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Elliptic equations with first order terms:{
−∆u + H(x ,Du) = f (x) in Ω

u = 0 on ∂Ω

What is natural and what is unnatural growth ?

Where is the border between natural and unnatural ?

Role of gradient bounds and maximal solutions

Additive eigenvalue and Dirichlet problem

A. Porretta Natural growth and beyond



What is the natural growth ? Why is it natural ?

Elliptic equations with first order terms:{
−∆u + H(x ,Du) = f (x) in Ω

u = 0 on ∂Ω

Natural growth (so called...) :

|H(x ,Du)| ≤ c(1 + |Du|2)

Qn: Is it natural and why ?

Possible answers:

• Euler’s equations in Calculus of Variations with quadratic energy:

min

∫
Ω

[a(x , u)
|Du|2

2
−fu]dx → −div(a(x , u)Du)+

1

2
a′(x , u)|Du|2 = f

• This class of equations is invariant through chain rule

−∆u + H(x , u,Du) = f (x)
v=φ(u)→ −∆v + H̃(x , v ,Dv) = f (x)

NB: Invariance holds for bounded solutions
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What is natural ?

Under natural growth conditions:

Smooth data ⇒ bounded solutions are smooth

General solvability (bounded and unbounded data, nonlinear
operators, etc..)

(since [Boccardo-Murat-Puel]...)

Uniqueness of bounded weak solutions (since [Barles-Murat]...)
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What is un-natural ?

Model case: superquadratic Hamiltonian:

−∆u + λ u + |Du|q = f (x) with q > 2

[Capuzzo Dolcetta-Leoni-P. ’10]:
viscosity solutions framework (fully nonlinear)
→ extends to F (x ,D2u) + λ u + |Du|q ≤ f ,

F degenerate elliptic, F ≥ −Λ‖D2u‖
Similar with p-Laplacian and q > p

(see also [Barles ’10], [Barles-Koike-Ley-Topp ’14] [Barles-Topp ’15] for
further extensions in viscosity solutions theory, connection to state
constraint, nonlocal diffusions etc...)

[Dall’Aglio-P. ’14]:
distributional solutions framework (divergence form)
→ extends to −div(a(x ,Du)) + λ u + |Du|q ≤ f ,

a degenerate elliptic, |a| ≤ Λ|Du|
Similar with p-Laplacian and q > p
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A list of un-natural properties:

−∆u + λ u + |Du|q = f (x) with q > 2

Sub solutions are Hölder continuous

[CD-L-P]: f bounded ⇒ USC bounded viscosity subsolutions are
q−2
q−1 -Hölder. Proof by comparison:

u(x) ≤ u(y) + k

(
|x − y |
d(x)1−α + L |x − y |α

)

[D-P]: f ∈ Lm,m > N
q ⇒ distributional subsolutions are α-Hölder

with α = min(1− N
m q , 1−

1
q−1 ). Proof by local Morrey estimate:∫

Br

|∇u|q dx ≤ K rN−γ ,

where γ = max(N
m , q

′)

A. Porretta Natural growth and beyond



[...]
−∆u + λ u + |Du|q = f (x) with q > 2

Interior Hölder regularity extends up to the boundary
(independently of boundary data !)

Global universal bounds for u+:

‖u+‖L∞(Ω) ≤ M

where M = M(Ω, 1
λ , ‖f ‖Lm(Ω)), m > N/q.

→ positive sub solutions have a uniform L∞- bound, independently
of boundary values(cfr. [Lasry-Lions ’89])

Loss of boundary data
→ relaxed formulation of boundary conditions, viscosity solutions

theory.
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Viscosity Vs distributional solutions:
A selection criterion is necessary as in first order problems !!

Ex: u(x) = c0(|x |
q−2
q−1 − 1) satisfies, for a suitable choice of c0{
−∆u + |∇u|q = 0 in Ω

u ∈W 1,q
0 (Ω) ∩ C (Ω)

Note: u is a distributional solution but not a viscosity solution !!
Yet u is bounded, Hölder continuous etc...

