(Du1)− H(Du2)](m1 −m2)− [m1Hp(Du1)−m2Hp(Du2)]D(u1 − u2)︸ ︷︷ ︸∫
Ω
m1 [H(Du2)−H(Du1)−Hp(Du1) D(u2−u1)] +

∫
Ω
m2 [H(Du1)−H(Du2)−Hp(Du2) D(u1−u2)]

 H convex + F nondecreasing ⇒ all terms are ≥ 0 !!

d

dt

[∫
Ω

(u1 − u2)(m1 −m2)

]
≤ 0

G nondecreasing ⇒
∫

Ω
(u1 − u2)(m1 −m2) ≥ 0 at time T .

But m1(0) = m2(0)....→ uniqueness.
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Sample result on the MFG system: (smooth solutions, smoothing
monotone couplings)
Assume H is smooth and satisfies

c0 I ≤ Hpp(x , p) ≤ C0 I

and the coupling F ,G are smoothing and monotone operators:

(i) [Lasry-Lions ’06] there exists a unique classical solution (u,m)

(ii) [Cardaliaguet-Lasry-Lions-P. ’12], [Cardaliaguet-P. ’19]

In long horizon T >> 1, the solution (uT ,mT ) of the MFG system
is nearly stationary for most of the time:

∃ a (unique) stationary solution (ū, m̄) such that

‖DuT (t)− Dū‖C 0,α + ‖mT (t)− m̄‖C 0,α ≤ C
(
e−ω(T−t) + e−ωt

)
,

Rmk: The long time behavior is formulated as the turnpike property of
optimality systems: boundary layers appear at initial and final time, yet
for most of the time the strategies are almost stationary
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From smooth to weak solutions

Even if the theory is understood for smooth couplings, new PDE
questions arise for local couplings:

F = F (x ,m(t, x)) depends on the local probability density.

the existence of smooth solutions is known only in few cases:

(i) if m 7→ F (x ,m) or p 7→ H(x , p) have a mild growth
([Lasry-Lions], [Gomes-Pimentel-Sanchez Morgado])

(ii) in the homogeneous quadratic case H(x , p) = |p|2, solutions are
smooth for every F (x ,m) ≥ 0 ([Cardaliaguet-Lasry-Lions-P.])

Otherwise, regularity of solutions is not known.

But it is not difficult to construct weak (distributional) solutions as
soon as F (x ,m) is bounded below.

However: Weak solutions are in general unbounded !
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A priori estimates of the system (valid with & without diffusion !):

(1)
∫ T

0

∫
Ω
F (x ,m)m

(2)
∫ T

0

∫
Ω
H(x ,Du)

(3)
∫ T

0

∫
Ω
mL(x ,Hp(x ,Du))

 ≤ C (‖m0‖∞)

Typical growth conditions

• F (m) ' mp−1, p > 1:

(1)⇒ m ∈ Lp ⇒ F (m) ∈ Lp/p−1

p large  Hamilton-Jacobi with (nearly) L1-data

• L(x , α), H(x , p) with coercive quadratic growths:

(2)− (3)⇒ Du ∈ L2 , m |Du|2 ∈ L1

 Fokker-Planck with L2- drift
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Main difficulties of a weak theory:

(i) Uniqueness may fail for unbounded solutions of HJB:

∃ u ∈ L2(0,T ;H1
0 ) , u 6= 0 sol. of

{
ut −∆u + |Du|2 = 0

u(0) = 0

Ex: u = log(1 + v), where vt −∆v = δx0

(ii) The typical setting of well-posedness of the Fokker-Planck

(FP) mt −∆m + div (mb) = 0

requires much more than L2 drifts, usual theory needs
b ∈ L∞(0,T ; Ld(Ω)), or b ∈ Ld+2((0,T )× Ω) ([Aronson-Serrin],
[Ladysenskaya-Solonnikov-Uraltseva])

But......a full theory is still possible entirely relying on the estimate

m|b|2 ∈ L1

In mean field games this is indeed the estimate m|Du|2 ∈ L1 which
comes from optimization !!
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The typical statement is the following (adapted to Dirichlet, Neumann,
or to entire space IRN under suitable modifications)

Theorem (P. ’15)

Let b ∈ L2(QT )N and m0 ∈ L1. Then the problem
mt −∆m − div(mb) = 0 , in (0,T )× Ω,

m(0) = m0 in Ω.

+ BC

(1)

admits at most one weak sol. m ∈ L1(QT )+: m|b|2 ∈ L1(QT ).

