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Preface 

The purpose of this book is to provide a tutorial overview on the subject of 
computerized tomographic imaging. We expect the book to be useful for 
practicing engineers and scientists for gaining an understanding of what can 
and cannot be done with tomographic imaging. Toward this end, we have 
tried to strike a balance among purely algorithmic issues, topics dealing with 
how to generate data for reconstruction in different domains, and artifacts 
inherent to different data collection strategies. 

Our hope is that the style of presentation used will also make the book 
useful for a beginning graduate course on the subject. The desired 
prerequisites for taking such a course will depend upon the aims of the 
instructor. If the instructor wishes to teach the course primarily at a 
theoretical level, with not much emphasis on computer implementations of 
the reconstruction algorithms, the book is mostly self-contained for graduate 
students in engineering, the sciences, and mathematics. On the other hand, if 
the instructor wishes to impart proficiency in the implementations, it would 
be desirable for the students to have had some prior experience with writing 
computer programs for digital signal or image processing. The introductory 
material we have included in Chapter 2 should help the reader review the 
relevant practical details in digital signal and image processing. There are no 
homework problems in the book, the reason being that in our own lecturing 
on the subject, we have tended to emphasize the implementation aspects and, 
therefore, the homework has consisted of writing computer programs for 
reconstruction algorithms. 

The lists of references by no means constitute a complete bibliography on 
the subject. Basically, we have included those references that we have found 
useful in our own research over the years. Whenever possible, we have 
referenced books and review articles to provide the reader with entry points 
for more exhaustive literature citations. Except in isolated cases, we have not 
made any attempts to establish historical priorities. No value judgments 
should be implied by our including or excluding a particular work. 

Many of our friends and colleagues deserve much credit for helping bring 
this book to fruition. This book draws heavily from research done at Purdue 
by our past and present colleagues and collaborators: Carl Crawford, Mani 
Azimi, David Nahamoo, Anders Andersen, S. X. Pan, Kris Dines, and Barry 
Roberts. A number of people, Carl Crawford, Rich Kulawiec, Gary S. 
Peterson, and the anonymous reviewers, helped us proofread the manuscript; 
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1 Introduction 

Tomography refers to the cross-sectional imaging of an object from either 
transmission or reflection data collected by illuminating the object from many 
different directions. The impact of this technique in diagnostic medicine has 
been revolutionary, since it has enabled doctors to view internal organs with 
unprecedented precision and safety to the patient. The first medical 
application utilized x-rays for forming images of tissues based on their x-ray 
attenuation coefficient. More recently, however, medical imaging has also 
been successfully accomplished with radioisotopes, ultrasound, and magnetic 
resonance; the imaged parameter being different in each case. 

There are numerous nonmedical imaging applications. which lend them- 
selves to the methods of computerized tomography. Researchers have already 
applied this methodology to the mapping of underground resources via cross- 
borehole imaging, some specialized cases of cross-sectional imaging for 
nondestructive testing, the determination of the brightness distribution over a 
celestial sphere, and three-dimensional imaging with electron microscopy. 

Fundamentally, tomographic imaging deals with reconstructing an image 
from its projections. In the strict sense of the word, a projection at a given 
angle is the integral of the image in the direction specified by that angle, as 
illustrated in Fig. 1.1. However, in a loose sense, projection means the 
information derived from the transmitted energies, when an object is 
illuminated from a particular angle; the phrase “diffracted projection” may 
be used when energy sources are diffracting, as is the case with ultrasound 
and microwaves. 

Although, from a purely mathematical standpoint, the solution to the 
problem of how to reconstruct a function from its projections dates back to 
the paper by Radon in 1917, the current excitement in tomographic imaging 
originated with Hounsfield’s invention of the x-ray computed tomographic 
scanner for which he received a Nobel prize in 1972. He shared the prize with 
Allan Cormack who independently discovered some of the algorithms. His 
invention showed that it is possible to compute high-quality cross-sectional 
images with an accuracy now reaching one part in a thousand in spite of the 
fact that the projection data do not strictly satisfy the theoretical models 
underlying the efficiently implementable reconstruction algorithms. His 
invention also showed that it is possible to process a very large number of 
measurements (now approaching a million for the case of x-ray tomography) 
with fairly complex mathematical operations, and still get an image that is 
incredibly accurate. 
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Fig. 1.1: Two projections are It is perhaps fair to say that the breakneck pace at which x-ray computed 
shown of an object consisting of 
a pair of cylinders. 

tomography images improved after Hounsfield’s invention was in large 
measure owing to the developments that were made in reconstruction 
algorithms. Hounsfield used algebraic techniques, described in Chapter 7, 
and was able to reconstruct noisy looking 80 x 80 images with an accuracy 
of one part in a hundred. This was followed by the application of convolution- 
backprojection algorithms, first developed by Ramachandran and Lak- 
shminarayanan [Ram711 and later popularized by Shepp and Logan [She74], 
to this type of imaging. These later algorithms considerably reduced the 
processing time for reconstruction, and the image produced was numerically 
more accurate. As a result, commercial manufacturers of x-ray tomographic 
scanners started building systems capable of reconstructing 256 x 256 and 
512 x 512 images that were almost photographically perfect (in the sense 
that the morphological detail produced was unambiguous and in perfect 
agreement with the anatomical features). The convolution-backprojection 
algorithms are discussed in Chapter 3. 

Given the enormous success of x-ray computed tomography, it is not 
surprising that in recent years much attention has been focused on extending 
this image formation technique to nuclear medicine and magnetic resonance 
on the one hand; and ultrasound and microwaves on the other. In nuclear 
medicine, our interest is in reconstructing a cross-sectional image of 
radioactive isotope distributions within the human body; and in imaging with 
magnetic resonance we wish to reconstruct the magnetic properties of the 
object. In both these areas, the problem can be set up as reconstructing an 
image from its projections of the type shown in Fig. 1.1. This is not the case 
when ultrasound and microwaves are used as energy sources; although the 

2 COMPUTERIZED TOMOGRAPHIC IMAGING 



aim is the same as with x-rays, viz., to reconstruct the cross-sectional image 
of, say, the attenuation coefficient. X-rays are nondiffracting, i.e., they travel 
in straight lines, whereas microwaves and ultrasound are diffracting. When 
an object is illuminated with a diffracting source, the wave field is scattered in 
practically all directions, although under certain conditions one might be able 
to get away with the assumption of straight line propagation; these conditions 
being satisfied when the inhomogeneities are much larger than the wave- 
length and when the imaging parameter is the refractive index. For situations 
when one must take diffraction effects (inhomogeneity caused scattering of 
the wave field) into account, tomographic imaging can in principle be 
accomplished with the algorithms described in Chapter 6. 

This book covers three aspects of tomography: Chapters 2 and 3 describe 
the mathematical principles and the theory. Chapters 4 and 5 describe how to 
apply the theory to actual problems in medical imaging and other fields. 
Finally, Chapters 6, 7, and 8 introduce several variations of tomography that 
are currently being researched. 

During the last decade, there has been an avalanche of publications on 
different aspects of computed tomography. No attempt will be made to 
present a comprehensive bibliography on the subject, since that was recently 
accomplished in a book by Dean [Dea83]. We will only give selected 
references at the end of each chapter, their purpose only being to cite material 
that provides further details on the main ideas discussed in the chapter. 

The principal textbooks that have appeared on the subject of tomographic 
imaging are [Her80], [Dea83], [Mac83], [Bar8 11. The reader is also referred 
to the review articles in the field [Gor74], [Bro76], [Kak79] and the two 
special issues of IEEE journals [Kak81], [Her83]. Reviews of the more 
popular algorithms also appeared in [Ros82], [Kak84], [Kak85], [Kak86]. 
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2 Signal Processing Fundamentals 

We can’t hope to cover all the important details of one- and two- 
dimensional signal processing in one chapter. For those who have already 
seen this material, we hope this chapter will serve as a refresher. For those 
readers who haven’t had prior exposure to signal and image processing, we 
hope that this chapter will provide enough of an introduction so that the rest of 
the book will make sense. 

All readers are referred to a number of excellent textbooks that cover one- 
and two-dimensional signal processing in more detail. For information on 
1-D processing the reader is referred to [McG74], [Sch75], [Opp75], [Rab75]. 
The theory and practice of image processing have been described in [Ros82], 
[Gon77], [Pra78]. The more general case of multidimensional signal 
processing has been described in [Dud84]. 

2.1 One-Dimensional Signal Processing 

2.1.1 Continuous and Discrete One-Dimensional Functions 

One-dimensional continuous functions, such as in Fig. 2.1(a), will be 
represented in this book by the notation 

x(t) (1) 

where x(t) denotes the value as a function at t. This function may be given a 
discrete representation by sampling its value over a set of points as illustrated 
in Fig. 2.1(b). Thus the discrete representation can be expressed as the list 

- * - X(-T), x(O), X(T), x(27), * * *, x(m), * - - . (2) 

As an example of this, the discrete representation of the data in Fig. 2.1(c) is 

1, 3, 4, 5, 4, 3, 1. (3) 

It is also possible to represent the samples as a single vector in a 
multidimensional space. For example, the set of seven samples could also be 
represented as a vector in a 7-dimensional space, with the first element of the 
vector equal to 1, the second equal to 3, and so on. 

There is a special function that is often useful for explaining operations on 
functions. It is called the Dirac delta or impulse function. It can’t be defined 
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c 
J 

1 3 4 5 4 3 1 

: 
1 3 4 5 4 3 1 

directly; instead it must be expressed as the limit of a sequence of functions. 
First we define a new function called rect (short for rectangle) as follows 

Fig. 2.1: A one-dimensional 
signal is shown in (a) with its 
sampled version in (b). The 
discrete version of the signal is 
illustrated in (c). 

rect (t) = 1 
(4) 

0 elsewhere. 

This is illustrated in Fig. 2.2(a). Consider a sequence of functions of ever 
decreasing support on the t-axis as described by 

&(t)=n rect (nt) (5) 

and illustrated in Fig. 2.2(b). Each function in this sequence has the same 
area but is of ever increasing height, which tends to infinity as n + 03. The 
limit of this sequence of functions is of infinite height but zero width in such a 
manner that the area is still unity. This limit is often pictorially represented as 
shown in Fig. 2.2(c) and denoted by S(t). Our explanation leads to the 
definition of the Dirac delta function that follows 

s - 6(-t) dt=l. (6) -co 
The delta function has the following “sampling” property 

s - x(t)&t- t’) dt=x(t’) (7) -cc 
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(4 

Fig. 2.2: A rectangle function as where 6(t - t ‘) is an impulse shifted to the location t = t ’ . When an impulse 
shown in (a) is scaled in both 
width and height (b). In the limit 

enters into a product with an arbitrary x(t), all the values of x(t) outside the 
the result is the delta function location t = t’ are disregarded. Then by the integral property of the delta 
illustrated in (c). function we obtain (7); so we can say that 13(t - t’) samples the function x(t) 

at t’. 

2.1.2 Linear Operations 

Functions may be operated on for purposes such as filtering, smoothing, 
etc. The application of an operator 0 to a function x(t) will be denoted by 

orx(t)l. (8) 

The operator is linear provided 

otQX(f)+~~(t)l=~otx(t)l+pOtu(t)l (9) 
for any pair of constants a! and p and for any pair of functions x(t) and y(t). 

An interesting class of linear operations is defined by the following integral 
form 

z(t)= j”“, x(t’)h(t, t’) dt’ (10) 

where h is called the impulse response. It is easily shown that h is the system 
response of the operator applied to a delta function. Assume that the input 
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Fig. 2.3: The impulse response 
of a shift invariant filter is shown 
convolved with three impulses. 

function is an impulse at t = to or 

x(t)=tqt-to). (11) 
Substituting into (lo), we obtain 

z(t) = jy , 6(t’ - to)h(t, t’) dt’ (12) 

= h(t, to). (13) 

Therefore h(t, t ‘) can be called the impulse response for the impulse applied 
at t’. 

A linear operation is called shift invariant when 

u(t) = 0 tx(ol (14) 

implies 

y(t--7)=O[x(t-7)] (1% 

or equivalently 

h(t, t’)=h(t-t’). (16) 

This implies that when the impulse is shifted by t ’ , so is the response, as is 
further illustrated in Fig. 2.3. In other words, the response produced by the 
linear operation does not vary with the location of the impulse; it is merely 
shifted by the same amount. 

For shift invariant operations, the integral form in (10) becomes 

This 

The 

z(t)= Co s x(t’)h(t- t’) dt’. (17) -m 

is now called a convolution and is represented by 

z(t) =x(t)*h(t). W-4) 

process of convolution can be viewed as flipping one of the two 
functions, shifting one with respect to the other, multiplying the two and 
integrating the product for every shift as illustrated by Fig. 2.4. 
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Fig. 2.4: The results of 
convolving an impulse response 
with an impulse (top) and a 
square pulse (bottom) are shown 

Convolution can also be defined for discrete sequences. If 

xj=x(i7) 

and 

Yi=Y(id 

then the convolution of x; with yi can be written as 

(19) 

(20) 

(21) 

This is a discrete approximation to the integral of (17). 

2.1.3 Fourier Representation 

For many purposes it is useful to represent functions in the frequency 
domain. Certainly the most common reason is because it gives a new 
perspective to an otherwise difficult problem. This is certainly true with the 
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convolution integral; in the time domain convolution is an integral while in 
the frequency domain it is expressed as a simple multiplication. 

In the sections to follow we will describe four different varieties of the 
Fourier transform. The continuous Fourier transform is mostly used in 
theoretical analysis. Given that with real world signals it is necessary to 
periodically sample the data, we are led to three other Fourier transforms that 
approximate either the time or frequency data as samples of the continuous 
functions. The four types of Fourier transforms are summarized in Table 2.1. 