Typical first order problem: the L∞-bound does not bring enough
information...

Uniqueness results for viscosity solutions:
[Barles-Rouy-Souganidis ’99], [Barles-Da Lio ’04], [Barles ’10]
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Lipschitz solutions

The picture is more clear when looking at W 1,∞- solutions.

[Alarcon-Garcia Melian-Quaas ’14]:{
λu −∆u + h(|Du|) = µ f in Ω

u = 0 on ∂Ω

with smooth f , f < 0, where λ, µ ≥ 0 are parameters.

(a)

∫ ∞ 1

h(s)
ds =∞ ⇒ ∃ sol. for every λ ≥ 0, every µ.

(ex: h sublinear)

(b)

∫ ∞ s

h(s)
ds =∞ ⇒ ∃ sol. for every λ > 0, every µ.

(ex: h subquadratic)

BUT: If λ = 0 or if
∫∞ s

h(s)ds <∞, then there is a critical µ∗:

∃ sol. for every µ < µ∗ <∞, 6 ∃ sol for µ > µ∗.
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To understand clearly those thresholds, one need to go back to the
classics:

[P-L. Lions ’80]: If h is convex, there exists a W 1,∞ solution to{
λu −∆u + h(|Du|) = f in Ω

u = 0 on ∂Ω
(1)

if and only if there exists a W 1,∞ sub solution ψ:

∃ sol. of (1) ⇐⇒ ∃

{
λψ −∆ψ + h(|Dψ|) ≤ f in Ω

ψ ∈W 1,∞
0 (Ω)

NB: h convex implies h ≥ h(0) + Dh(0) · Du ⇒ a smooth super
solution always exists.
(for right-wing parties, just reverse all signs: convex into concave, etc....)

Key point: gradient estimates !! → Bernstein’s method.
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The case of p-Laplacian, p > 2: gradient estimates

[Leonori-P.]
We extend Serrin-Lions classical gradient estimates to p-Laplace eq:

λu −∆pu + H(x ,Du) = 0 in Ω ,

where ∆pu = div(|Du|p−2Du), p > 2. Typical results of Bernstein’s
method:

1. Global gradient bounds

Under structure conditions similar to [Lions ’80], we get:

sup
Ω

|Du|2 ≤ c + sup
∂Ω
|Du|2 ,

where c = c(‖u‖L∞).

2. Interior bounds If H is suitably coercive (e.g. H ≥ h(|Du|p−1)− c(x),
with

∫∞ dτ
h(τ) <∞) we get local bounds: for any ω ⊂⊂ Ω,

sup
x∈ω
|Duε| ≤ cω

where cω only depends on λ‖u−‖L∞ .
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Consequence of gradient bounds:

1. Gradient estimates at the boundary ⇒ existence of solutions
(Lipschitz!): this is Lions’s principle (extended to p-Laplacian)

∃ solution ⇐⇒ ∃

{
λψ −∆pψ + h(|Dψ|p−1) ≤ f in Ω

ψ ∈W 1,∞
0 (Ω)

→ all you need is...a barrier !!

2. Interior gradient bounds hold whenever H is “sufficiently”superlinear:∫ ∞ 1

h(s)
ds <∞

This is the threshold of super linearity.

Ex: h(s) = sq, q > 1, but also h(s) = s logq s, q > 1.
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Looking for barriers → two thresholds appear:
(i) (threshold of super linearity)
If
∫∞ 1

h(s)ds <∞ ⇒ exists U such that{
−∆p U + h(|DU|p−1) is bounded
∂U
∂ν = +∞ at the boundary

(ii) (threshold of natural growth)

(ii- a) If
∫∞ s

1
p−1

h(s) ds =∞ ⇒ U
x→∂Ω→ ∞

(the barrier can be chosen as large as desired). In this case a bound for
the L∞-norm implies a control of the gradient norm.
→ solutions exist iff bounded sub solutions exist !