Moreover, in this case any weak solution is a renormalized solution,
belongs to C 0([0,T ]; L1) and satisfies (for a suitable truncation Tk(·)):

(Tk(m))t −∆Tk(m)− div(T ′k(m)mb) = ωk , in QT (2)

where ωk ∈ L1(QT ), and ωk
k→∞→ 0 in L1(QT ).
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Main idea: a nonlinear look at a linear equation

for general convection-diffusion problems (possibly nonlinear){
mε

t + Amε = div (φ(t, x ,mε)) in QT

mε(0) = mε
0 , +BC

we have that if

|φ(t, x ,m)| ≤ c(1 +
√
m) k(t, x) , k ∈ L2(QT ) (3)

then
mε → m in C 0([0,T ]; L1)

and m is renormalized solution relative to m0.
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One can apply this idea even in the Di Perna-Lions approach,
regularizing m by convolution:

mt −∆m − div(mb) = 0 ? ρε

⇒ mε := m ? ρε solves

mε
t −∆mε − div((mb) ? ρε) = 0

where Schwartz’s inequality + m ≥ 0 imply

|(mb) ? ρε| ≤ (m ? ρε)
1
2︸ ︷︷ ︸

√
mε

(
(m|b|2) ? ρε

) 1
2︸ ︷︷ ︸

Bε

with Bε converging in L2(QT ).

→ for purely second order operators, no need of commutators
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Weak solutions to Mean Field Games systems


−ut −∆u + H(x ,Du) = F (x ,m) ,

mt −∆m − div (mHp(x ,Du)) = 0 ,

u(T ) = G (x ,m(T )) , m(0) = m0

• F ,G ∈ C 0(Ω× R)

• p 7→ H(x , p) is convex and satisfies structure conditions

Ex: H ' γ(t, x)|∇u|2.

Def. of weak solutions:

- u,m ∈ C 0([0,T ]; L1), m |Du|2 ∈ L1

-G (x ,m(T )) ∈ L1, H(x ,Du) ∈ L1, F (x ,m) ∈ L1,

- the equations hold in the sense of distributions.
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Theorem (P. ’15)

Assume that m 7→ G (x ,m) is nondecreasing, and let m0 ∈ L∞+ .

(i) If F , G are bounded below, then there exists a weak solution.

(ii) If in addition m 7→ F (x ,m) is nondecreasing, p 7→ H(x , p) is strictly
convex (at infinity), then there is at most one weak solution (u,m) such
that m > 0.

Rmk: The coupling functions F ,G have no growth restriction from above

• The case F = F (x) is included !!  new results for HJ equations with
L1-data {

ut −∆u + H(x ,Du) = F (x)

u∂Ω = 0 , u(0) = u0

Uniqueness ⇐⇒ mt −∆m − div (Hp(x ,Du)m) = 0 admits a sol. m
with Hp(x ,Du) ∈ L2(m).

 uniqueness holds if the adjoint of the linearized admits nice solutions
....a Fredholm-type result !
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Numerical schemes converge towards weak solutions [Achdou-P. ’16]

We use finite differences approximations of the mean field games
system as in [Achdou-Capuzzo Dolcetta]:

uk+1
i,j −u

k
i,j

∆t − (∆hu
k)i,j + g(xi,j ,

[
∇hu

k
]
i,j

) = F (mk+1
i,j ),

mk+1
i,j −m

k
i,j

∆t − (∆hm
k+1)i,j + Ti,j(uk ,mk+1) = 0,

where g is a monotone approximation of the Hamiltonian H as in
upwind schemes:

Ex (1-d): g = g
(

ui+1−ui
h , ui−ui−1

h

)
with g(p1, p2) increasing in p2

and decreasing in p1, g(q, q) = H(q).

while T is the discrete adjoint of the associated linearized transport:

T (v ,m) · w = mgp([∇hv ]) · [∇hw ]

Similar structure allows to have discrete estimates and compactness
as in the continuous model.
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vanishing viscosity limit of weak solutions
[Cardaliaguet-Graber-P.-Tonon ’15]

−∂tu − ε∆u + H(x ,Du) = F (x ,m) in (0,T )× Ω

∂tm − ε∆m − div(mHp(x ,Du)) = 0 in (0,T )× Ω ,

u(T ) = G (x ,m(T )) , m(0) = m0

Assume some coercivity on the coupling terms:

• F ,G ' mp−1, with p > 1.