Assume that we have a continuous function x(t) defined for Tl I t 15 Tz. 
This function can be expressed in the following form: 

x(t)= 2 zkejkuot 
k=-m 

(22) 

where j = a and w. = 2rfo = 27r/T, T = T2 - T, and zk are complex 
coefficients to be discussed shortly. What is being said here is that x(t) is the 
sum of a number of functions of the form 

#qt. (23) 

This function represents 

dkoot = cos kwo t +j sin kwo t. (24) 

The two functions on the right-hand side, commonly referred to as sinusoids, 
are oscillatory with kfo cycles per unit of t as illustrated by Fig. 2.5. kfo is 

Table 2.1: Four different Fourier transforms can be defined by sampling the time and frequency 
domains. * 

Continuous Time Discrete Time 

Name: Fourier Transform Name: Discrete Fourier Transform 

Continuous Forward: X(w) = I:, x(t)e-jwf dt Forward: X(w) = C;= _ m x(nr)e-ion7 

Frequency Inverse: x(f) = 1/2?r {:, X(w)ejot du Inverse: x(nr) = 7/27r S_*‘,:, X(4ejwnr dw 

Periodicity: None Periodic@: X(w) = X(w + i(27r/r)) 

Name: Fourier Series Name: Finite Fourier Transform 

Discrete Forward: X,, = l/T j~x(f)e-jn(2r’*)f Forward: Xk = l/N ~~zO x,e -j(2*‘N)kn 

Frequency Inverse: x(t) = C;= _ m Xnejn(z~/r)r Inverse: xk= zf==, x&i(2*‘N)kn 

Periodicity: x(t) = x(t + iT) Periodic@: xk = xk+ iN and Xk = Xk+ iN 

* In the above table time domain functions are indicated by x and frequency domain functions are X. 
The time domain sampling interval is indicated by 7. 
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cos(2nkll sin(2rkl) 

Fig. 2.5: The first three 
components of a Fourier series 
are shown. The cosine waves 
represent the real part of the 
signal while the sine waves 
represent the imaginary. 

called the frequency of the sinusoids. Note that the sinusoids in (24) are at 
multiples of the frequency fo, which is called the fundamental frequency. 

The coefficients zk in (22) are called the complex amplitude of the kth 
component, and can be obtained by using the following formula 

1 
I 

T2 
Zk=- 

T TI 
x(t)e-ikmoT. (25) 

The representation in (22) is called the Fourier Series. To illustrate pictorially 
the representation in (22), we have shown in Fig. 2.6, a triangular function 
and some of the components from the expansion. 

A continuous signal x(t) defined for t between - 01 and 00 also possesses 
another Fourier representation called the continuous Fourier transform and 
defined by 

X(w) = j;, x(t)e-j*’ dt. (26) 

One can show that this relationship may be inverted to yield 

X(t) = & jy, X(o)ejwl do. (27) 

Comparing (22) and (27), we see that in both representations, x(t) has been 
expressed as a sum of sinusoids, e jwr; the difference being that in the former, 
the frequencies of the sinusoids are at multiples of wg, whereas in the latter we 
have all frequencies between - 03 to m. The two representations are not 
independent of each other. In fact, the series representation is contained in the 
continuous transform representation since zk’s in (25) are similar to x(w) in 
(26) for o = kwo = k(27r/T), especially if we assume that x(t) is zero 
outside [T,, Tz], in which case the range of integration in (27) can be cut 
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Fig. 2.6: This illustrates the 
Fourier series for a simple 
waveform. A triangle wave is 
shown in (a) with the magnitude 
(b) and phase (c) of the first few 
terms of the Fourier series. 

-..*-l-ljl~,-*-.-IS/b) -6 -6 -4 -2 0 2 4 6 6 Cycles per 
Sl?ClUeWX 

-6 -6 -4 -2 2 4 6 6 Cycles per 
Sequence 
Length 

down to [T,, 7”]. For the case when x(t) is zero outside [T,, TJ, the reader 
might ask that since one can recover x(t) from zk using (22), why use (27) 
since we require X(w) at frequencies in addition to kws’s. The information in 
X(w) for w # kws is necessary to constrain the values of x(t) outside the 
interval [T,, T2]. 

If we compute zk’s using (25), and then reconstruct x(t) from zk’s using 
(22), we will of course obtain the correct values of x(t) within [T,, Tz]; 
however, if we insist on carrying out this reconstruction outside [ T,, T,], we 
will obtain periodic replications of the original x(t) (see Fig. 2.7). On the 
other hand, if X(w) is used for reconstructing the signal, we will obtain x(t) 
within [T,, T2] and zero everywhere outside. 

The continuous Fourier transform defined in (26) may not exist unless x(t) 
satisfies certain conditions, of which the following are typical [Goo68]: 

1) j”“oD Ix(t)1 dt c 00. 
2) g(t) must have only a finite number of discontinuities and a finite 

number of maxima and minima in any finite interval. 
3) g(t) must have no infinite discontinuities. 

Some useful mathematical functions, like the Dirac 6 function, do not obey 
the preceding conditions. But if it is possible to represent these functions as 
limits of a sequence of well-behaved functions that do obey these conditions 
then the Fourier transforms of the members of this sequence will also form a 
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n (4 

Fig. 2.7: The signal represented 
by a Fourier series is actually a 
periodic version of the original 
signal defined between T, and T2. 
Here the original function is 
shown in (a) and the replications 
caused by the Fourier series 
representation are shown in (b). 

Tl T2 T,+T T2+2T 

sequence. Now if this sequence of Fourier transforms possesses a limit, then 
this limit is called the “generalized Fourier transform” of the original 
function. Generalized transforms can be manipulated in the same manner as 
the conventional transforms, and the distinction between the two is generally 
ignored; it being understood that when a function fails to satisfy the existence 
conditions and yet is said to have a transform, then the generalized transform 
is actually meant [Goo68], [Lig60]. 

Various transforms described in this section obey many useful properties; 
these will be shown for the two-dimensional case in Section 2.2.4. Given a 
relationship for a function of two variables, it is rather easy to suppress one 
and visualize the one-dimensional case; the opposite is usually not the case. 

2.1.4 Discrete Fourier Transform (DFT) 

As in the continuous case, a discrete function may also be given a 
frequency domain representation: 

X(W)= i x(n7)e-jwnr 
n= -m 

(28) 

where X(W) are the samples of some continuous function x(t), and X(w) the 
frequency domain representation for the sampled data. (In this book we will 
generally use lowercase letters to represent functions of time or space and 
the uppercase letters for functions in the frequency domain.) 

Note that our strategy for introducing the frequency domain representation 
is opposite of that in the preceding subsection. In describing Fourier series we 
defined the inverse transform (22), and then described how to compute its 
coefficients. Now for the DFT we have first described the transform from 
time into the frequency domain. Later in this section we will describe the 
inverse transform. 

SIGNAL PROCESSING FUNDAMENTALS 13 



As will be evident shortly, X(o) represents the complex amplitude of the 
sinusoidal component e jorn of the discrete signal. Therefore, with one 
important difference, X(w) plays the same role here as zk in the preceding 
subsection; the difference being that in the preceding subsection the 
frequency domain representation was discrete (since it only existed at 
multiples of the fundamental frequency), while the representation here is 
continuous as X(w) is defined for all w. 

For example, assume that 

n=O 
n=l 
elsewhere. 

For this signal 

X(W) = 1 - e-jW7. 

Note that X(W) obeys the following periodicity 

2?r 
X(w)=X w+- ( > 7 

(29) 

(30) 

(31) 

which follows from (28) by simple substitution. In Fig. 2.8 we have shown 
several periods of this X(w). 

X(w) is called the discrete Fourier transform of the function x(m). From 
the DFT, the function x(nr) can be recovered by using 

Fig. 2.8: The discrete Fourier 
transform (OFT) of a two 
element sequence is shown here. 

T/T 
x(m) =y s X(w)ejwnT da (32) 27r -x/r 

J, 
0 211 4?r 671 8a w - - - 
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which points to the discrete function x(m) being a sum (an integral sum, to be 
more specific) of sinusoidal components like ejwnr. 

An important property of the DFT is that it provides an alternate method 
for calculating the convolution in (21). Given a pair of sequences Xi = x(i7) 
and hi = h(k), their convolution as defined by 

Yi= 2 xjhi-j, (33) 
j=-m 

can be calculated from 

Y(o) =X(w)H(w). (34) 

This can be derived by noting that the DFT of the convolution is written as 

Y(u)= c i;“, [ ,$., xkhi-k] e-jwir. (35) 

Rewriting the exponential we find 

Y&J)= c r_“. [ k-$a Xkhimk] e-jo(i-k+k)r. (36) 

The second summation now can be written as 

Y(W)= i Xke-hk7 i h,,,e-j”mT. 
i= -m nl= --oD 

(37) 

Note that the limits of the summation remain from - 00 to 00. At this point it 
is easy to see that 

Y(w) = X(w)H(o). (38) 

A dual to the above relationship can be stated as follows. Let’s multiply 
two discrete functions, x, and yn , each obtained by sampling the correspond- 
ing continuous function with a sampling interval of r and call the resulting 
sequence .zn 

Zn =x”Yw (39) 

Then the DFT of the new sequence is given by the following convolution in 
the frequency domain 

Z(w) =& y;,, X(a) Y(o -a) da. (40) 
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2.1.5 Finite Fourier Transform 

Consider a discrete function 

x(O), x(7), x(27), * - *, x((N- 117) (41) 

that is N elements long. Let’s represent this sequence with the following 
subscripted notation 

x0, XI, x2, “’ XN-I. (42) 
Although the DFT defined in Section 2.1.4 is useful for many theoretical 
discussions, for practical purposes it is the following transformation, called 
the finite Fourier transform (FFT), l that is actually calculated with a 
computer: 

X, =h Nz’ X,e-j(2a/NMn 
n=O 

(43) 

for u = 0, 1, 2, a**, N - 1. To explain the meaning of the values X,, 
rewrite (43) as 

(44) 

Comparing (44) and (28), we see that the X,,‘s are the samples of the 
continuous function X(o) for 

1 
0=?4- 

NT 
with u=O, 1, 2, **a, N-l. (45) 

Therefore, we see that if (43) is used to compute the frequency domain 
representation of a discrete function, a sampling interval of r in the t-domain 
implies a sampling interval of l/Nr in the frequency domain. The inverse of 
the relationship shown in (43) is 

N-l 
x,= C Xuej(2r/N)un , n=O, 1, 2, a**, N-l. (46) 

II=0 

Both (43) and (46) define sequences that are periodically replicated. First 
consider (43). If the u = Nm + i term is calculated then by noting that 
ej(2a/wNm = 1 for all integer values of m, it is easy to see that 

X Nm+i=xi- (47) 

I The acronym FFT also stands for fast Fourier transform, which is an efficient algorithm for 
the implementation of the finite Fourier transform. 
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A similar analysis can be made for the inverse case so that 

XNm+i=Xi* (48) 

When the finite Fourier transforms of two sequences are multiplied the 
result is still a convolution, as it was for the discrete Fourier transform 
defined in Section 2.1.4, but now the convolution is with respect to replicated 
sequences. This is often known as circular convolution because of the effect 
discussed below. 

To see this effect consider the product of two finite Fourier transforms. 
First write the product of two finite Fourier transforms 

Z,=X,Y, (49) 

and then take the inverse finite Fourier transform to find 

N-l 
Zn= C e.i@r/N)unX 

u 
y 

U. (50) 

u=O 

Substituting the definition of X, and Y,, as given by (43) the product can now 
be written 

Zn = $ Ni ei(2*/N)un 
N-l N-l 
2 xiei(hdN)iu C yk&(2*/NWm 

(51) 
ll=O k=O 

The order of summation can be rearranged and the exponential terms 
combined to find 

“,& y y xiyk y ej(2u/N)un-ui-uke 

r=O k=O Id=0 
(52) 

There are two cases to consider. When n - i - k # 0 then as a function of 1( 
the samples of the exponential ej(2+/~un-ui-uk represent an integral number 
of cycles of a complex sinusoid and their sum is equal to zero. On the other 
hand, when i = n - k then each sample of the exponential is equal to one 
and thus the summation is equal to IV. The summation in (52) over i and k 
represents a sum of all the possible combinations of Xi and yk. When i = n - 
k then the combination is multiplied by a factor of N while when i # n - k 
then the term is ignored. This means that the original product of two finite 
Fourier transforms can be simplified to 

z,, =; y x,,-kyk. 

k=O 
(53) 

This expression is very similar to (21) except for the definition of x,-k and 
yk for negative indices. Consider the case when n = 0. The first term of the 
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Fig. 2.9: The effect of circular 
convolution is shown in (a). (b) 
shows how the data can be 
zero-padded so that when an FFT 
convolution is performed the 
result represents samples of an 
aperiodic convolution. 

summation is equal to xoyo but the second term is equal to x- 1 yr . Although in 
the original formulation of the finite Fourier transform, the x sequence was 
only specified for indices from 0 through N - 1, the periodicity property in 
(48) implies that x-r be equal to XN- r. This leads to the name circular 
convolution since the undefined portions of the original sequence are replaced 
by a circular replication of the original data. 

The effect of circular convolution is shown in Fig. 2.9(a). Here we have 
shown an exponential sequence convolved with an impulse. The result 
represents a circular convolution and not samples of the continuous 
convolution. 

A circular convolution can be turned into an aperiodic convolution by zero- 
padding the data. As shown in Fig. 2.9(b) if the original sequences are 
doubled in length by adding zeros then the original N samples of the product 
sequence will represent an aperiodic convolution of the two sequences. 

Efficient procedures for computing the finite Fourier transform are known 
as fast Fourier transform (FFT) algorithms. To calculate each of the N points 
of the summation shown in (43) requires on the order of N2 operations. In a 
fast Fourier transform algorithm the summation is rearranged to take 
advantage of common subexpressions and the computational expense is 
reduced to N log N. For a 1024 point signal this represents an improvement 
by a factor of approximately 100. The fast Fourier transform algorithm has 
revolutionized digital signal processing and is described in more detail in 
[Bri74]. 

-w -- 
Positive Negative Positive Negative Positive Negative 

Time Time Time Time Time Time 

Positive Negative 
Time Time 
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2.1.6 Just How Much Data Is Needed? 

In Section 2.1.1 we used a sequence of numbers Xi to approximate a 
continuous function x(t). An important question is, how finely must the data 
be sampled for Xi to accurately represent the original signal? This question 
was answered by Nyquist who observed that a signal must be sampled at least 
twice during each cycle of the highest frequency of the signal. More 
rigorously, if a signal x(t) has a Fourier transform such that 

X(w) = 0 for wBT (54) 

then samples of x must be measured at a rate greater than UN. In other words, 
if T is the interval between consecutive samples, we want 2a/T 1 wN. The 
frequency WN is known as the Nyquist rate and represents the minimum 
frequency at which the data can be sampled without introducing errors. 

Since most real world signals aren’t limited to a small range of frequencies, 
it is important to know the consequences of sampling at below the Nyquist 
rate. We can consider the process of sampling to be equivalent to 
multiplication of the original continuous signal x(t) by a sampling function 
given by 

h(t)=i A(t-iT). (55) 
--m 

The Fourier transform of h(t) can be computed from (26) to be 

(56) 

By (40) we can convert the multiplication to a convolution in the frequency 
domain. Thus the result of the sampling can be written 

(57) 

This result is diagrammed in Fig. 2.10. 
It is important to realize that when sampling the original data (Fig. 2.10(a)) 

at a rate faster than that defined by the Nyquist rate, the sampled data are an 
exact replica of the original signal. This is shown in Fig. 2.10(b). If the 
sampled signal is filtered such that all frequencies above the Nyquist rate are 
removed, then the original signal will be recovered. 

