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Elliptic equations with first order terms:

—Au+ H(x,Du) = f(x) in Q
u=20 on 09

@ What is natural and what is unnatural growth ?
@ Where is the border between natural and unnatural ?
@ Role of gradient bounds and maximal solutions

o Additive eigenvalue and Dirichlet problem
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What is the natural growth ? Why is it natural ?

Elliptic equations with first order terms:
{—Au + H(x, Du) = f(x) in Q
u=20 on 09
Natural growth (so called...) :
|H(x, Du)| < c(1 + |Dul?)
Qn: Is it natural and why ?

Possible answers:

e Euler's equations in Calculus of Variations with quadratic energy:

mln/[axu

e This class of equations is invariant through chain rule

1
—fu]dx —  —div(a(x, u)Du)—|—§a’(X, u)|Dul® = f

v:f)(u)

—Au+ H(x, u, Du) = f(x) —Av + H(x,v,Dv) = f(x)

NB: Invariance holds for bounded solutions
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What is natural ?

Under natural growth conditions:

@ Smooth data = bounded solutions are smooth

@ General solvability (bounded and unbounded data, nonlinear
operators, etc..)

(since [Boccardo-Murat-Puell...)

@ Uniqueness of bounded weak solutions (since [Barles-Murat]...)
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What is un-natural ?

Model case: superquadratic Hamiltonian:
—Au+Au+|Dul? =f(x) withg>2

[Capuzzo Dolcetta-Leoni-P. '10]:
viscosity solutions framework (fully nonlinear)
— extends to F(x, D?u) + Au+ |Dul? < f,
F degenerate elliptic, F > —A||D?ul|

Similar with p-Laplacian and ¢ > p
(see also [Barles '10], [Barles-Koike-Ley-Topp '14] [Barles-Topp '15] for

further extensions in viscosity solutions theory, connection to state
constraint, nonlocal diffusions etc...)

[Dall'Aglio-P. '14]:
distributional solutions framework (divergence form)
— extends to —div(a(x, Du)) + Au+ |Dul? < f,
a degenerate elliptic, |a| < A|Du|

Similar with p-Laplacian and g > p



A list of un-natural properties:

—Au+Au+|Dul? =f(x) with g>2

@ Sub solutions are Holder continuous

[CD-L-P]:  f bounded = USC bounded viscosity subsolutions are
g—j—Hélder. Proof by comparison:

u(X)SU(y)—Fk(JI() vl +L|x— y|a>

[D-P: fel™m > N = distributional subsolutions are a-Hélder

with o = min(1 — m—q, 1 — —) Proof by local Morrey estimate:

/ |VulTdx < KrV=7,
B,

where v = max(¥, ¢')
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]
—Au+Au+|Dul? = f(x) with g >2

@ Interior Holder regularity extends up to the boundary
(independently of boundary data !)
o Global universal bounds for u™:
[u [ Loe@) < M

where M = M(RQ, 1, ||| n(@)), m > N/q.
— positive sub solutions have a uniform L*°- bound, independently

of boundary values(cfr. [Lasry-Lions '89])

@ Loss of boundary data
— relaxed formulation of boundary conditions, viscosity solutions
theory.
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@ Viscosity Vs distributional solutions:
A selection criterion is necessary as in first order problems !!

Ex: u(x) = co(|x|fv%f — 1) satisfies, for a suitable choice of ¢

—Au+|Vul?=0 in Q
ue WQ)n C(Q)
Note: u is a distributional solution but not a viscosity solution !!

Yet u is bounded, Holder continuous etc...

Typical first order problem: the L*°-bound does not bring enough
information...

Uniqueness results for viscosity solutions:
[Barles-Rouy-Souganidis '99], [Barles-Da Lio '04], [Barles "10]
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Lipschitz solutions

The picture is more clear when looking at W~ solutions.
[Alarcon-Garcia Melian-Quaas '14]:

Au—Au+ h(|Dul) = uf in Q
u=20 on 09

with smooth f, f < 0, where A\, u > 0 are parameters.

oo
1
(a) / @ds =00 = Jsol. for every A >0, every u.
(ex: h sublinear)
> s
(b) / @ds =00 = Jsol. for every A > 0, every u.

(ex: h subquadratic)
BUT: If A\=0 or |fj ds < 00, then there is a critical p*:

Isol. for every u < p* < oo, Asol for > p*.

A. Porretta Natural growth and beyond



To understand clearly those thresholds, one need to go back to the
classics:

[P-L. Lions '80]: If h is convex, there exists a W1 solution to

Au—Au+ h(|Dul) =f in Q
u=20 on 0Q

if and only if there exists a W> sub solution 2:

) — A+ h(DYP) < f  in Q

Jsol. of (1) «— 3 {1/} € WA (@)

NB: h convex implies h > h(0) + Dh(0) - Du =  a smooth super
solution always exists.
(for right-wing parties, just reverse all signs: convex into concave, etc....)