(ii- b) If
∫∞ s

1
p−1

h(s) ds <∞ ⇒ U has a finite maximal L∞ bound

This is the super-natural growth: Solutions have universal upper bounds,
loss of boundary conditions due to gradient singularity (Hölder-type
behavior)

A. Porretta Natural growth and beyond



All depends on local behavior of Maximal solutions. Model case:{
λU −∆p U + h(|DU|p−1) = f is bounded
∂U
∂ν = +∞ at the boundary 

Maximal sol : U
x→∂Ω→ +∞

Dirichlet pb:

∃L∞- subsol. ⇒ ∃sol.

∫ ∞ 1

h(s)
ds <∞

(local gradient bounds)

∫ ∞ τ
1

p−1

h(τ)
dτ =∞ 66

∫ ∞ τ
1

p−1

h(τ)
dτ <∞

))
Maximal sol : U is bounded

Dirichlet pb:

∃W 1,∞- subsol. ⇒ ∃sol.
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The Dirichlet problem

Back to the Dirichlet problem{
λu −∆pu + H(x ,Du) = 0 in Ω ,

u = 0 on ∂Ω
(2)

with
H & h(|Du|p−1)− c(x) .

+some structure conditions for gradient bounds. Assume∫ ∞ τ
1

p−1

h(τ)
dτ =∞ (3)

i.e. we are below the natural growth threshold. Then we have seen:

(i) for any λ > 0, (2) admits a solution u ∈W 1,∞
0 (Ω)

(ii) when λ = 0, (2) admits a solution if and only if there exists a
bounded sub solution ψ such that ψ = 0 on ∂Ω.

Pb: What really happens when λ = 0? And when λ→ 0?
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The additive eigenvalue

The existence of solutions when λ = 0 can be described in terms of a
nonlinear additive eigenvalue related to the maximal solutions.

Model case: {
−∆pu + |Du|q = f (x) in Ω ,

u = 0 on ∂Ω
(4)

with p − 1 < q ≤ p.

Theorem (Leonori-P.)

1. There exists a unique constant c0 = c0(f ,Ω) such that the problem{
c0 −∆p V + |DV |q = f is bounded

V
x→∂Ω→ +∞ [⇐⇒ ∂V

∂ν = +∞ at the boundary]

admits a solution.

2. We have

c0 > 0 ⇒ the Dirichlet problem (4) admits a solution

c0 < 0 ⇒ the Dirichlet problem (4) does not admit any solution
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If c0(f ,Ω) = 0 we conjecture that no solution exists to the Dirichlet
problem. In that case we have a full characterization: solutions to
the Dirichlet problem exist if and only if c0(f ,Ω) > 0.
This is true if p = 2 [P. ’10] and if osc(f ) is not too large
[Leonori-P.].

If q = p:{
c0 −∆p V + |DV |p = f is bounded

V
x→∂Ω→ +∞ [⇐⇒ ∂V

∂ν = +∞ at the boundary]

then c0 is a classical eigenvalue: c0 = λ1

(
−∆p(·) + f (x)(·)p−1

)
and

e−V/(p−1) is the first eigenfunction of −∆p(·) + f (x)(·)p−1.

The additive constant c0 and the corresponding eigenfunction V
describe the long time behavior of the evolution problem whenever
there are no stationary solutions (c0 < 0). For the case p = 2, see
[Barles-P.-Tabet Tchamba ’10] → c0 is an ergodic constant

In the case p = 2 the additive eigenvalue c0 satisfies Faber-Krahn
inequalities [Ferone-Giarrusso-Messano-Posteraro ’14].
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Summary

Maximal solutions oo //
OO

��

Additive eigenvalue
OO

��

GRADIENT BOUNDS

Long time behavior oo // Stationary Dirichlet pb.
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