On the other hand, as the sampling interval is increased the replicas of the 
signal in Fig. 2.10(c) move closer together. With a sampling interval greater 
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Fig. 2.10: Sampling a waveform 
generates replications of the 
original Fourier transform of the 
object at periodic intervals. If the 
signal is sampled at a frequency 
of o then the Fourier transform 
of the object will be replicated at 
intervals of 2~. (a) shows the 
Fourier transform of the original 
signal, (b) shows the Fourier 
transform when x(t) is sampled at 
a rate faster than the Nyquist 
rate, (c) when sampled at the 
Nyquist rate and finally (d) when 
the data are sampled at a rate less 
than the Nyquist rate. 

than that predicted by the Nyquist rate some of the information in the original 
data has been smeared by replications of the signal at other frequencies and 
the original signal is unrecoverable. (See Fig. 2.10(d).) The error caused by 
the sampling process is given by the inverse Fourier transform of the 
frequency information in the overlap as shown in Fig. 2.10(d). These errors 
are also known as aliasing. 

2.1.7 Interpretation of the FFT Output 

Correct interpretation of the XU’s in (43) is obviously important. Toward 
that goal, it is immediately apparent that X0 stands for the average (or, what is 
more frequently called the dc) component of the discrete function, since from 
(43) 

x0=$ x,. (58) 
n=O 

Interpretation of Xi requires, perhaps, a bit more effort; it stands for 1 cycle 
per sequence length. This can be made obvious by setting Xi = 1, while all 
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other Xi’s are set equal to 0 in (46). We obtain 

X, = @XT/NW (59) 

=cos ($n)+j sin (zn) (60) 

forn = 0,1,2, **e, N - 1. A plot of either the cosine or the sine part of this 
expression will show just one cycle of the discrete function x, , which is why 
we consider X, as representing one cycle per sequence length. One may 
similarly show that X2 represents two cycles per sequence length. Unfortu- 
nately, this straightforward approach for interpreting X, breaks down for u 
> N/2. For these high values of the index u, we make use of the following 
periodicity property 

x-,=x,-, (61) 

which is easily proved by substitution in (43). For further explanation, 
consider now a particular value for N, say 8. We already know that 

X0 represents dc 
X1 represents 1 cycle per sequence length 
X2 represents 2 cycles per sequence length 
X, represents 3 cycles per sequence length 
X4 represents 4 cycles per sequence length. 

From the periodicity property we can now add the following 

X5 represents - 3 cycles per sequence length 
X, represents - 2 cycles per sequence length 
X7 represents - 1 cycle per sequence length. 

Note that we could also have added “X4 represents - 4 cycles per sequence 
length. ’ ’ The fact is that for any N element sequence, XN,2 will always be 
equal to X-N/& since from (43) 

N-l 

xN/2 = x-N/2 = c %I(- 1)“. 
0 

The discussion is diagrammatically represented by Fig. 2.11, which shows 
that when an N element data sequence is fed into an FFT program, the output 
sequence, also N elements long, consists of the dc frequency term, followed 
by positive frequencies and then by negative frequencies. This type of an 
output where the negative axis information follows the positive axis 
information is somewhat unnatural to look at. 

To display the FFT output with a more natural progression of frequencies, 
we can, of course, rearrange the output sequence, although if the aim is 
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Fig. 2.11: The output of an 8 
element FFT is shown here. 

merely to filter the data, it may not be necessary to do so. In that case the 
filter transfer function can be rearranged to correspond to the frequency 
assignments of the elements of the FFT output. 

It is also possible to produce normal-looking FFT outputs (with dc at the 
center between negative and positive frequencies) by “modulating” the data 
prior to taking the FFT. Suppose we multiply the data with (- 1)” to produce 
a new sequence x,’ 

x,’ =x,( - 1)“. V-53) 

Let Xi designate the FFT of this new sequence. Substituting (63) in (43), we 
obtain 

x: =-&N/2 (64) 

for u = 0, 1,2, e-e, N - 1. This implies the following equivalences 

x,, = x-N,2 (65) 

x; =x-N/2+1 (66) 

xi =x-N/2+2 (67) 
(68) 

xiv2 = x0 (69) 

(70) 
xh-, =&,2-,. (71) 

2.1.8 How to Increase the Display Resolution in the Frequency 
Domain 

The right column of Fig. 2.12 shows the magnitude of the FFT output (the 
dc is centered) of the sequence that represents a rectangular function as shown 
in the left column. As was mentioned before, the Fourier transform of a 
discrete sequence contains all frequencies, although it is periodic, and the 
FFT output represents the samples of one period. For many situations, the 
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Fig. 2.12: As shown here, 
padding a sequence of data with 
zeros increases the resolution in 
the frequency domain. The 
sequence in (a) has only 16 
points, (b) has 32 points, while 
(c) has 64 points. 

frequency domain samples supplied by the FFT, although containing 
practically all the information for the reconstruction of the continuous Fourier 
transform, are hard to interpret visually. This is evidenced by Fig. 2.12(a), 
where for part of the display we have only one sample associated with an 
oscillation in the frequency domain. It is possible to produce smoother- 
looking outputs by what is called zero-padding the data before taking the 
FFT. For example, if the sequence of Fig. 2.12(a) is extended with zeros to 
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twice its length, the FFT of the resulting 32 element sequence will be as 
shown in Fig. 2.12(b), which is visually smoother looking than the pattern in 
Fig. 2.12(a). If we zero-pad the data to four times its original length, the 
output is as shown in Fig. 2.12(c). 

That zero-padding a data sequence yields frequency domain points that are 
more closely spaced can be shown by the following derivation. Again let x1, 
x2, ***, xN- i represent the original data. By zero-padding the data we will 
define a new x’ sequence: 

x,’ =x, for n=O, 1, 2, em*, N-l 

=o for n=N, N+l, *se, 2N-1. 

Let X; be the FFT of the new sequence x,‘. Therefore, 

(72) 

(73) 

ZN- I 
x; = C X;e-j(2s/2N)un 

0 
(74) 

which in terms of the original data is equal to 

N-l 
x,: = C Xne-i(2d2Nh, (75) 

0 

If we evaluate this expression at even values of U, that is when 

u=2m where m=O, 1, 2, *mm, N-l (76) 

we get 
N-l 

Xi,= C Xne-j(2xr/N)mn (77) 
0 

=X,. (78) 

In Fig. 2.13 is illustrated the equality between the even-numbered elements of 
the new transform and the original transform. That X; , Xi, * * *, etc. are the 
interpolated values between X0 and Xi; between Xi and X2; etc. can be seen 
from the summations in (43) and (74) written in the following form 

N-l = C X(nT)e-j(2rm/Nr)nre 

n=O 

(79) 

(80) 

Comparing the two summations, we see that the upper one simply represents 
the sampled DFT with half the sampling interval. 
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Fig. 2.13: When a data sequence So we have the following conclusion: to increase the display resolution in 
is padded with zeros the effect is 
to increase the resolution in the 

the frequency domain, we must zero-extend the time domain signal. This also 
frequency domain. The points in means that if we are comparing the transforms of sequences of different 
(a) are also in the longer sequence lengths, they must all be zero-extended to the same number, so that they are 
shown in (b), but there are 
additional points, as indicated by 

all plotted with the same display resolution. This is because the upper 
circles, that provide interpolated summation, (79), has a sampling interval in the frequency domain of 27r/2Nr 
values of the FFT. while the lower summation, (BO), has a sampling interval that is twice as long 

or 27r/Nr. 

2.1.9 How to Deal with Data Defined for Negative Time 

Since the forward and the inverse FFT relationships, (43) and (46), are 
symmetrical, the periodicity property described in (62) also applies in time 
domain. What is being said here is that if a time domain sequence and its 
transform obey (43) and (46), then an N element data sequence in the time 
domain must satisfy the following property 

x-,=xN-,,. (81) 

To explain the implications of this property, consider the case of N = 8, for 
which the data sequence may be written down as 

x0, Xl, x2, x3, x4, x5, x5, x7. W-4 

By the property under discussion, this sequence should be interpreted as 

x0, XI, x2, x3, x4 (or x-41, x-3, x2, x-]. (83) 

Then if our data are defined for negative indices (times), and, say, are of the 
following form 

X-3, x-2, x-1, x0, Xl, x2, x3, x4 (84) 
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they should be fed into an FFT program as 

x0, Xl, x2, x3, x4, x-3, x-2, X-l. (85) 

To further drive home the implications of the periodicity property in (62), 
consider the following example, which consists of taking an 8 element FFT of 
the data 

0.9 0.89 0.88 0.87 0.86 0.85 0.84 0.83. 036) 

We insist for the sake of explaining a point, that only an 8 element FFT be 
taken. If the given data have no association with time, then the data should be 
fed into the program as they are presented. However, if it is definitely known 
that the data are ZERO before the first element, then the sequence presented 
to the FFT program should look like 

0.86+0 
0.9 0.89 0.88 0.87 -0 0 0. 

2 (87) I 

positive time (88) 

negative time (89) 

This sequence represents the given fact that at t = - 1, - 2 and - 3 the data 
are supposed to be zero. Also, since the fifth element represents both x4 and 
x-~ (these two elements are supposed to be equal for ideal data), and since in 
the given data the element xv4 is zero, we simply replace the fifth element by 
the average of the two. Note that in the data fed into the FFT program, the 
sharp discontinuity at the origin, as represented by the transition from 0 to 
0.9, has been retained. This discontinuity will contribute primarily to the high 
frequency content of the transform of the signal. 

2.1.10 How to Increase Frequency Domain Display Resolution of 
Signals Defined for Negative Time 

Let’s say that we have an eight element sequence of data defined for both 
positive and negative times as follows: 

x-3 x-2 x- 1 x0 x1 x2 x3 x4. (90) 

It can be fed into an FFT algorithm after it is rearranged to look like 

X0X1X2X3X4X-3X-2X-l. (91) 

If x-4 was also defined in the original sequence, we have three options: we 
can either ignore xT4, or ignore x4 and retain x-4 for the fifth from left 
position in the above sequence, or, better yet, use (x-4 + x4)/2 for the fifth 
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position. Note we are making use of the property that due to the data 
periodicity properties assumed by the FFT algorithm, the fifth element 
corresponds to both x4 and x-~ and in the ideal case they are supposed to be 
equal to each other. 

Now suppose we wish to double the display resolution in the frequency 
domain; we must then zero-extend the data as follows 

x0 x1 x2 x3 x4 0 0 0 0 0 0 0 x-4 x-3 x-2 x-1. (92) 

Note that we have now given separate identities to x4 and x-~, since they 
don’t have to be equal to each other anymore. So if they are separately 
available, they can be used as such. 

2.1.11 Data Truncation Effects 

To see the data truncation effects, consider a signal defined for all indices 
n. If X(w) is the true DFT of this signal, we have 

X(0) = 3 x,e-jwflTs. 
-m 

(93) 

Suppose we decide to take only a 16 element transform, meaning that of all 
the x,‘s, we will retain only 16. 

Assuming that the most significant transitions of the signal occur in the 
base interval defined by n going from - 7 to 8, we may write approximately 

X(W) = i xne-jmnTs. 
-7 

(94 

More precisely, if X’(w) denotes the DFT of the truncated data, we may 
write 

X’(W) = i xne-j~nTs 
-7 

(9% 

= g xnZ,6(n)e-jWnTs 
--(I 

(96) 

where Z&r) is a function that is equal to 1 for n between - 7 and 8, and zero 
outside. By the convolution theorem 

XYw)=~ X(w) * A(w) (97) 
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where 

(98) A(& e-jwnTs 

-7 

. oNTs sin - 
= e-j4 73 2 

w Ts 
(99) 

sin - 
2 

with N = 16. This function is displayed in Fig. 2.14, and illustrates the 
nature of distortion introduced by data truncation, 

2.2 Image Processing 

Fig. 2.14: Truncating a sequence 
of data is equivalent to 
multiplying it by a rectangular 
window. The result in the 
frequency domain is to convolve 
the Fourier transform of the 
signal with the window shown 
above. 

The signal processing concepts described in the first half of this chapter are 
easily extended to two dimensions. As was done before, we will describe how 
to represent an image with delta functions, linear operations on images and 
the use of the Fourier transform. 

2.2.1 Point Sources and Delta Functions 

Let 0 be an operation that takes pictures into pictures; given the input 
picture f, the result of applying 0 to f is denoted by O[f]. Like the l- 
dimensional case discussed earlier in this chapter, we call 0 linear if 

O[af+ bg] = aO[fj + bO[g] (100) 

for all pictures, f, g and all constants a, b. 
In the analysis of linear operations on pictures, the concept of a point 
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source is very convenient. If any arbitrary picture f could be considered to be 
a sum of point sources, then a knowledge of the operation’s output for a point 
source input could be used to determine the output for f. Whereas for one- 
dimensional signal processing the response due to a point source input is 
called the impulse response, in image processing it is usually referred to as 
the point spread function of 0. If in addition the point spread function is not 
dependent on the location of the point source input then the operation is said 
to be space invariant. 

A point source can be regarded as the limit of a sequence of pictures whose 
nonzero values become more and more concentrated spatially. Note that in 
order for the total brightness to be the same for each of these pictures, their 
nonzero values must get larger and larger. As an example of such a sequence 
of pictures, let 

rect (x, y) = 1 for Ix[s~ and 1~~15; 
(101) 

0 elsewhere 

(see Fig. 2.15) and let 

&(x, y) =n2 rect (nx, ny), n=l, 2, *-* . (102) 

Thus 6, is zero outside the l/n x I/n square described by 1x1 I 1/2n, ( y 1 
I 1/2n and has constant value n2 inside that square. It follows that 

m 

JJ 6,(x, y) dx dy= 1 (103) 
Fig. 2.15: As in the -m 
one-dimensional case, the delta 
function (6) is defined as the limit for any n. 
of the rectangle function shown As n -+ CQ, the sequence 6, does not have a limit in the usual sense, but it is 
here. convenient to treat it as though its limit existed. This limit, denoted by 6, is 
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called a Dirac delta function. Evidently, we have 6(x, y) = 0 for all (x, y) 
other than (0, 0) where it is infinite. It follows that 6(-x, -y) = 6(x, y). 

A number of the properties of the one-dimensional delta function described 
earlier extend easily to the two-dimensional case. For example, in light of 
(103), we can write 

m 
ss 6(x, y) dx dy= 1. (104) 
-c4 

More generally, consider the integral Jr, j “, g(x, y)&(x, y) dx dy. This 
is just the average of g(x, y) over a l/n x l/n square centered at the origin. 
Thus in the limit we retain just the value at the origin itself, so that we can 
conclude that the area under the delta function is one and write 

00 

JJ gk YMX, Y) dx dy=g(O, Oh (105) -m 
If we shift 6 by the amount ((Y, fl), i.e., we use 6(x - (Y, y - 0) instead of 

6(x, y), we similarly obtain the value of g at the point ((Y, P), i.e., 

m 

JS g(x, y)&(x-a, y-0) dx dy=g(cr, P). (106) 
-m 

The same is true for any region of integration containing (CX, 0). Equation 
(106) is called the “sifting” property of the 6 function. 

