
Mean field games and Nash equilibria in large
populations

Alessio Porretta
Universita’ di Roma Tor Vergata

UCL-Rome Workshop on Stochastic and PDE Methods in Finance
and Economics

Luiss, Rome, Italy, 20-22 May 2019

A. Porretta Mean field games and Nash equilibria



Outline

1 Mean field game theory: what is about ?

2 PDE systems in mean field games: a forward-backward coupling of
Hamilton-Jacobi and Fokker-Planck equations.

3 Structure conditions in mean field game systems. Sample results of
existence, uniqueness, long time behavior.

4 The master equation in mean field games.

5 The case of major/minor players.

A. Porretta Mean field games and Nash equilibria



Mean field game theory: what is about ?

MFG theory was introduced since 2006 by J-M Lasry and P-L Lions.
A similar model developed independently by [Huang-Caines-Malhamé].

Goal: investigate the concept of Nash equilibria for large populations of
rational agents (small, indistinguishable...)

Structural assumptions in the model

(i) (symmetry) An infinite number (a continuum) of indistinguishable
agents with similar preferences

(ii) (controlled dynamical states) Each agent controls his/her own
dynamical state (typically, a controlled SDE)

(iii) (weak interaction) each single agent has no influence on the others’
choices. But the overall distribution of the states has an impact !

Basic idea: export the principle of statistical mechanics to (non
cooperative) strategic interactions within rational particles
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Model setting: N agents are controlling their own dynamics

dX i
τ = αi

τdτ +
√

2dB i
τ

where B i
t are independent Brownian motions, αi

t are control processes.

• weak coupling  cost depend on the empirical density µN
s = 1

N

∑
j

δX j
s

→ inf J i (α) := E
∫ T

t

[L(X i
s , α

i
s) + F (X i

s , µ
N
s )ds + G (X i

T , µ
N
T )

• Nash equilibria in feedback form satisfy a system of HJ equations (see
e.g. [Bensoussan-Frehse]):

−∂tui −
∑
j

∆xju
i + H i (x i ,∇x iui ) +

∑
j 6=i

H j
p(x j ,∇x juj) · ∇xju

i = F

Lasry-Lions’ idea: as N →∞

(i) ui has a ”weak” dependence from x j , j 6= i  ∇xju
i = O( 1

N )

(ii) if players are initially i.i.d. with law m0, the density mN of all players

should factorize: mN '
∏N

i=1 m(x i ) where m is the law associated to the
optimal stochastic process.
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→ Limit of Nash equilibria of symmetric N-players games will satisfy, as
N →∞, a system of PDEs coupling a
Hamilton-Jacobi equation for the individual strategies with a
Kolmogorov-Fokker-Planck equation for the distribution law

Impact of the theory:

The mean-field limit system allows for a huge simplification:
numerical approximations of PDEs provide cheap computations of
the equilibria of complex systems.

Construction of quasi-Nash equilibria (in feedback form) for
N-persons games through the solution of the MFG system

Applications: finance, market economics (oil producers, carbon
markets...), engineering (smart grids...), crowd dynamics,
socio-politics (learning, opinion formation etc...)
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Macroscopic (mean-field) description{
dXs = α(Xs)ds +

√
2 dBs ,

Xt = x

**

dynamics of each agent

u(t, x) = inf
{α(·)}

E
∫ T

t
L(Xs , αs , µs) + G (XT , µT )

where µt is an exogenous fixed distribution law

HJB
��

−∂tu −∆u + H(x , µ,Du) = 0

α∗t = −Hp(Xt , µt ,Du(t,Xt))︸ ︷︷ ︸
optimal policy

,
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Macroscopic (mean-field) description{
dXs = α(Xs)ds +

√
2 dBs ,

Xt = x

Kolm.