Key point: gradient estimates !! — Bernstein's method.
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The case of p-Laplacian, p > 2: gradient estimates

[Leonori-P.]

We extend Serrin-Lions classical gradient estimates to p-Laplace eq:
Au—Apu+ H(x,Du) =0 in Q,

where A,u = div(|DulP~2Du), p > 2. Typical results of Bernstein's

method:

1. Global gradient bounds

Under structure conditions similar to [Lions '80], we get:

sup |Dul? < ¢ + sup |Dul?,
a o9

where ¢ = c(||ul| o).
2. Interior bounds If H is suitably coercive (e.g. H > h(|DulP~!) — ¢(x),
with foo dT < o) we get local bounds: for any w CC Q,

sup |Du,| < ¢,

XEw

where ¢, only depends on A||ju™ || .



Consequence of gradient bounds:

1. Gradient estimates at the boundary = existence of solutions
(Lipschitz!): this is Lions's principle (extended to p-Laplacian)

A — D)+ h(|DY[P~Y) < F in Q

dsolution <= 3 100
e Wy (Q)

— all you need is...a barrier !

2. Interior gradient bounds hold whenever H is “sufficiently” superlinear:

<1
—d
[
This is the threshold of super linearity.
Ex: h(s) =s9 g > 1, but also h(s) = slog?s, g > 1.
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Looking for barriers — two thresholds appear:
() (threshold of super linearity)
If [~ 1 jds <oco = exists U such that

ou

~Ap U+ h(|DUJP~Y)  is bounded
50 = too at the boundary

(ii) (threshold of natural growth)
(ii- a) |f/’°5” P lds=00 = U

(the barrier can be chosen as large as desired). In this case a bound for
the L°°-norm implies a control of the gradient norm.
— solutions exist iff bounded sub solutions exist !

x—)()Q

(ii-b) If [~ Sh"(; ds <oo = U has a finite maximal L* bound

This is the super-natural growth: Solutions have universal upper bounds,
loss of boundary conditions due to gradient singularity (Holder-type
behavior)
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All depends on local behavior of Maximal solutions. Model case:

AU —Ap U + h(|DUIP~Y) = f is bounded
g—g = 400 at the boundary

Maximal sol : UX_L?Q +0o0
) Dirichlet pb:
o -1 3L°°- subsol. = Jsol.
dr =
/ =

/Ooh(ls)ds<oo

(local gradient bounds)

T

oo Th
/ A7) T <% (Maximal sol : U is bounded

Dirichlet pb:
IWL- subsol. = sol.
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The Dirichlet problem

Back to the Dirichlet problem

Au—Apu+ H(x,Du) =0 in Q,
u=0 on 00

with
H > h(|Du|P*1) —c(x).

+some structure conditions for gradient bounds. Assume

/OO;Ej_l)dT—oo (3

i.e. we are below the natural growth threshold. Then we have seen:

~—

(i) for any A > 0, (2) admits a solution u € W, ()

(i) when A =0, (2) admits a solution if and only if there exists a
bounded sub solution ¢ such that ¢» = 0 on 0S0.

Pb: What really happens when A = 07 And when A — 07



The additive eigenvalue

The existence of solutions when A = 0 can be described in terms of a
nonlinear additive eigenvalue related to the maximal solutions.

Model case:
—Apu+ |Dul? = f(x) in Q,
u=20 on 9f2
with p—1 < g < p.

Theorem (Leonori-P.)

1. There exists a unique constant ¢y = co(f, Q) such that the problem

x—0Q oV

co—ApV + |DV|9=1f is bounded
V75 40 [+ $. = +oo at the boundary]

admits a solution.
2. We have

co >0 = the Dirichlet problem (4) admits a solution

co <0 = the Dirichlet problem (4) does not admit any solution




o If ¢o(f,2) = 0 we conjecture that no solution exists to the Dirichlet
problem. In that case we have a full characterization: solutions to
the Dirichlet problem exist if and only if ¢(f,) > 0.

This is true if p =2 [P. '10] and if osc(f) is not too large
[Leonori-P.].

o If g=np:

v 2L o [ 2Y = 400 at the boundary]

{co —ApV +|DV|P =f is bounded
ov

then cp is a classical eigenvalue: cg = A (—=A,(+) + f(x)(-)P~!) and
e~ V/(P=1) is the first eigenfunction of —A,(-) + f(x)(-)P~*

@ The additive constant ¢y and the corresponding eigenfunction V
describe the long time behavior of the evolution problem whenever
there are no stationary solutions (cy < 0). For the case p = 2, see
[Barles-P.-Tabet Tchamba '10] — ¢ is an ergodic constant

@ In the case p = 2 the additive eigenvalue ¢y satisfies Faber-Krahn
inequalities [Ferone-Giarrusso-Messano-Posteraro '14].
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Maximal solutions Additive eigenvalue

GRADIENT BOUNDS

Long time behavior Stationary Dirichlet pb.
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