As a final useful property of 6, we have 

m 

SJ exp [ -j2n(ux+ uy)] du du=6(x, y). 
-ca 

(107) 

For a discussion of this property, see Papoulis [Pap62]. 

2.2.2 Linear Shift Invariant Operations 

Again let us consider a linear operation on images. The point spread 
function, which is the output image for an input point source at the origin of 
the xy-plane, is denoted by h(x, y). 

A linear operation is said to be shift invariant (or space invariant, or 
position invariant) if the response to 6(x - CY, y - ,8), which is a point source 
located at (CY, /3) in the xy-plane, is given by h(x - CX, y - /3). In other 
words, the output is merely shifted by 01 and 8 in the x and y directions, 
respectively. 
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Now let us consider an arbitrary input picture f (x, y). By (106) this picture 
can be considered to be a linear sum of point sources. We can write f (x, y) as 

f(x, Y)= Jy, J,=,m .m(a-x, P-Y) da do. (108) 
In other words, the image f (x, y) is a linear sum of point sources located at 
(a, 0) in the xy-plane with (Y and p ranging from - 03 to + 00. In this sum the 
point source at a particular value of (a, 0) has “strength” f (a, 0). Let the 
response of the operation to the input f (x, y) be denoted by O[f 1. If we 
assume the operation to be shift invariant, then by the interpretation just given 
to the right-hand side of (108), we obtain 

omx, Y)I=O Jm J=’ f(a, PYG-xx, P-Y) da do [ 1 -m -co (10% 
= JJ f(a, P)O[Wa-x, P-r)1 da dL-3 (110) 

by the linearity of the operation, which means that the response to a sum of 
excitations is equal to the sum of responses to each excitation. As stated 
earlier, the response to 6(a - x, fl - y) [=6(x - (II, y - @)I, which is a 
point source located at (CY, P), is given by h(x - CX, y - 0) and if O[f] is 
denoted by g, we obtain 

gk Y)= SW s’* f(w P)h(x-au, Y -PI da do. -cv --m (111) 

The right-hand side is called the convolution off and h, and is often denoted 
by f * h. The integrand is a product of two functions f (a, 0) and h(a, @) with 
the latter rotated about the origin by 180’ and shifted by x and y along the x 
and y directions, respectively. A simple change of variables shows that (111) 
can also be written as 

g(x, Y)= s’“, J;p-a, y--PM(~, PI da d@ (112) 

sothatf * h = h *f. 
Fig. 2.16 shows the effect of a simple blurring operation on two different 

images. In this case the point response, h, is given by 

h(x, Y)= ; 
~‘+y~<O.25~ 
elsewhere. (113) 

As can be seen in Fig. 2.16 one effect of this convolution is to smooth out the 
edges of each image. 
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2.2.3 Fourier Analysis 

Representing two-dimensional images in the Fourier domain is as useful as 
it is in the one-dimensional case. Let f (x, y) be a function of two independent 
variables x and y; then its Fourier transform F(u, u) is defined by 

F(u, II)= IT, I;- f(x, y)e-j2r(ur+vr) dx dy. (114) 

In the definition of the one- and two-dimensional Fourier transforms we 
have used slightly different notations. Equation (26) represents the frequency 
in terms of radians per unit length while the above equation represents 
frequency in terms of cycles per unit length. The two forms are identical 
except for a scaling and either form can be converted to the other using the 
relation 

f=u=u=2ao. (115) 

By splitting the exponential into two halves it is easy to see that the two- 
dimensional Fourier transform can be considered as two one-dimensional 
transforms; first with respect to x and then y 

F(~, u)= JT, e-j2ruy dy Jy, f(x, y)e-j2ru dx. (116) 

In general, F is a complex-valued function of u and u. As an example, let f (x, 
y) = rect (x, y). Carrying out the integration indicated in (114) we find 

F(u, u)= J”‘,, J”‘,, e-j2r(u+uH dx dy (117) 

sin 7ru 
s 

l/2 

=- -,,2 e- 
j2w dy 

?TU 
(118) 

sin *u sin m =--* (119) 
Tl.4 ?TU 

This last function is usually denoted by sine (u, u) and is illustrated in Fig. 
2.17. More generally, using the change of variables x’ = IW and y ’ = ny, it 
is easy to show that the Fourier transform of rect (nx, ny) is 

(l/n2) sine (u/n, u/n). (120) 

Given the definition of the Dirac delta function as a limit of a sequence of 
the functions n2 rect (nx, ny); by the arguments in Section 2.1.3, the Fourier 
transform of the Dirac delta function is the limit of the sequence of Fourier 
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Fig. 2.17: The two-dimensional transforms sine (u/n, u/n). In other words, when 
Fourier transform of the 
rectangle function is shown here. fk Y)=w> Y) (121) 

then 

F(u, u)=lim sine (u/n, u/n)=l. (122) n-m 

The inverse Fourier transform of F(u, u) is found by multiplying both sides 
of (114) by ej2r(U+ufl) and integrating with respect to u and u to find 

m cu J J F(u, u) exp [-j2?r(ux+u@)] du du -co -co 

=J:, J:, J:, J:+ y) ej2r(ua+ @

)ej2~

W+ 

d) du du & dy (123) 

=J:, J:, J:, J:, f(x, y)e-j2*[U(x-~)+"(Y-B)1 du du & dye (124) 

Making use of (107) it is easily shown that 

m m S J F(u, u) exp [j2a(ux+u@)J du du -ca -m m m = J S f(x, Y)~(x-w Y-P) dx dy (125) 

=f(Z s,- (126) 

or equivalently 

m

, 

n=J- Jm F(u, u) exp li27r(ux+uy)] du du. (127) -m -co 
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This integral is called the inverse Fourier transform of F(u, u). By (114) 
and (127), f(x, y) and F(u, u) form a Fourier transform pair. 

If x and y represent spatial coordinates, (127) can be used to give a physical 
interpretation to the Fourier transform F(u, u) and to the coordinates u and u. 
Let us first examine the function 

&2r(u+ UY) (128) 

The real and imaginary parts of this function are cos 27r(ux + uy) and sin 
2n(ux + uy), respectively. In Fig. 2.18(a), we have shown cos 27r(ux + 
uy). It is clear that if one took a section of this two-dimensional pattern 
parallel to the x-axis, it goes through u cycles per unit distance, while a 
section parallel to the y-axis goes through u cycles per unit distance. This is 
the reason why u and u are called the spatial frequencies along the x- and y- 
axes, respectively. Also, from the figure it can be seen that the spatial period 
of the pattern is (u2 + u2)- i12. The plot for sin 2n(ux + uy) looks similar to 
the one in Fig. 2.18(a) except that it is displaced by a quarter period in the 
direction of maximum rate of change. 

From the preceding discussion it is clear that ej2r@x+Uy) is a two- 
dimensional pattern, the sections of which, parallel to the x- and y-axes, are 
spatially periodic with frequencies u and u, respectively. The pattern itself 
has a spatial period of (u2 + u2)- 1’2 along a direction that subtends an angle 
tan-’ (u/u) with the x-axis. By changing u and u, one can generate patterns 
with spatial periods ranging from 0 to’ 00 in any direction in the xy-plane. 

Equation (127) can, therefore, be interpreted to mean thatf(x, y) is a linear 
combination of elementary periodic patterns of the form ej2*(Ux+UJ’). 
Evidently, the function, F(u, u), is simply a weighting factor that is a 
measure of the relative contribution of the elementary pattern to the total sum. 
Since u and u are the spatial frequency of the pattern in the x and y directions, 
F(u, u) is called the frequency spectrum of f(x, y). 

2.2.4 Properties of Fourier Transforms 

Several properties of the two-dimensional Fourier transform follow easily 
from the defining integrals equation. Let F(f) denote the Fourier transform 
of a function f(x, y). Then F{f(x, y)} = F(u, u). We will now present 
without proof some of the more common properties of Fourier transforms. 
The proofs are, for the most part, left for the reader (see the books by 
Goodman [Go0681 and Papoulis [Pap62]). 

I) Linearity: 

Fiafdx, Y) + WAX, Y>> = aF{fdx, Y>> + bFLMx, Y>> (129) 

=aF,(u, u)+bF2(u, u). (130) 

This follows from the linearity of the integration operation. 
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Fig. 2.18: The Fourier 
transform represents an image in 

2) Scaling: 
terms of exponentials of the form 
e*2r(ux+uy). Here we have shown 
the real (cosine) and the FLf (ax, (131) 
imaginary (sine) parts of one such 
exponential. To see this, introduce the change of variables x

’ 

= CXX, y

’ 

= fly. This 
property is illustrated in Fig. 2.19. 

3) Shift Property: 

F{f(x-a, y-&}=F(u, u)e-j2*(uu+u~). (132) 
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Fig. 2.19: Scaling the size of an This too follows immediately if we make the change of variables x

’ 

= x - 
image leads to compression and 
amplification in the Fourier a, Y

’ 

= y - 0. The corresponding property for a shift in the frequency 
domain. domain is 

F {exp W7du0x+ v~u)lf(x, Y>> =F(u - UO, u - ~0). (133) 

4) Rotation by Any Angle: In polar coordinates we can write 

FW, fO> =Fh, 4). (134) 

If the function, f, is rotated by an angle CY then the following result follows 

F{f(r, 19+cx)}=F(w, d+a). (135) 

This property is illustrated in Fig. 2.20. 
5) Rotational Symmetry: If f(x, y) is a circularly symmetric function, 

i.e., f(r, 0) is only a function of r, then its frequency spectrum is also 
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Fig. 2.20: Rotation of an object circularly symmetric and is given by 
by 30

” 

leads to a similar rotation 
in the Fourier transform of the 
image. F(u, U) = F(p) = 2~ 1: rf(r)Jo(2rrp) dr. (136) 

The inverse relationship is given by 

f (4 = 2n 1, pF@) JdWp) dp (137) 

where 

r=m, O=tan-

’ 

(y/x), p=GT7, +=tan-

’ 

(u/U) (138) 

and 

Jo(x) = (1/27r) j: exp [ -jx cos (6 - 4)1 de (139) 
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is the zero-order Bessel function of the first kind. The transformation in (136) 
is also called the Hankel transform of zero order. 

6) 180” Rotation: 

F{FU-(x, Y)I) =f(-x, -Y). 

7) Convolution: 

- - F 
Is 1 

fib, PMx-a, Y-P) da d0 -co -m 

=F{fdx, Y>> F{h(x, Y>> 

(140) 

=Fdu, u)Fz(u, u). (142) 

Note that the convolution of two functions in the space domain is equivalent 
to the very simple operation of multiplication in the spatial frequency domain. 
The corresponding property for convolution in the spatial frequency domain 
is given by 

F{fLx, YUXX, Y>> = (-1 Fdu -s, u- t)Ms, 0 ds dt. (143) 
-m 

A useful example of this property is shown in Figs. 2.21 and 2.22. By the 
Fourier convolution theorem we have chosen a frequency domain function, 
H, such that all frequencies above Q cycles per picture are zero. In the space 
domain the convolution of x and h is a simple linear filter while in the 
frequency domain it is easy to see that all frequency components above s1 
cycles/picture have been eliminated. 

8) Parseval’s Theorem: 

l"", j;,fd% J')f;(x, Y) dx dy= j;, s'", FLU, u)F:(u, u) du dy 

(144 

where the asterisk denotes the complex conjugate. Whenfi(x, y) = f2(x, y) 
= f(x, y), we have 

I=-, {;- If@, y)12 dx dy= j;, [-+ IF@, u)12 du du. (145) 

In this form, this property is interpretable as a statement of conservation of 
energy. 
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Fig. 2.21: An ideal low pass filter is implemented by multiplying the Fourier transform of an object by a circular window. 
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Fig. 2.22: An ideal low pass filter is implemented by multiplying the Fourier transform of an object by a circular window. 
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2.2.5 The Two-Dimensional Finite Fourier Transform 

Letf(m, n) be a sampled version of a continuous two-dimensional function 
f. The finite Fourier transform (FFT) is defined as the summation2 

F(u, u)=I&~~’ Ni f(m, n) exp 
m=O n=O 

[ -j2r( :+:)I (146) 

for u = 0, 1, 2, .* *, it4 - 1; u = 0, 1, 2, * * *, N - 1. 
The inverse FFT (IFFT) is given by the summation 

M-l N-l 
f(m, n)=x c F( u, u) exp [j27r(z+;)] (147) 

u=o r=O 

form = 0, 1, ***,M- l;n = 0, 1, ***,N- l.Itiseasytoverifythatthe 
summations represented by the FFT and IFFT are inverses by noting that 

F. exp [$ km] exp [T mn] = {: ii:. (148) 

This is the discrete version of (107). That the inverse FFT undoes the effect 
of the FFT is seen by substituting (43) into (147) for the inverse DFT to find 

f(m, n)=kNME’ Nz’ Mg’ Nz’f(m, n) 
u=o r=O m=O n=O 

* exp [ -j27r(z+s)] exp [j2r( ;+:)I . (149) 

The desired result is made apparent by rearranging the order of summation 
and using (148). 

In (146) the discrete Fourier transform F(u, u) is defined for u between 0 
and A4 - 1 and for u between 0 and N - 1. If, however, we use the same 
equation to evaluate F( k u, + u), we discover that the periodicity properties 

* To be consistent with the notation in the one-dimensional case, we should express the space 
and frequency domain arrays as fm,. and F,,.. However, we feel that for the two-dimensional 
case, the math looks a bit neater with the style chosen here, especially when one starts dealing 
with negative indices and other extensions. Also, note that the variables u and v are indices here, 
which is contrary to their usage in Section 2.2.3 where they represent continuously varying 
spatial frequencies. 
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of the exponential factor imply that 

F(u, -u)=F(u, N-u) 

F(-u, u)=F(M-u, u) 

F(-u, -u) = F(M- u, N- u). 

Similarly, using (147) we can show that 

(150) 

(151) 

(152) 

f(--m, n)=fW-m, n) (153) 

.f(m, -n)=f(m, N-n) (154) 

f(-m, -n) =f (M- m, N-n). (155) 

Another related consequence of the periodicity properties of the exponen- 
tial factors in (28) and (147) is that 

F(aM+ u, bN+ u)=F(u, u) and f(aM+m, bN+n)=f(m, n) (156) 

for a = 0, +l, +2, .*a, b = 0, +_l, k2, *.* . Therefore, wehavethe 
following conclusion: if a finite array of numbers f,,, and its Fourier 
transform F,,, are related by (28) and (147), then if it is desired to extend the 
definition off (m, n) and F(u, u) beyond the original domain as given by [0 
5 (m and u) I M - 11 and [0 I (n and u) I N - 11, this extension must 
be governed by (151), (154) and (156). In other words, the extensions are 
periodic repetitions of the arrays. 