��

**

dynamics of each agent

u(t, x) = inf
{α(·)}

E
∫ T

t
L(Xs , αs , µs) + G (XT , µT )

where µt is an exogenous fixed distribution law

HJB

��

−∂tm −∆m + div (αm) = 0
m(t) = L(Xt)

��

−∂tu −∆u + H(x , µ,Du) = 0
α∗t = −Hp(Xt , µt ,Du(t,Xt))︸ ︷︷ ︸

optimal policy

,

��

Nash equilibrium: L(X ∗t ) = µt

∂tm −∆m − div(mHp(x ,m,Du)) = 0 −∂tu −∆u + H(x ,m,Du) = 0
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The MFG system of PDEs

The mean field game system in a time horizon T . Model case:{
(1) −∂tu − ν∆u + H(t, x ,Du) = F (t, x ,m) in (0,T )× Ω

(2) ∂tm − ν∆m − div(mHp(t, x ,Du)) = 0 in (0,T )× Ω ,

where Hp stands for ∂H(t,x,p)
∂p .

(1) is the Bellman equation for the agents’ value function u.

(2) is the Kolmogorov-Fokker-Planck equation for the distribution of
agents. m(t) is the probability density of the state of players at
time t.

The system is usually complemented with initial-terminal conditions:

-m(0) = m0 (initial distribution of the agents)

-u(T ) = G (x ,m(T )) (final pay-off)

+ boundary conditions (here for simplicity assume periodic b.c.)

Rmk: This is not the most general structure.

Cost criterion L(Xt , αt ,m(t))→ H(x ,m,Du).
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Comments:

The coupling of Hamilton-Jacobi and Fokker-Planck appears in
many macroeconomics models, so-called heterogeneous agents
models, e.g. (see [Achdou-Buera-Lasry-Lions-Moll], [Gueant-Lasry-Lions,

Paris-Princeton Lectures]):

(i) the Aiyagari-Bewley-Huggett model for wealth & income distribution
([Achdou-Han-Lasry-Lions-Moll])

(ii) knowledge diffusion, research and growth models ([Luttmer],

[Lucas-Moll])

(iii) oil market, mining industries, etc...([Gueant-Lasry-Lions, Chan-Sircar,
Achdou-Giraud-Lasry-Lions])

Lots of open problems and interesting questions....

An increasing huge literature on mean field games goes through the
probabilistic approach  [Carmona-Delarue] and stands on the
theory of forward-backward SDEs (Pontryagin’s principle) and
McKean-Vlasov equations.

Forward-backward structure → connection with optimality systems
in control theory and with optimal transport.
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Link with optimal control systems

MFG as optimality system (optimal control with Fokker-Planck state eq.).

Ex: Optimize in terms of the field α

∂tm = ∆m + div (αm) , m(0) = m0

−→ infα
∫ T

0

∫
Ω
{L(x , α)m + Φ(m(s))} dt + G(m(T ))

where Φ′(m) = F (m) and G′(m) = G (m).

First order optimality conditions give the adjoint state u:{
Du + Lα(x , α) = 0 (m − q.o.)

−∂tu −∆u − α · Du − L(x , α) = F (m)
⇔

αopt = −Hp(x ,Du(t, x))

−∂tu −∆u + H(x ,Du) = F (m)

Rmk: F (m),G (m) nondecreasing ⇒ convexity of the functional
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MFG system: structure conditions



−∂tu − ν∆u + H(x ,Du) = F (x ,m) in (0,T )× Ω

∂tm − ν∆m − div(mHp(x ,Du)) = 0 in (0,T )× Ω ,

m(0) = m0 , u(T ) = G (x ,m(T ))

+ boundary conditions (otherwise Ω = TN is the flat torus, or Ω = Rd)

Structure conditions in most PDE results:

p 7→ H(x , p) is convex (possibly uniformly) and C 1

Smoothing coupling:

m 7→ F (·,m) and m 7→ G (·,m) are continuous from P(Ω) to C 2(Ω)

 Ex : F (x ,m) = K (x , ·) ?m(·) =
∫

Ω
K (x , y)dm(y)

Key-assumption: F ,G nondecreasing → uniqueness, stability...!
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Monotone couplings → uniqueness

Use the adjoint structure in MFG system (as for optimality systems of
convex functionals):

− d

dt

[∫
Ω

(u1 − u2)(m1 −m2)

]
=

∫
Ω

[F (m1)− F (m2)] (m1 −m2)

+

∫
Ω

[H(Du1)− H(Du2)](m1 −m2)− [m1Hp(Du1)−m2Hp(Du2)]D(u1 − u2)︸ ︷︷ ︸∫
Ω
m1 [H(Du2)−H(Du1)−Hp(Du1) D(u2−u1)] +

∫
Ω
m2 [H(Du1)−H(Du2)−Hp(Du2) D(u1−u2)]

 H convex + F nondecreasing ⇒ all terms are ≥ 0 !!