⇒ as ε→ 0, weak solutions converge towards a relaxed formulation
of the first order system:

(i) u is a distributional subsolution: −ut + H(x ,∇u) ≤ F (x ,m)

(ii) m is a distributional solution: mt − div (mHp(x ,∇u)) = 0

(iii) the energy equality holds∫ T

0

∫
Ω

mF (x ,m)dxdt +

∫ T

0

∫
Ω

m {Hp(x ,Du)Du − H(x ,Du)} dxdt

=

∫
Ω

m0 u(0)−
∫

Ω

G (x ,m(T ))m(T )
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Theorem (CGPT)

Assume in addition that p 7→ H(x , p) is strictly convex and m 7→ F (x ,m)
is increasing. Then the first order system

−ut + H(x ,Du) = F (x ,m) ,

mt − div (mHp(x ,Du)) = 0 ,

m(0) = m0 , u(T ) = G (x ,m(T ))

admits a unique weak (relaxed) solution (u,m) in the sense that m is
unique and Du is unique in {m > 0}.

Existence is proved through vanishing viscosity limit. Ingredients:
coercivity + weak limits + Minty’s argument (convex Hamiltonian
and monotone couplings...)

Key point: duality between sub solutions of Hamilton-Jacobi and
solutions of the continuity equation
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MFG → optimal transport

Planning problem in Mean Field games: prescribe a final distribution law
m(T ) = m1 

−ut + H(x ,Du) = F (x ,m) ,

mt − div (mHp(x ,Du)) = 0 ,

m(0) = m0 , m(T ) = m1

Here, no condition is assumed on u at time T .

 this is a singular limit of MFG systems with terminal condition

uε(T ) = mε(T )−m1

ε , ε→ 0.

• This is an optimal transport problem: a generalization of the
Benamou-Brenier dynamic characterization of the Wassernstein distance

W 2
2 (m0,m1) = inf

{∫ 1

0

∫
Rd

|v |2dm(t, x) :

∂tm + div (vm) = 0, mi = m|t=i , i = 0, 1} .
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The mean field planning problem can be characterized in terms of
optimal transport [Orrieri- P.- Savaré ’19]

B(m, v) := inf

[∫ T

0

∫
Rd

L(x , v)mdxdt +

∫ T

0

∫
Rd

Φ(x ,m) :{
∂tm + div (vm) = 0,

m(0) = m0,m(T ) = m1

]
.

where Φm = F (x ,m).

Assume as before:
F (x ,m) ' mp−1 and increasing
L(x , v) ' |v |2 and smooth.
Marginal measures m0,m1 ∈ Lp.

• Dual problem:

A(u, α) := sup

{∫
Rd

u(0)m0dx −
∫
Rd

u(T )m1 dx −
∫ T

0

∫
Rd

Φ∗(x , α) dxdt :

∂tu + H(x ,Du) ≤ α , α ∈ Lp/p−1
}
.

where Φ∗ is the Legendre transform of Φ.
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There exists a (unique) minimizer (m, v) of the optimal transport
problem, and v = −Hp(x ,Du), where u is a maximizer of the dual
problem A

The dual problems have the same value A(u, α) = B(m, v) if and
only if

(i) α = f (x ,m) a.e.
(ii) v = −DpH(x ,Du) m-a.e.
(iii) u is a “renormalized” solution to

∂t(um)− div (umHp(x ,Du)) =
(
H(x ,Du)−Hp(x ,Du)·Du−F (x ,m)

)
m

The above condition is equivalent to (u,m) being a weak (relaxed)
solution of the MFG-planning system, i.e.
−ut + H(x ,Du) ≤ F (x ,m)

mt − div (mHp(x , dau)) = 0 , m(0) = m0 ,m(T ) = m1∫ T

0

∫
Ω
mF (x ,m)dxdt +

∫ T

0

∫
Ω
m {Hp(x ,Du)Du − H(x ,Du)} dxdt

=
∫

Ω
m0 u(0) dx −

∫
Ω
m1 u(T ) dx
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Conclusions

So far, the analysis of mean field game systems enhanced a deeper
investigation of the duality between Hamilton-Jacobi and
Fokker-Planck (or transport) equations

Duality methods proved to be crucial in order to build a robust
theory of weak solutions for both second order and first order
systems.

Mean field game theory is built on the interaction between optimal
control and transport. This is currently stimulating new directions of
research in both fields. Ex:

- optimal control problems on the Wassernstein space

- optimal transport problems with additional entropic regularization:
the mean field planning problem with coercive coupling is one such
example.

- the study of the long time behavior of MFG systems renewed the
interest in the turnpike property of optimal control problems
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Thanks for the attention !
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