It will now be shown that this periodicity has important consequences when 
we compute the convolution of two M x N arrays, f (m, n) and d(m, n), by 
multiplying their finite Fourier transforms, F(u, u) and D(u, u). The 
convolution of two arrays f (m, n) and d(m, n) is given by 

g(cx, fl)=kNMz’ Nz’ f(m, n)d(u-m, /3-n) 
m=O n=O 

(157) 

=kNy y f(a!-m, fl-n)d(m, n) 
m=O n=O 

(158) 

fora = 0, 1, ***,M- l,p = 0, 1, ***,N- 1,whereweinsistthatwhen 
the values off (m, n) and d(m, n) are required for indices outside the ranges 0 
smsM- landOsn<N- l,forwhichf(m,n)andd(m,n)are 
defined, then they should be obtained by the rules given in (151), (154) and 
(156). With this condition, the convolution previously defined becomes a 
circular or cyclic convolution. 

As in the l-dimensional case, the FFT of (157) can be written as the 
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product of the two Fourier transforms. By making use of (147), we obtain 

g(a, /3)=&NMg’ Ng’ f(m, n)d(cx-m, P-n) 
m=O n=O 

(159) 

expanding f and d in terms of their DFTs 

F(u, u) exp [j2*(:+:)]] 

* [y y D(w, z) exp [jhr((a-rn)$+y)]j (160) 
w=o z=o 

and then rearranging the summations 

=&y y y y k(U, u)D(w, z) exp [j2r(z+$)] 
u=o u=o w=o z=o 

* z: z: exp [j27rm(L “‘1 exp [j2n v]) . (161) 

Using the orthogonality relationship (148) we find 

M-l N-l 

= c c F(u, u)D(u, u) exp j27r 
u=o u=o 

[’ (;+$)I . (162) 

Thus we see that the convolution of the two-dimensional arrays f and d can be 
expressed as a simple multiplication in the frequency domain. 

The discrete version of Parseval’s theorem is an often used property of the 
finite Fourier transform. In the continuous case this theorem is given by (144) 
while for the discrete case 

M-I N-l M-l N-l 

c c f(m, n)g*(m, n)=MN z c F(u, u)G*(u, u). (163) 
m=O n=O u=o u=o 

The following relationship directly follows from (163): 

M-l N-l M-l N-l 

-c c If(m, n)J2=MN C C IF(u, u)l’. 
m=O n=O u=o n=O 

As in the one-dimensional and the continuous two-dimensional cases 
Parseval’s theorem states that the energy in the space domain and that in the 
frequency domain are equal. 
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As in a one-dimensional case, a two-dimensional image must be sampled at 
a rate greater than the Nyquist frequency to prevent errors due to aliasing. 
For a moment, going back to the interpretation of u and u as continuous 
frequencies (see Section 2.2.3), if the Fourier transform of the image is zero 
for all frequencies greater than B, meaning that F(u, u) = 0 for all u and u 
such that ]u] 2 B and I u( L B, then there will be no aliasing if samples of the 
image are taken on a rectangular grid with intervals of less than A. A pictorial 
representation of the effect of aliasing on two-dimensional images is shown in 
Fig. 2.23. Further discussion on aliasing in two-dimensional sampling can be 
found in [Ros82]. 

2.2.6 Numerical Implementation of the Two-Dimensional FFT 

Before we end this chapter, we would like to say a few words about the 
numerical implementation of the two-dimensional finite Fourier transform. 
Equation (28) may be written as 

F(u, u)=i$’ kNz’f(m, n) exp 
m=o [ n=O 

(-jsnu)] 

* exp (-j$mu) , 

u=o, ***, M-l, u=O, *.a, N-l. (165) 

The expression within the square brackets is the one-dimensional FFT of the 
mth row of the image, which may be implemented by using a standard FFT 
(fast Fourier transform) computer program (in most instances N is a power of 
2). Therefore, to compute F(u, u), we replace each row in the image by its 
one-dimensional FFT, and then perform the one-dimensional FFT of 
each column. 

Ordinarily, when a 2-D FFT is computed in the manner described above, 
the frequency domain origin will not be at the center of the array, which if 
displayed as such can lead to difficulty in interpretation. Note, for example, 
that in a 16 x 16 image the indices u = 15 and u = 0 correspond to a 
negative frequency of one cycle per image width. This can be seen by 
substituting u = 1 and u = 0 in the second equation in (151). To display the 
frequency domain origin at approximately the center of the array (a precise 
center does not exist when either M or N is an even number), the image data 
f (m, n) are first multiplied by ( - l)m+” and then the finite Fourier 
transformation is performed. To prove this, let us define a new arrayf’(m, n) 
as follows: 

f’(m, n)=f(m, n)(- l)m+n (166) 
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Fig. 2.23: The effect of aliasing 
in two-dimensional images is 
shown here. (This is often known 
as the Moire effect.) In (a) a 
high-frequency sinusoid is shown. 
In (b) this sinusoid is sampled at 
a rate much lower than the 
Nyquist rate and the sampled 
values are shown as black and 
white dots (gray is used to 
represent the area between the 
samples). Finally, in (c) the 
sampled data shown in (b) are 
low pass filtered at the Nyquist 
rate, Note that both the direction 
and frequency of the sinusoid 
have changed due to aliasing. 

and let F'(u, u) be its finite Fourier transform: 

F

’

(U, 

+$NM~

’ 

Nglf(m, n)(- I),+, 
m=O n=O 

* exp [-j&r (z+:)] . 

Rewriting this expression as 

F(u, v) =&-& Mz

’ 

Ns f(m, n) 
m=O n=O 

(167) 
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* exp j2?r c [ (M/2)m + (Av2)n 
- - 

- exp [-j2r(i+gj] 

II 
it is easy to show that 

W3) 

(169) 

F(u, u)=F u-t, u-g 
( > 

, 

u=o, 1, *mm, M-l; u=o, 1, *em, N-l. (170) 

Therefore, when the array F’(u, u) is displayed, the location at u = A412 and 
v = N/2 will contain F(0, 0). 

We have by no means discussed all the important properties of continuous, 
discrete and finite Fourier transforms; the reader is referred to the cited 
literature for further details. 
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3 Algorithms for Reconstruction 
with Nondiffracting Sources 

In this chapter we will deal with the mathematical basis of tomography with 
nondiffracting sources. We will show how one can go about recovering the 
image of the cross section of an object from the projection data. In ideal 
situations, projections are a set of measurements of the integrated values of 
some parameter of the object-integrations being along straight lines through 
the object and being referred to as line integrals. We will show that the key to 
tomographic imaging is the Fourier Slice Theorem which relates the 
measured projection data to the two-dimensional Fourier transform of the 
object cross section. 

This chapter will start with the definition of line integrals and how they are 
combined to form projections of an object. By finding the Fourier transform 
of a projection taken along parallel lines, we will then derive the Fourier Slice 
Theorem. The reconstruction algorithm used depends on the type of 
projection data measured; we will discuss algorithms based on parallel beam 
projection data and two types of fan beam data. 

3.1 Line Integrals and Projections 

A line integral, as the name implies, represents the integral of some 
parameter of the object along a line. In this chapter we will not concern 
ourselves with the physical phenomena that generate line integrals, but a 
typical example is the attenuation of x-rays as they propagate through 
biological tissue. In this case the object is modeled as a two-dimensional (or 
three-dimensional) distribution of the x-ray attenuation constant and a line 
integral represents the total attenuation suffered by a beam of x-rays as it 
travels in a straight line through the object. More details of this process and 
other examples will be presented in Chapter 4. 

We will use the coordinate system defined in Fig. 3.1 to describe line 
integrals and projections. In this example the object is represented by a two- 
dimensional function f(x, y) and each line integral by the (6, t) parameters. 

The equation of line AB in Fig. 3.1 is 

x cos 8+y sin O=t (1) 
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C’ 

x 

a 

Fig. 3.1: An object, f(x, y), 
and its projection, Pe(tl), are 
shown for an angle of 0. (From 
[Kak79J.) 

and we will use this relationship to define line integral PO(t) as 

P8W = s (8 r),ine J-(x* JJ) ds- 

Using a delta function, this can be rewritten as 

(2) 

PO(t) = srn jm f(x, y)6(x cos 0 +y sin 8 - t) dx dy. --oD -m (3) 

The function Pg(t) is known as the Radon transform of the functionf(x, y). 
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Pe (t) 
2 

4 x 

Fig. 3.2: Parallel projections are 
taken by measuring a set of 
parallel rays for a number of 
different angles. (From fRos82J.) 

A projection is formed by combining a set of line integrals. The simplest 
projection is a collection of parallel ray integrals as is given by PO(t) for a 
constant 8. This is known as a parallel projection and is shown in Fig. 3.2. It 
could be measured, for example, by moving an x-ray source and detector 
along parallel lines on opposite sides of an object. 

Another type of projection is possible if a single source is placed in a fixed 
position relative to a line of detectors. This is shown in Fig. 3.3 and is known 
as a fan beam projection because the line integrals are measured along fans. 

Most of the computer simulation results in this chapter will be shown for 
the image in Fig. 3.4. This is the well-known Shepp and Logan [She741 
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Fig. 3.3: A fan beam projection ‘ ‘head phantom, ’ ’ so called because of its use in testing the accuracy of 
is collected if all the rays meet in 
one location. (From [Ros82J.) 

reconstruction algorithms for their ability to reconstruct cross sections of the 
human head with x-ray tomography. (The human head is believed to place the 
greatest demands on the numerical accuracy and the freedom from artifacts of 
a reconstruction method.) The image in Fig. 3.4(a) is composed of 10 
ellipses, as illustrated in Fig. 3.4(b). The parameters of these ellipses are 
given in Table 3.1. 

A major advantage of using an image like that in Fig. 3.4(a) for computer 
simulation is that now one can write analytical expressions for the 
projections. Note that the projection of an image composed of a number of 
ellipses is simply the sum of the projections for each of the ellipses; this 
follows from the linearity of the Radon transform. We will now present 
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Fig. 3.4: The Shepp and Logan 
“

head 

phantom

” 

is shown in (a). 
Most of the computer simulated 
results in this chapter were 
generated using this phantom. 
The phantom is a superposition 
of 10 ellipses, each with a size 
and magnitude as shown in (b). 
(From (Ros82 J.) 
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(b) 

expressions for the projections of a single ellipse. Letf(x, y) be as shown in 
Fig. 3.5(a), i.e., 

x2 y2 
for A2 + 2 I 1 (inside the ellipse) 

(4) 
otherwise (outside the ellipse). 
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Fig. 3.5: (a) An analytic 
expression is shown for the 
projection of an ellipse. For 
computer simulations a projection 
can be generated by simply 
summing the projection of each 
individual ellipse. (b) Shown here 
is an ellipse with its center located 
at (x,, y,) and its major axis 
rotated by (Y. (From lRos82J.I 

‘r 
98\’ 

/ 

a’(6) = A2 cos*e + Bz sin*0 

t- 

f(X.Y) = P 
= 0 outside 
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Fig. 3.5: Continued. 

Table 3.1: Summary of parameters for tomography simulations. 

Center Major 
Coordinate Axis 

Minor 
Axis 

Rotation Refractive 
Angle Index 

(0, 0) 0.92 0.69 90 2.0 
(0, - 0.0184) 0.874 0.6624 90 - 0.98 

(0.22, 0) 0.31 0.11 72 - 0.02 
(-0.22, 0) 0.41 0.16 108 - 0.02 

(0, 0.35) 0.25 0.21 90 0.01 
(0, 0.1) 0.046 0.046 0 0.01 

(0, -0.1) 0.046 0.046 0 0.01 
(- 0.08, - 0.605) 0.046 0.023 0 0.01 

(0, - 0.605) 0.023 0.023 0 0.01 
(0.06, - 0.605) 0.046 0.023 90 0.01 
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It is easy to show that the projections of such a function are given by 

L 
ZpABJm 

P@(t) = a2(@ 
for ItI sa(e) 

(5) 
0 ltl>4e) 

where a2(0) = A 2 cos2 0 + B2 sin2 8. Note that a(0) is equal to the projection 
half-width as shown in Fig. 3.5(a). 

Now consider the ellipse described above centered at (xi, yl) and rotated 
by an angle Q! as shown in Fig. 3.5(b). Let P’(e, t) be the resulting 
projections. They are related to PO(t) in (5) by 

P~(~)=P~-~(~-s cos +e)) 

where s = -and y = tan-’ (yi/x,). 

(6) 

3.2 The Fourier Slice Theorem 

We derive the Fourier Slice Theorem by taking the one-dimensional 
Fourier transform of a parallel projection and noting that it is equal to a slice 
of the two-dimensional Fourier transform of the original object. It follows 
that given the projection data, it should then be possible to estimate the object 
by simply performing a two-dimensional inverse Fourier transform. 

We start by defining the two-dimensional Fourier transform of the object 
function as 

F(u, u) = ST, ST, f(x, y)e-j2R(ux+uY) dx dy. (7) 

Likewise define a projection at an angle 8, PO(t), and its Fourier transform by 

So(w) = I’* P@(t)e-jzuwf dt. --m (8) 

The simplest example of the Fourier Slice Theorem is given for a 
projection at 8 = 0. First, consider the Fourier transform of the object along 
the line in the frequency domain given by u = 0. The Fourier transform 
integral now simplifies to 

F(u, 0)= SW Srn f(x, y)e-j2rux dx dy (9) --m -ca 

but because the phase factor is no longer dependent on y we can split the 
integral into two parts, 

F(u, 0)= jy, [ j:, f(x, y) dy 1 e-j2rux dx. (10) 
From the definition of a parallel projection, the reader will recognize the term 
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in brackets as the equation for a projection along lines of constant x or 

&o(x) = y- .I-(.% Y) dY* (11) 
-m 

Substituting this in (10) we find 

F(u, 0) = I:, Pe=o(x)e-j2*ux dx. (12) 

The right-hand side of this equation represents the one-dimensional Fourier 
transform of the projection PO=,; thus we have the following relationship 
between the vertical projection and the 2-D transform of the object function: 

F(u, 0) = Se=o(u). (13) 
This is the simplest form of the Fourier Slice Theorem. Clearly this result 

is independent of the orientation between the object and the coordinate 
system. If, for example, as shown in Fig. 3.6 the (t, s) coordinate system is 
rotated by an angle 8, the Fourier transform of the projection defined in (11) 
is equal to the two-dimensional Fourier transform of the object along a line 
rotated by 19. This leads to the Fourier Slice Theorem which is stated as 
[Kak85] : 

Fig. 3.6: The Fourier Slice 
Theorem relates the Fourier 
transform of a projection to the 
Fourier transform of the object 
along a radial line. (From 
[Pan83].) 