− d

dt

[∫
Ω

(u1 − u2)(m1 −m2)

]
≥ 0

If m1(0) = m2(0) (= the initial distribution m0), and if∫
Ω

(u1 − u2)(m1 −m2) ≥ 0 at time T (G nondecreasing), then one gets
uniqueness.
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Sample results on the MFG system.

1 Existence, uniqueness of smooth (global) solutions ([Lasry-Lions])
If H satisfies one of the following:

(i) |H(x , p)| ≤ c(1 + |p|2)

(ii) Hx · p ≥ −C (1 + |p|2)

and if the coupling functions F ,G are smoothing1, then there exists
a classical solution (u,m) to the MFG system.

In addition, the solution is unique if F ,G are monotone operators
and if H is strictly convex.

2 Numerical schemes: consistency and convergence ([Achdou-Capuzzo
Dolcetta], [Achdou-P.], [Ferreira-Gomes])

This is a finite differences scheme (implicit backward/forward,
monotone scheme for HJB and defined by duality for KFP)

1m 7→ F (·,m) is continuous from C0([0,T ]; L1) to C(QT ) with bounded range in
L∞((0,T );W 1,∞(Ω))
m 7→ G(·,m) is continuous from L1 to C(Ω) with bounded range in W 1,∞(Ω)
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3. Stability in long time ([Cardaliaguet-Lasry-Lions-P.], [Cardaliaguet-P.])

In long horizon [0,T ], T >> 1, the solution (uT ,mT ) of the MFG
system is nearly stationary for most of the time:

∃ a unique stationary solution λ̄ ∈ R and (ū, m̄) satisfying
(here Ω is the flat torus)λ̄−∆ū + H(x ,Dū) = F (x , m̄) ,

∫
Ω
ū = 0

−∆m̄ − div (m̄Hp(x ,Dū)) = 0 ,
∫

Ω
m̄ = 1

such that (DuT ,mT ) is exponentially close to (Dū, m̄) for a large time:

‖DuT (t)− Dū‖C 0,α + ‖mT (t)− m̄‖C 0,α ≤ C
(
e−ω(T−t) + e−ωt

)
,

→ stability appears in a large intermediate time [δT , (1− δ)T ].

Boundary layers appear at initial and final time, yet for most of the time
the strategies are almost stationary

This is indeed a manifestation of the turnpike property - cfr. optimality
systems ...-

A. Porretta Mean field games and Nash equilibria



The turnpike property

An efficient expanding economy should for most of the time be nearly an
equilibrium path

The above result should be regarded as a typical turnpike result, in the
terminology introduced by P. Samuelson in 1949:

if we are planning long-run growth, no matter where we start, and where
we desire to end up, it will pay in the intermediate stages to get into a
steady growth phase. 2

[Dorfman-Samuelson-Solow, Linear programming and economic analysis,
1958]

2It is exactly like a turnpike paralleled by a network of minor roads. There is a
fastest route between any two points; and if the origin and destination are close
together and far from the turnpike, the best route may not touch the turnpike. But if
origin and destination are far enough apart, it will always pay to get on to the turnpike
and cover distance at the best rate of travel, even if this means adding a little mileage
at either end.
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4. Solutions to the master equation ([Cardaliaguet-Delarue-Lasry-Lions])

(u,m) is the unique solution of the MFG system
−∂tu − ν∆u + H(x ,Du) = F (x ,m) in (t0,T )× Ω

∂tm − ν∆m − div(mHp(x ,Du)) = 0 in (t0,T )× Ω ,

m(t0) = m0 , u(T ) = G (x ,m(T ))

if and only if
u(t) = U(t, x ,m(t))

where U : QT × P(TN)) solves the the master equation in QT × P:
−∂tU −∆xU + H(x ,DxU)−