The Fourier transform of a parallel projection of an imagef(x, y) 
taken at angle 19 gives a slice of the two-dimensional transform, 
F(u, u), subtending an angle 0 with the u-axis. In other words, 
the Fourier transform of PO(t) gives the values of F(u, u) along 
line BB in Fig. 3.6. 

Fourier transform 
Y 
A 

space domain frequency domain 
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The derivation of the Fourier Slice Theorem can be placed on a more solid 
foundation by considering the (t, s) coordinate system to be a rotated version 
of the original (x, y) system as expressed by 

(14) 

In the (t, s) coordinate system a projection along lines of constant t is written 

(15) 

and from (8) its Fourier transform is given by 

Se(w) = SW Pe(t)e-jzrwt dt. -m (8) 

Substituting the definition of a projection into the above equation we find 

Se(w)= SW -0a [f(t, s) ds] e-j2*wf dt. (16) 

This result can be transformed into the (x, y) coordinate system by using the 
relationships in (14), the result being 

(17) 

The right-hand side of this equation now represents the two-dimensional 
Fourier transform at a spatial frequency of (U = w cos 19, u = w sin 0) or 

&(w)=F(w, e)=F(w cos 8, w sin e). (18) 
This equation is the essence of straight ray tomography and proves the 
Fourier Slice Theorem. 

The above result indicates that by taking the projections of an object 
function at angles el, e2, . * *, ek and Fourier transforming each of these, we 
can determine the values of F(u, u) on radial lines as shown in Fig. 3.6. If an 
infinite number of projections are taken, then F(u, u) would be known at all 
points in the uu-plane. Knowing F(u, u), the object function f(x, y) can be 
recovered by using the inverse Fourier transform: 

F(u, u)ej2r(wi+uJ’) du du. (19) 

If the function f(x, y) is bounded by - A/2 < x < A/2 and - A/2 < y < 
A/2, for the purpose of computation (19) can be written as 

f(x, y)=$ c c F (a , !!) @“((m’A)x+(n/A)Y) 
” n 

(20) 

58 COMPUTERIZED TOMOGRAPHIC IMAGING 



for 

Fig. 3.7: Collecting projections 
of the object at a number of 
angles gives estimates of the 
Fourier transform of the object 
along radial lines. Since an FFT 
algorithm is used for 
transforming the data, the dots 
represent the actual location of 
estimates of the object’s Fourier 
transform. (From [Pan83/.) 

A A A A 
-z<x<-2 and -z<y<z. (21) 

Since in practice only a finite number of Fourier components will be known, 
we can write 

f(,y, y)--$ 5 5 F (z , a> @“((“/A)X+(n/A)Y) (22) 
“=-N/2 n= -N/2 

for 

A A A A 
-2<x<-2 and-2<y<y (23) 

where we arbitrarily assume N to be an even integer. It is clear that the spatial 
resolution in the reconstructed picture is determined by N. Equation (22) can 
be rapidly implemented by using the fast Fourier transform (FFT) algorithm 
provided the N2 Fourier coefficients F(m/A, n/A) are known. 

In practice only a finite number of projections of an object can be taken. In 
that case it is clear that the function F(u, V) is only known along a finite 
number of radial lines such as in Fig. 3.7. In order to be able to use (22) one 
must then interpolate from these radial points to the points on a square grid. 
Theoretically, one can exactly determine the N2 coefficients required in (22) 
provided as many values of the function F(u, u) are known on some radial 
lines [Cro70]. This calculation involves solving a large set of simultaneous 
equations often leading to unstable solutions. It is more common to determine 
the values on the square grid by some kind of nearest neighbor or linear 
interpolation from the radial points. Since the density of the radial points 
becomes sparser as one gets farther away from the center, the interpolation 
error also becomes larger. This implies that there is greater error in the 

Y 
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calculation of the high frequency components in an image than in the low 
frequency ones, which results in some image degradation. 

3.3 Reconstruction Algorithms for Parallel Projections 

The Fourier Slice Theorem relates the Fourier transform of a projection to 
the Fourier transform of the object along a single radial. Thus given the 
Fourier transform of a projection at enough angles the projections could be 
assembled into a complete estimate of the two-dimensional transform and 
then simply inverted to arrive at an estimate of the object. While this provides 
a simple conceptual model of tomography, practical implementations require 
a different approach. 

The algorithm that is currently being used in almost all applications of 
straight ray tomography is the filtered backprojection algorithm. It has been 
shown to be extremely accurate and amenable to fast implementation and will 
be derived by using the Fourier Slice Theorem. This theorem is brought into 
play by rewriting the inverse Fourier transform in polar coordinates and 
rearranging the limits of the integration therein. The derivation of this 
algorithm is perhaps one of the most illustrative examples of how we can 
obtain a radically different computer implementation by simply rewrit- 
ing the fundamental expressions for the underlying theory. 

In this chapter, derivations and implementation details will be presented for 
the backprojection algorithms for three types of scanning geometries, parallel 
beam, equiangular fan beam, and equispaced fan beam. The computer 
implementation of these algorithms requires the projection data to be sampled 
and then filtered. Using FFT algorithms we will show algorithms for fast 
computer implementation. Before launching into the mathematical deriva- 
tions of the algorithms, we will first provide a bit of intuitive rationale behind 
the filtered backprojection type of approach. If the reader finds this 
presentation excessively wordy, he or she may go directly to Section 3.3.2. 

3.3.1 The Idea 

The filtered backprojection algorithm can be given a rather straightforward 
intuitive rationale because each projection represents a nearly independent 
measurement of the object. This isn’t obvious in the space domain but if the 
Fourier transform is found of the projection at each angle then it follows 
easily by the Fourier Slice Theorem. We say that the projections are nearly 
independent (in a loose intuitive sense) because the only common information 
in the Fourier transforms of the two projections at different angles is the dc 
term. 

To develop the idea behind the filtered backprojection algorithm, we note 
that because of the Fourier Slice Theorem the act of measuring a projection 
can be seen as performing a two-dimensional filtering operation. Consider a 
single projection and its Fourier transform. By the Fourier Slice Theorem, 
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Fig. 3.8: This figure shows the 
frequency domain data available 
from one projection. (a) is the 
ideal situation. A reconstruction 
could be formed by simply 
summing the reconstruction from 
each angle until the entire 
frequency domain is filled. What 
is actually measured is shown in 
(b). As predicted by the Fourier 
Slice Theorem, a projection gives 
information about the Fourier 
transform of the object along a 
single line. The filtered 
backprojection algorithm takes 
the data in (b) and applies a 
weighting in the frequency 
domain so that the data in (c) are 
an approximation to those in (a). 

this projection gives the values of the object’s two-dimensional Fourier 
transform along a single line. If the values of the Fourier transform of this 
projection are inserted into their proper place in the object’s two-dimensional 
Fourier domain then a simple (albeit very distorted) reconstruction can be 
formed by assuming the other projections to be zero and finding the two- 
dimensional inverse Fourier transform. The point of this exercise is to show 
that me reconstruction so formed is equivalent to the original object’s Fourier 
transform multiplied by the simple filter shown in Fig. 3.8(b). 

What we really want from a simple reconstruction procedure is the sum of 
projections of the object filtered by pie-shaped wedges as shown in Fig. 
3.8(a). It is important to remember that this summation can be done in either 
the Fourier domain or in the space domain because of the linearity of the 
Fourier transform. As will be seen later, when the summation is carried out in 
the space domain, this constitutes the backprojection process. 

As the name implies, there are two steps to the filtered backprojection 
algorithm: the filtering part, which can be visualized as a simple weighting of 
each projection in the frequency domain, and the backprojection part, which 
is equivalent to finding the elemental reconstructions corresponding to each 
wedge filter mentioned above. 

The first step mentioned above accomplishes the following: A simple 
weighting in the frequency domain is used to take each projection and 
estimate a pie-shaped wedge of the object’s Fourier transform. Perhaps the 
simplest way to do this is to take the value of the Fourier transform of the 
projection, Se(w), and multiply it by the width of the wedge at that frequency. 
Thus if there are K projections over 180” then at a given frequency w, each 
wedge has a width of 274 w 1 /K. Later when we derive the theory more 
rigorously, we will see that this factor of 1 WI represents the Jacobian for a 
change of variable between polar coordinates and the rectangular coordinates 
needed for the inverse Fourier transform. 

The effect of this weighting by 274 w 1 /K is shown in Fig. 3.8(c). 
Comparing this to that shown in (a) we see that at each spatial frequency, w, 
the weighted projection, (274 WI /K&(w), has the same “mass” as the pie- 
shaped wedge. Thus the weighted projections represent an approximation to 
the pie-shaped wedge but the error can be made as small as desired by using 
enough projections. 

The final reconstruction is found by adding together the two-dimensional 
inverse Fourier transform of each weighted projection. Because each 

ALGORITHMS FOR RECONSTRUCTION WITH NONDIFFRACTING SOURCES 61 



projection only gives the values of the Fourier transform along a single line, 
this inversion can be performed very fast. This step is commonly called a 
backprojection since, as we will show in the next section, it can be perceived 
as the smearing of each filtered projection over the image plane. 

The complete filtered backprojection algorithm can therefore be written as: 

Sum for each of the K angles, 19, between 0 and 180” 
Measure the projection, P@(t) 
Fourier transform it to find So(w) 
Multiply it by the weighting function 27~1 WI /K 
Sum over the image plane the inverse Fourier transforms of the 

filtered projections (the backprojection process). 

There are two advantages to the filtered backprojection algorithm over a 
frequency domain interpolation scheme. Most importantly, the reconstruction 
procedure can be started as soon as the first projection has been measured. 
This can speed up the reconstruction procedure and reduce the amount of data 
that must be stored at any one time. To appreciate the second advantage, the 
reader must note (this will become clearer in the next subsection) that in the 
filtered backprojection algorithm, when we compute the contribution of each 
filtered projection to an image point, interpolation is often necessary; it turns 
out that it is usually more accurate to carry out interpolation in the space 
domain, as part of the backprojection or smearing process, than in the 
frequency domain. Simple linear interpolation is often adequate for the 
backprojection algorithm while more complicated approaches are needed for 

Fig. 3.9: A projection of an direct Fourier domain interpolation [%a8 11. 
ellipse is shown in (a). (b) shows In Fig. 3.9(a) we show the projection of an ellipse as calculated by (5). To 
the projection after it has been 
filtered in preparation for 
backprojection. 

perform a reconstruction it is necessary to filter the projection and then 
backproject the result as shown in Fig. 3.9(b). The result due to backproject- 

0 
(b) (a) 
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Fig. 3.10: The result of 
backprojecting the projection in 
Fig. 3.9 is shown here. (a) shows 
the result of backprojecting for a 
single angle, (b) shows the effect 
of backprojecting over 4 angles, 
(c) shows 64 angles, and (d) 
shows 512 angles. 

ing one projection is shown in Fig. 3.10. It takes many projections to 
accurately reconstruct an object; Fig. 3.10 shows the result of reconstructing 
an object with up to 512 projections. 

3.3.2 Theory 

We will first present the backprojection algorithm for parallel beam 
projections. Recalling the formula for the inverse Fourier transform, the 
object function, f(x, y), can be expressed as 

fk U)

’ 

jm j- F(u, u)~~~*(~~+Q

’

) 

du dv. -m -m 
Exchanging the rectangular coordinate system in the frequency domain, (u, 
u), for a polar coordinate system, (w, e), by making the substitutions 

u=wcose (25) 
u = w sin fl (26) 

and then changing the differentials by using 

dudv=wdwdt

’ 

(27) 
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we can write the inverse Fourier transform of a polar function as 

f(x, y)= jr jr F(w, e)ej2sw(~cose+J’sin QW dw de. (28) 

This integral can be split into two by considering 0 from 0” to 180” and then 
from 180” to 360”, 

f(x, y) = ji jr F(w, e)e~2rw(xcose+~sine)~ dw de 

T m 
+ 

s s 
F( w, 6 + 18()“)ej2mw[x cm (B+ 180°)+y sin (B+ 1800)] w dw de , 

0 0 

(29) 
and then using the property 

F(w, 8+18o”)=F(-W,8) (30) 
the above expression forf(x, y) may be written as 

f(x,y)= j, [iymF(w, O)Iwlej2rwr dw 1 de. (31) 

Here we have simplified the expression by setting 

t=x cos e+y sin e. (32) 
If we substitute the Fourier transform of the projection at angle 8, So(w), for 
the two-dimensional Fourier transform F(w, e), we get 

f(x, y)= 1: [I:, Se(w)IwIejZnWr dw 1 de. (33) 

This integral in (33) may be expressed as 

f(x, y) = j: Qe(x cos e +y sin 8) de (34) 

where 

Q&)= iy, Se(w)Iwlej2nwr dw. (35) 

This estimate of f(x, y), given the projection data transform So(w), has a 
simple form. Equation (35) represents a filtering operation, where the 
frequency response of the filter is given by 1 w I ; therefore Qs (w) is called a 
“filtered projection.” The resulting projections for different angles 8 are then 
added to form the estimate of f(x, y). 

Equation (34) calls for each filtered projection, Qe, to be “backpro- 
jetted. ” This can be explained as follows. To every point (x, y) in the image 
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plane there corresponds a value of t = x cos 8 + y sin 0 for a given value of 
8, and the filtered projection Qs contributes to the reconstruction its value at t 
( =x cos 8 + y sin 0). This is further illustrated in Fig. 3.11. It is easily 
shown that for the indicated angle 8, the value oft is the same for all (x, y) on 
the line LM. Therefore, the filtered projection, Qe, will make the same 
contribution to the reconstruction at all of these points. Therefore, one 
could say that in the reconstruction process each filtered projection, Qe, is 
smeared back, or backprojected, over the image plane. 