∫
divy (DmU(x ,m))(y)dm(y)

+
∫
DmU(x ,m)(y) · Hp(y ,DxU(y ,m))dm(y)= F (x ,m)

U(T , x ,m) = G (x ,m)

DmU := d
dy

(
δU
δm |(t,x,m)(y)

)
where δU

δm is the representation of Gateaux

derivative of U if m ∈ L2
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The master equation encodes the MFG system in a unique equation
(but infinitely dimensional !). It is usually a key point in proving the
convergence of solutions of N-players systems towards solutions of
the mean field system (microscopics → macroscopics)

The master equation is a nonlinear (degenerate) transport-diffusion
equation. Global existence is ensured by the monotonicity structure
condition:

F (m),G (m) monotone ⇒
⇒ solutions U are monotone, global and unique !

The master equation plays a key-role in case of common noise for
the agents (aggregate shocks, in the economists ’ words..).

In that case the usual MFG system would turn into a system of
stochastic PDEs, while the master equation allows for a purely PDE
approach

 Local (in time) existence for the master equation with common
noise can be proved e.g. by splitting methods ([Cardaliaguet-Cirant-P.
’19])
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Mean field games with major/minor players

The setting: infinitely many small agents interact with a major one. All
play closed loop strategies in feedback form.

X 0
t = state of the major player ; B0

t a given Brownian motion in Rd0

dX 0
t = α0(t,X 0

t ,mt)dt +
√

2dB0
t dynamics of the major player

where {mt} is a stochastic flow of measures in P2(Rd) which is
adapted to the filtration generated by B0 := {B0

t }.
Xt = state of the representative minor player; Bt a given Brownian
motion in Rd (indep. of B0

t )

dXt = α(t,Xt ,X
0
t ,mt)dt+

√
2dBt , dynamics of each minor player

Here α0, α are (deterministic) functions bounded and locally
Lipschitz continuous.

An initial measure µ0 ∈ P2(Rd) is given for the distribution of minor
players (µ0 = L(X0)) and an initial position x0

0 ∈ Rd0 is given for the
major player
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Optimization of the minor player

J(α; [α0,mt ])=E
∫ T

0

L(Xt ,X
0
t , α(t,Xt ,X

0
t ,mt),mt)dt+G (XT ,X

0
T ,mT )

where (X 0
t ,mt) is a given exogenous stochastic flow.

Optimization of the major player

J0(α0; [α]) := E

[∫ T

0

L0(X 0
t , α

0
t (t,X 0

t ,mt),mt)dt + G 0(X 0
T ,mT )

]
,

where (X 0
t ,mt) is now the flow generated by α and α0:
dX 0

t = α0(t,X 0
t ,mt)dt +

√
2dB0

t

dtmt =
{

∆mt − div (mtα(t, x ,X 0
t ,mt))

}
dt,

m0 = µ0, X
0
0 = x0

0 .

(1)

In other words, mt is the conditional law of Xt given X 0
t

 Xt satisfies the McKean-Vlasov SDE

dXs = α(s,Xs ,X
0
s ,L(Xs/X

0
s ))ds +

√
2dBs , L(X0) = µ0 .
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Notice:

the minor players optimize giving for fixed

(i) the strategy and position of the major player

(ii) the mean field of the other players

Conversely, the major player has an impact on the minor players.
When he deviates, he needs to consider the reaction of minor
players, hence the change in mt .

This formulation appears for the first time in [Carmona-Wang] and is
somehow different from previous suggested model of major/minor mean
field games ([Huang], [Nourian-Caines], [Bensoussa-Chau-Yam]).
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Definition (Nash equilibrium in the game)
A pair (ᾱ, ᾱ0) of feedback strategies is an equilibrium if:

1 (consistency) the flow of measures m̄t corresponds to the optimal
distribution of minor players. This means that (X̄ 0

t , m̄t) solve{
dX̄ 0

t = ᾱ0(t, X̄ 0
t , m̄t)dt +

√
2dB0

t ,
dtm̄t =

{
∆m̄t− div (m̄t ᾱ(t, x , X̄ 0

t , m̄t))
}
dt

(2)

2 The strategy ᾱ is optimal for each minor player, given (X̄ 0
t , m̄t):

J(ᾱ; [ᾱ0, m̄t ]) ≤ J(α; [ᾱ0, m̄t ]) (3)

for any other Markovian feedback control αt := α(t,Xt , X̄
0
t , m̄t).