The parameter w has the dimension of spatial frequency. The integration in 
(35) must, in principle, be carried out over all spatial frequencies. In practice 
the energy contained in the Fourier transform components above a certain 
frequency is negligible, so for all practical purposes the projections may be 
considered to be bandlimited. If W is a frequency higher than the highest 
frequency component in each projection, then by the sampling theorem the 
projections can be sampled at intervals of 

Fig. 3.11: Reconstructions are 
often done using a procedure without introducing any error. If we also assume that the projection data are 
known as backprojection. Here a 
filtered projection is smeared 

equal to zero for large values of It ( then a projection can be represented as 
back over the reconstruction 
plane along lines of constant t. -N N 
The filtered projection at a point p&W, m=-, . . ..O. . ...--1 

2 2 (37) 
t makes the same contribution to 
all pixels along the line LM in the 
x-y plane. (From [Ros82].) for some (large) value of N. An FFT algorithm can then be used to 

t = (x cos Oi + y sin ei) 
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approximate the Fourier transform Se(w) of a projection by 

=A kTgI, Pe (A) e-j2r(mk’N). (38) 

Given the samples of a projection, (38) gives the samples of its Fourier 
transform. The next step is to evaluate the “modified projection” Qs(t) 
digitally. Since the Fourier transforms So(w) have been assumed to be 
bandlimited, (35) can be approximated by 

Q@(t)= jr, So(w)(w(ej2”‘+‘* dw (39) 

provided N is large enough. Again, if we want to determine the projections 
Q@(t) for only those t at which the projections P@(t) are sampled, we get 

k= -N/2, *a*, -1, 0, 1, .a., N/2. (42) 
By the above equation the function Qo(t) at the sampling points of the 
projection functions is given (approximately) by the inverse DFT of the 
product of &(m(2 W/N)) and (m(2 W/N)\. From the standpoint of noise in 
the reconstructed image, superior results are usually obtained if one 
multiplies the filtered projection, &(2 W/N)Im(2 W/N)( , by a function 
such as a Hamming window [Ham77]: 

. jm !!J H (m T) ej2*(mk/N) (43) 

where H(m(2 W/N)) represents the window function used. The purpose of 
the window function is to deemphasize high frequencies which in many cases 
represent mostly observation noise. By the familiar convolution theorem for 
the case of discrete transforms, (43) can be written as 

(44) 

where * denotes circular (periodic) convolution and where +(k/2 W) is the 
inverse DFT of the discrete function I m(2 W/N)IN(m(2 W/N)), m = 
-N/2, m-e, -1, 0, 1, .*., N/2. 
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Clearly at the sampling points of a projection, the function Qe(t) may be 
obtained either in the Fourier domain by using (40), or in the space domain by 
using (44). The reconstructed picture f (x, y) may then be obtained by the 
discrete approximation to the integral in (34), i.e., 

f&s Y)=c i Q&cos Bi+y sin ei) (45) 

where the K angles & are those for which the projections PO(t) are known. 
Note that the value of x cos Bi + y sin ei in (45) may not correspond to one 

of the values oft for which Qei is determined in (43) or in (44). However, Qei 
for such t may be approximated by suitable interpolation; often linear 
interpolation is adequate. 

Before concluding this subsection we would like to make two comments 
about the filtering operation in (35). First, note that (35) may be expressed in 
the t-domain as 

Qe(t) = 1 Pe(aU)P(t - a) da (46) 
where p(t) is nominally the inverse Fourier transform of the I w 1 function in 
the frequency domain. Since I WI is not a square integrable function, its 
inverse transform doesn’t exist in an ordinary sense. However, one may 
examine the inverse Fourier transform of 

1 wle-‘lwl (47) 
as e * 0. The inverse Fourier transform of this function, denoted by p,(t), is 
given by 

c2- (27rf)2 
pm = (E2 + (2?rt)2)2 * (48) 

This function is sketched in Fig. 3.12. Note that for large t we get p,(t) = 
- l/(27@. 

Now our second comment about the filtered projection in (35): This 
equation may also be written as 

QeW= j”“, j2rwSe(w) [ 2 sgn (w)] ej2*wt dw (49) 

where 

c 
1 

w(w)= -1 
for w>O 
for w<O. 

By the standard convolution theorem, this equation may be expressed as 

Qo(t)= {IFT of j2rwS0(w)} * {IFT of 2 sgn (w)} (51) 
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Fig. 3.12: An approximation to 
the impulse response of the ideal 
backprojection filter is shown 
here. (From [Ros82].) 

where the symbol * denotes convolution and the abbreviation IFT stands for 
inverse fast Fourier transform. The IFT of j2nwSO(w) is (W3t)P&) while 
the IFT of ( -j/24 sgn (w) is l/t. Therefore, the above result may be written 
as 

mw = Hilbert Transform of 7 
at 

(52) 

(53) 

where, expressed as a filtering operation, the Hilbert Transform is usually 
defined as the following frequency response: 

N(w)= -; 
c 

w>o 

, w<o. 

- 
68 COMPUTERIZED TOMOGRAPHIC IMAGING 



3.3.3 Computer Implementation of the Algorithm 

Let’s assume that the projection data are sampled with a sampling interval 
of r cm. If there is no aliasing, this implies that in the transform domain the 
projections don’t contain any energy outside the frequency interval (- W, 
W) where 

W= k cycles/cm. 

Let the sampled projections be represented by PB(/cr) where k takes integer 
values. The theory presented in the preceding subsection says that for each 
sampled projection PO(k7) we must generate a filtered Qe(k~) by using the 
periodic (circular) convolution given by (40). Equation (40) is very attractive 
since it directly conforms to the definition of the DFT and, if N is 
decomposable, possesses a fast FFT implementation. However, note that (40) 
is only valid when the projections are of finite bandwidth and finite order. 
Since these two assumptions (taken together) are never strictly satisfied, 
computer processing based on (40) usually leads to interperiod interference 
artifacts created when an aperiodic convolution (required by (35)) is 
implemented as a periodic convolution. This is illustrated in Fig. 3.13. Fig. 
3.13(a) shows a reconstruction of the Shepp and Logan head phantom from 
110 projections and 127 rays in each projection using (40) and (45). Equation 
(40) was implemented with a base 2 FFT algorithm using 128 points. Fig. 
3.13(b) shows the reconstructed values on the horizontal line for y = 
- 0.605. For comparison we have also shown the values on this line in the 
original object function. 

The comparison illustrated in Fig. 3.13(b) shows that reconstruction based 
on (42) and (45) introduces a slight “dishing” and a dc shift in the image. 
These artifacts are partly caused by the periodic convolution implied by (40) 
and partly by the fact that the implementations in (40) “zero out” all the 
information in the continuous frequency domain in the cell represented by m 
= 0, whereas the theory (eq. (35)) calls for such “zeroing out” to occur at 
only one frequency, viz. w = 0. The contribution to these artifacts by the 
interperiod interference can be eliminated by adequately zero-padding the 
projection data before using the implementations in (42) or (43). 

Zero-padding of the projections also reduces, but never completely 
eliminates, the contribution to the artifacts by the zeroing out of the 
information in the m = 0 cell in (40). This is because zero-padding in the 
space domain causes the cell size to get smaller in the frequency domain. (If 
N&r points are used for performing the discrete Fourier transform, the size 
of each sampling cell in the frequency domain is equal to l/ZVrrrr.) To 
illustrate the effect of zero-padding, the 127 rays in each projection in the 
preceding example were padded with 129 zeros to make the data string 256 
elements long. These data were transformed by an FFT algorithm and filtered 
with a 1 WI function as before. The y = -0.605 line through the 
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Fig. 3.13: (a) This 
reconstruction of the Shepp and 
Logan phantom shows the 
artifacts caused when the 
projection data are not 
adequately zero-padded and FFTs 
are used to perform the filtering 
operation in the filtered 
backprojection algorithm. The 
dark regions at the top and the 
bottom of the reconstruction are 
the most visible artifacts here. 
This 128 x 128 reconstruction 
was made from 110 projections 
with 127 rays in each projection. 
(b) A numerical comparison of 
the true and the reconstructed 
values on they = -0.605 line. 
(For the location of this line see 
Fig. 3.4.) The “‘

dishing

” 

and the 
dc shift artifacts are quite evident 
in this comparison. (c) Shown 
here are the reconstructed values 
obtained on they = -0.605 line 
if the 127 rays in each projection 
are zero-padded to 256 points 
before using the FFTs. The 
dishing caused by interperiod 
interference has disappeared; 
however, the dc shift still 
remains. (From [Ros82].) 
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Fig. 3.13: Continued. 
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(c) 

reconstruction is shown in Fig. 3.13(c), demonstrating that the dishing 
distortion is now less severe. 

We will now show that the artifacts mentioned above can be eliminated by 
the following alternative implementation of (35) which doesn’t require the 
approximation used in the discrete representation of (40). When the highest 
frequency in the projections is finite (as given by (55)), (35) may be 
expressed as 

where 

Qe(t)= I:, So(w)H(w)ejzTwf dw (56) 

H(w)= Iwlbw(w) (57) 

where, again, 
Iwl< w 
otherwise. (58) 

H(w), shown in Fig. 3.14, represents the transfer function of a filter with 
which the projections must be processed. The impulse response, h(t), of this 
filter is given by the inverse Fourier transform of H(w) and is 

h(t) = SW H(w)e+j2*wf dw -m 

1 sin 2?rt/2r 1 
=272 2*t/2r (60) 
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H(W) 

I 
-27 

Frequency (w) - 

I 
Ti 

Fig. 3.14: The ideal filter 
response for the filtered 
backprojection algorithm is 
shown here. It has been 
bandlimited to l/27. (From 
[Ros82 J.) 

where we have used (55). Since the projection data are measured with a 
sampling interval of 7, for digital processing the impulse response need only 
be known with the same sampling interval. The samples, h(nr), of h(t) are 
given by 

i 

l/472, n=O 
0, n even 

h(m) = (61) 
1 -- 

n21r2r2 ’ 
n odd. 

This function is shown in Fig. 3.15. 
Since both PO(t) and h(t) are now bandlimited functions, they may be 

expressed as 

sin 2n W(t - kr) 
MO= i pew) 2TW(t-k7) 

k=-m 
(62) 

(63) 

By the convolution theorem the filtered projection (56) can be written as 

Qe(t)= I- P&t’)h(t- t’) dt’. -02 w 
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Fig. 3.15: The impulse response Substituting (62) and (63) in (64) we get the following result for the values of 
of the filter shown in Fig. 3.14 is 
shown here. (From [Ros82J.) 

the filtered projection at the sampling points: 

Qe(m) = 7 2 h(m- b)P&). (65) 
k=-m 

In practice each projection is of only finite extent. Suppose that each P&T) is 
zero outside the index range k = 0, * * *, N - 1. We may now write the 
following two equivalent forms of (65): 

N-l 

Q@(m)=7 2 h(m-b)&(b), n=O, 1, 2, me*, N-l (66) 
k=O 

h(m) 

or 

N-l 

Q&W = 7 c h(kT)P&w-k7), n=O, 1, 2, .a*, N-l. (67) 
k=-(N-1) 
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0.00 ,613 1.23 1.64 2.45 

Fig. 3.16: The DFT of the 
bandlimited filter (broken line) 
and that of the ideal filter (solid 
line) are shown here. Notice the 
prihary difference is in the dc 
component. (From [Ros821.) 

These equations imply that in order to determine Q&T) the length of the 
sequence h(m) used should be from I = -(N - 1) to 1 = (N - 1). It is 
important to realize that the results obtained by using (66) or (67) aren’t 
identical to those obtained by using (42). This is because the discrete Fourier 
transform of the sequence h(m) with n taking values in a finite range [such as 
when n ranges from - (N - 1) to (N - l)] is not the sequence 1 k[(2 IV)/ 
N]]. While the latter sequence is zero at k = 0, the DFT of h(m) with n 
ranging from -(N - 1) to (N - 1) is nonzero at this point. This is 
illustrated in Fig. 3.16. 

The discrete convolution in (66) or (67) may be implemented directly on a 
general purpose computer. However, it is much faster to implement it in the 
frequency domain using FFT algorithms. [By using specially designed 
hardware, direct implementation of (66) can be made as fast or faster than the 
frequency domain implementation.] For the frequency domain implementa- 
tion one has to keep in mind the fact that one can now only perform periodic 
(or circular) convolutions, while the convolution required in (66) is aperiodic. 
To eliminate the interperiod interference artifacts inherent to periodic 
convolution, we pad the projection data with a sufficient number of zeros. It 
can easily be shown [Jak76] that if we pad Po(k7) with zeros so that it is (2N 
- 1) elements long, we avoid interperiod interference over the N samples of 
Qe(k7). Of course, if one wants to use the base 2 FFT algorithm, which is 
most often the case, the sequences Po(k7) and h(kT) have to be zero-padded 
so that each is (2N - 1)2 elements long, where (2N - 1)2 is the smallest 
integer that is a power of 2 and that is greater than 2N - 1. Therefore, the 
frequency domain implementation may be expressed as 

Q&m) = r x IFFT { [FFT P&u) with ZP] x [FFT h(m) with ZP]}, (68) 
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where FFT and IFFT denote, respectively, fast Fourier transform and inverse 
fast Fourier transform; ZP stands for zero-padding. One usually obtains 
superior reconstructions when some smoothing is also incorporated in (68). 
Smoothing may be implemented by multiplying the product of the two FFTs 
by a Hamming window. When such a window is incorporated, (68) may be 
rewritten as 

Q&v) = r x IFFT { [FFT P&m) with ZP] 

x [FFT h(m) with ZP] x smoothing - window}. (69 

After the filtered projections Qe(m) are calculated with the alternative 
method presented here, the rest of the implementation for reconstructing the 
image is the same as in the preceding subsection. That is, we use (45) for 
backprojections and their summation. Again for a given (x, y) and 8i the 
argument x cos 8i + y sin Bi may not correspond to one of the k7 at which Qei 
is known. This will call for interpolation and often linear interpolation is 
adequate. Sometimes, in order to eliminate the computations required for 
interpolation, preinterpolation of the functions Q@(t) is also used. In this 
technique, which can be combined with the computation in (69), prior to 
backprojection, the function Qs(t) is preinterpolated onto 10 to 1000 times 
the number of points in the projection data. From this dense set of points one 
simply retains the nearest neighbor to obtain the value of Qoi at x cos 8i + y 
sin &. A variety of techniques are available for preinterpolation [Sch73]. 

One method of preinterpolation, which combines it with the operations in 
(69), consists of the following: In (69), prior to performing the IFFT, the 
frequency domain function is padded with a large number of zeros. The 
inverse transform of this sequency yields the preinterpolated Qe. It was 
recently shown [Kea78] that if the data sequence contains “fractional” 
frequencies this approach may lead to large errors especially near the 
beginning and the end of the data sequence. Note that with preinterpolation 
and with appropriate programming, the backprojection for parallel projection 
data can be accomplished with virtually no multiplications. 

Using the implementation in (68), Fig. 3.17(b) shows the reconstructed 
values on the line y = - 0.605 for the Shepp and Logan head phantom. 
Comparing with Fig. 3.13(b), we see that the dc shift and the dishing have 
been eliminated. Fig. 3.17(a) shows the complete reconstruction. The 
number of rays used in each projection was 127 and the number of projections 
100. To make convolutions aperiodic, the projection data were padded with 
zeros to make each projection 256 elements long. 