3 The strategy ᾱ0 is optimal for the major player:

J0(ᾱ0; [ᾱ]) ≤ J0(α0; [ᾱ]),

for any different feedback law α0(t, x ,m).,
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Approach by master equation

Mean field game theory describes this major/minor problem through a
system of master equations:

U0(t, x0,m) ' value function of the major player

U(t, x , x0,m) ' value function of each minor player

satisfy the system

−∂tU0 −∆x0U
0 + H0(x0,Dx0U

0,m)−
∫
RddivyDmU

0(t, x0,m, y)dm(y)
+
∫
Rd DmU

0(t, x0,m, y) · DpH(y , x0,DxU(t, y , x0,m),m)dm(y) = 0
in (0,T )× Rd0 × P2,

−∂tU −∆xU −∆x0U + H(x , x0,DxU,m)−
∫
RddivyDmU(t, x , x0,m, y)dm(y)

+Dx0U · DpH
0(x0,Dx0U

0(t, x0,m),m)
+
∫
Rd DmU(t, x , x0,m, y) · DpH(y , x0,DxU(t, y , x0,m),m)dm(y) = 0

in (0,T )× Rd × Rd0 × P2,

U0(T , x0,m) = G 0(x0,m), in Rd0 × P2,
U(T , x , x0,m) = G (x , x0,m) in Rd × Rd0 × P2.

(4)
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[Cardaliaguet-Cirant- P., preprint]

Under standard assumptions (regularity, global Lipschitz growth of the
Hamiltonians H0(x0, p,m),H(x , x0, p,m)) we prove the following results:

1 (verification) If (U0,U) is a classical solution to the system of
master equations (4), then the pair

(ᾱ(t, x , x0,m), ᾱ0(t, x0,m)) :=

= −(DpH(x , x0,DxU(t, x , x0,m),m),DpH
0(x0,Dx0U

0(t, x0,m),m))

is a Nash equilibrium of the game.

2 (local in time existence) There exists T0 such that the system of
master equations (4) admits a classical solution (U0,U) for T ≤ T0.

3 (consistency) Nash equilibria of N(minor) + 1(major)-players
differential games converge to the solution
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Precisely, we consider the system of Nash equilibria for N minor agents:

−∂tuN,0 −
∑N

j=0 ∆xju
N,0 + H0(x0,Dx0u

N,0,mN
x )

+
∑N

j=1 Dxju
N,0 · DpH(xj , x0,Dxju

N,j ,mN,j
x ) = 0

−∂tuN,i −
∑N

j=0 ∆xju
N,i + H(xi , x0,Dxiu

N,i ,mN,i
x )

+Dx0u
N,i · DpH

0(x0,Dx0u
N,0,mN

x )
+
∑

j 6=i, j≥1 Dxju
N,i · DpH(xj , x0,Dxju

N,j ,mN,j
x ) = 0

uN,0(T , x) = G 0(x0,m
N
x ), uN,i (T , x) = G (xi , x0,m

N,i
x ).

(5)

where mN
x = 1

N

∑N
i=1 δxi , m

N,i
x = 1

N−1

∑
j 6={0,i} δxj .

Let (uN,i ) be a classical solution to the Nash system (5) and (U0,U) be
a classical solution to the system (4) of master equations. There is a
constant C , independent of N, x ∈ Rd0 × (Rd)N and t ∈ [0,T ], such that∣∣uN,0(t, x)− U0(t, x0,m

N
x )
∣∣+ sup

i=1,...,N

∣∣uN,i (t, x)− U(t, xi , x0,m
N,i
x )
∣∣

≤ CN−1

(
1 +

1

N

N∑
i=1

|xi |

)
,

where x = (x0, . . . , xN).
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Thanks for the attention !
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