3.4 Reconstruction from Fan Projections 

The theory in the preceding subsections dealt with reconstructing images 
from their parallel projections such as those shown in Fig. 3.1. In generating 
these parallel data a source-detector combination has to linearly scan over the 

ALGORITHMS FOR RECONSTRUCTION WITH NONDIFFRACTING SOURCES 75 



Fig. 3.17: (a) Reconstruction 
obtained by using the filter shown 
in Fig. 3.16. The 127 rays in the 
projection were zero-padded so 
that each projection was 256 
elements long. The unit sample 
response h(nr) was used with n 
ranging from - I28 to 127, 
yielding 2% points for this 
function. The number of 
projections was 100 and the 
display matrix size is 128 x 128. 
(b) A numerical comparison of 
they = -0.605 line of the 
reconstruction in (a) with the true 
values. Note that the dishing and 
dc shsft artifacts visible in Fig. 
3.13 have disappeared. (From 
[Ros82].) 

-1.0 -.50 0.0 .50 1.0 

(b) 

length of a projection, then rotate through a certain angular interval, then scan 
linearly over the length of the next projection, and so on. This usually results 
in times that are as long as a few minutes for collecting all the data. A much 
faster way to generate the line integrals is by using fan beams such as those 
shown in Fig. 3.3. One now uses a point source of radiation that emanates a 
fan-shaped beam. On the other side of the object a bank of detectors is used to 
make all the measurements in one fan simultaneously. The source and the 
entire bank of detectors are rotated to generate the desired number of fan 
projections. As might be expected, one has to pay a price for this simpler and 
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faster method of data collection; as we will see later the simple backprojec- 
tion of parallel beam tomography now becomes a weighted backprojection. 

There are two types of fan projections depending upon whether a 
projection is sampled at equiangular or equispaced intervals. This difference 
is illustrated in Fig. 3.18. In (a) we have shown an equiangular set of rays. If 
the detectors for the measurement of line integrals are arranged on the 
straight line D1D2, this implies unequal spacing between them. If, however, 
the detectors are arranged on the arc of a circle whose center is at S, they may 
now be positioned with equal spacing along this arc (Fig. 3.18(b)). The 
second type of fan projection is generated when the rays are arranged such 
that the detector spacing on a straight line is now equal (Fig. 3.18(c)). The 
algorithms that reconstruct images from these two different types of fan 
projections are different and will be separately derived in the following 
subsection. 

3.4.1 Equiangular Rays 

Let &(-r) denote a fan projection as shown in Fig. 3.19. Here /3 is the 
angle that the source S makes with a reference axis, and the angle y gives the 
location of a ray within a fan. Consider the ray SA. If the projection data 
were generated along a set of parallel rays, then the ray SA would belong to a 
parallel projection P@(t) for 0 and t given by 

8=/3+r and t=Dsiny (70) 
where D is the distance of the source S from the origin 0. The relationships 
in (70) are derived by noting that all the rays in the parallel projection at angle 
0 are perpendicular to the line PQ and that along such a line the distance OB is 
equal to the value of t. Now we know that from parallel projections PO(t) we 
may reconstruct f(x, y) by 

fk Y) = j; &,(t)h(x cos B+y sin 0-t) dt de (71) 
m 

where tm is the value oft for which PO(t) = 0 with 1 t 1 > t, in all projections. 
This equation only requires the parallel projections to be collected over 180”. 
However, if one would like to use the projections generated over 360”, this 
equation may be rewritten as 

J-(x, Y)=; j; Po(t)h(x cos e+y sin 8-t) dt de. (72) 
m 

Derivation of the algorithm becomes easier when the point (x, y) (marked C 
in Fig. 3.20) is expressed in polar coordinates (r, +), that is, 

x=r cos 4 y=r sin 4. (73) 
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Fig. 3.18: Two different types 
of fan beams are shown here. In 
(a) the angle between rays is 
constant but the detector spacing 
is uneven. If the detectors are 
placed along a circle the spacing 
will then be equal as shown in 
(b). As shown in (c) the detectors 
can be arranged with constant 
spacing along a line but then the 
angle between rays is not 
constant. (From [Ros82J.) 

Rays at equiangular 
intervals 

spacing 
mequa I 

78 COMPUTERIZED TOMOGRAPHIC IMAGING 



Fig. 3.18: Continued. 

ing 

The expression in (72) can now be written as 

Pe(t)h(r cos (e - 4) - t) dt de. (74) 

Using the relationships in (70), the double integration may be expressed in 
terms of y and P, 

- d sin r)D cos y dy dP (75) 
where we have used dt de = D cos y dy do. A few observations about this 
expression are in order. The limits - y to 2 z - y for 0 cover the entire range 
of 360”. Since all the functions of @ are periodic (with period 2n) these limits 
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Fig. 3.19: An equiangular fan is may be replaced by 0 and 27r, respectively. Sin-’ (t,,,/D) is equal to the value 
shown here. Each ray is identified 
by its angle y from the central 

of y for the extreme ray SE in Fig. 3.19. Therefore, the upper and lower 
ray. (From [Ros82J.) limits for y may be written as yrn and - yrn, respectively. The expression 

Po+,(D sin y ) corresponds to the ray integral along SA in the parallel 
projection data PO(t). The identity of this ray integral in the fan projection 
data is simply &(r). Introducing these changes in (75) we get 

R~(y)h(r cos @+7-+)-D sin y)D cos y dy d/3. 

(76) 

In order to express the reconstruction formula given by (76) in a form that 
can be easily implemented on a computer we will first examine the argument 

80 COMPUTERIZED TOMOGRAPHIC IMAGING 



Fig. 3.20: This figure illustrates of the function h. The argument may be rewritten as 
that L is the distance of the pixel 
at location (x, y) from the source rcos (P+y-4)-D sin y 
S; and y is the angle that the 
source-to-pixel line subtends with =rcos (p-4) cos -y-[r sin (fl-c#J)+D] sin y. (77) 
the central ray. (From [Ros82J.) 

Let L be the distance from the source S to a point (x, y) [or (r, 4) in polar 
coordinates] such as C in Fig. 3.20. Clearly, L is a function of three 
variables, r, 4, and p. Also, let y ’ be the angle of the ray that passes through 
this point (r, 9). One can now easily show that 

L cos y’ =D+r sin (p-4) 

L sin y’=rcos (p-4). (78) 

Note that the pixel location (r, 4) and the projection angle /3 completely 
determine both L and y ’ : 

L(r, 4, @=d[D+r sin (/3-4)]2+[rcos (fl-q5)12 (79) 
and 

y’ =tan-’ r cos (P-9) 
D+r sin (p-4) ’ (80) 
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Using (78) in (77) we get for the argument of h 

rcos @+7-+)-D sin y=L sin (y’-y) (81) 

and substituting this in (76) we get 

.m, 4,=; s; s’” &(r)h(L sin (7’ -r))LI cos y d-y d/3. (82) 
-7m 

We will now express the function h(L sin (y ’ - 7)) in terms of h(t). Note 
that h(t) is the inverse Fourier transform of 1 WI in the frequency domain: 

h(t)= I:, IwleiZnW dw. 

Therefore, 

h(L sin y)= jy, ~~~e~**‘+‘~~~“~ dw. 

Using the transformation 

we can write 

w’ = WL sin y 

Y 

Wsiny)=(&)* sr, Iw’lejZrw’ydwr (86) 

h(y). (87) 

Therefore, (82) may be written as 

W-ikdy - YP cm y dy dP 

where 

* h(y). 

(83) 

(84) 

(85) 

038) 

(8% 

For the purpose of computer implementation, (88) may be interpreted as a 
weighted filtered backprojection algorithm. To show this we rewrite (88) as 
follows: 

f(r, 4)= jf $ Qp<r’> dP (90) 
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where 

and where 
Q,dy) =R; (~1 * g(y) (91) 

Rs’ (y) = R,&) . D - cos y. (92) 
This calls for reconstructing an image using the following three steps: 

Step 1: 
Assume that each projection R@(Y) is sampled with sampling interval (Y. 
The known data then are R&x) where n takes integer values. pi are the 
angles at which projections are taken. The first step is to generate for 
each fan projection R&m) the corresponding Rii(na) by 

R;i(na)=R&za) - D - cos na. (93) 
Note that n = 0 corresponds to the ray passing through the center of the 
projection. 

Step 2: 
Convolve each modified projection R@m) with g(ncu) to generate the 
corresponding filtered projection: 

Q&m) = Ril;i(na)*g(na). (94) 
To perform this discrete convolution using an FFT program the function 
R&(m) must be padded with a sufficient number of zeros to avoid 
inter-period interference artifacts. The sequence g(ncu) is given by the 
samples of (89): 

2 
h(m). (95) 

If we substitute in this the values of h(m) from (61), we get for the 
discrete impulse response 

1 
-3 8a2 

n=O 

gel= 0, 
I 

n is even 

(,,~n.,>‘y nisodd. 

(96) 

Although, theoretically, no further filtering of the projection data than 
that called for by (94) is required, in practice superior reconstructions 
are obtained if a certain amount of smoothing is combined with the 
required filtering: 

Q&m) = R,&(ncx)*g(na)*k(na) (97) 
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Fig. 3.21: While the filtered 
projections are backprojected 
along parallel lines for the 
parallel beam case (a), for the 
fan beam case the backprojection 
is performed along converging 
lines (b). (c) This figure 
illustrates the implementation step 
that in order to determine the 
backprojected value at pixel (x, 
y), one must first compute y ’ for 
that pixel. (From [Ros82].) 

(a) 

(b) 
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Fig. 3.21: Continued. where k(ncu) is the impulse response of the smoothing filter. In the 
frequency domain implementation this smoothing filter may be a simple 
cosine function or a Hamming window. 

Step 3: 
Perform a weighted backprojection of each filtered projection along the 
fan. Since the backprojection here is very different from that for the 
parallel case, we will explain it in some detail. For the parallel case the 
filtered projection is backprojected along a set of parallel lines as shown 
in Fig. 3.21(a). For the fan beam case the backprojection is done along 
the fan (Fig. 3.21(b)). This is dictated by the structure of (90): 

(98) 

where y ’ is the angle of the fan beam ray that passes through the point 
(x, y) and A0 = 2n/A4. For pi chosen in Fig. 3.2 1 (c) in order to find the 
contribution of Qai(r) to the point (x, y) shown there one must first find 
the angle, y ’ , of the ray SA that passes through that point (x, y). 
Qai(-y ’ ) will then be contributed from the filtered projection at pi to the 
point (x, y) under consideration. Of course, the computed value of y’ 
may not correspond to one of ncy for which QSi(m) is known. One must 
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Fig. 3.22: For the case of 
equispaced detectors on a straight 
line, each projection is denoted 
by the function R&S). (From 
[Ros82].) 

then use interpolation. The contribution Qai(r ’ ) at the point (x, y) must 
then be divided by L2 where L is the distance from the source S to the 
point (x, y). 

This concludes our presentation of the algorithm for reconstructing projection 
data measured with detectors spaced at equiangular increments. 

3.4.2 Equally Spaced Collinear Detectors 

Let R@(S) denote a fan projection as shown in Fig. 3.22, where s is the 
distance along the straight line corresponding to the detector bank. The 
principal difference between the algorithm presented in the preceding 
subsection and the one presented here lies in the way a fan projection is 
represented, which then introduces differences in subsequent mathematical 
manipulations. Before, fan projections were sampled at equiangular intervals 
and we represented them by RB(y) where y represented the angular location 
of a ray. Now we represent them by RB(s). 

Although the projections are measured on a line such as III II2 in Fig. 3.22, 

s 
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Fig. 3.23: This figure illustrates 
several of the parameters used in 
the derivation of the 
reconstruction algorithm for 
equispaced detectors. (From 
[Ros82].) 

for theoretical purposes it is more efficient to assume the existence of an 
imaginary detector line 0; 0; passing through the origin. We now associate 
the ray integral along SB with point A on 0; Di , as opposed to point B on 
DiDz. Thus in Fig. 3.23 we will associate a fan projection Rp(s) with the 
imaginary detector line D,‘D; . Now consider a ray &I in the figure; the 
value of s for this ray is the length of OA. If parallel projection data were 
generated for the object under consideration, the ray SA would belong to a 
parallel projection PO(t) with 19 and t as shown in the figure. The relationship 
between /3 and t for the parallel case is given by 

t=s cos y e=fl+y 

SD 
t=mT7 

0=/3+tan-’ i 

where use has been made of the fact that angle AOC is equal to angle OX, 
and where D is the distance of the source point S from the origin 0. 

In terms of the parallel projection data the reconstructed image is given by 
(74) which is repeated here for convenience: 

PB(t)h(r cos (fl- 4) -t) dt d6’ (74) m 
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where f(r, 4) is the reconstructed image in polar coordinates. Using the 
relationships in (99) the double integration may be expressed as 

* h rcos (/3+tan-’ 
s 

0 

DS 1 03 
5 -4)- dm (D2+s2)3’2 

ds do 

where we have used 

dt de= 
03 

(D2 + s2)3’2 
ds d/3. 

In (100) s, is the largest value of s in each projection and corresponds to t,,, 
for parallel projection data. The limits - tan-’ (s,,JD) and 27r - tan-i (s,,J 
D) cover the angular interval of 360”. Since all functions of fl in (100) are 
periodic with period 27r, these limits may be replaced by 0 and 2n, 
respectively. Also, the expression 

corresponds to the ray integral along SA in the parallel projection data PO(t). 
The identity of this ray integral in the fan projection data is simply R@(s). 
Introducing these changes in (100) we get 

R&)h r cos 
m 

( ( /3+tan-* i-4 

Ds 
> 

03 
-,/m (~2 +s2)3/2 ds dp’ (lo3) 

In order to express this formula in a filtered backprojection form we will first 
examine the argument of h. The argument may be written as 

D S 
=r cos (P-4) dm-(D+r sin (P-4)) dme (104) 

We will now introduce two new variables that are easily calculated in a 
computer implementation. The first of these, denoted by U, is for each pixel 
(x, y) the ratio of SP (Fig. 3.24) to the source-to-origin distance. Note that 
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Fig. 3.24: For a pixel at the 
polar coordinates (r, I$) the 
variable (I is the ratio of the 
distance SP, which is the 
projection of the source to pixel 
line on the central ray, to the 
source-to-center distance. 
(Adapted from [Ros82].) 

SP is the projection of the source to pixel distance SE on the central ray. Thus 
- 
SO+OP 

W, 4, PI= D (10% 

D+r sin (p-4) = 
D * (106) 

The other parameter we want to define is the value of s for the ray that passes 
through the pixel (r, 4) under consideration. Let s’ denote this value of s. 
Since s is measured along the imaginary detector line D,‘D; , it is given by 
the distance OF. Since 

s’ E> -=- - 
so F 

(107) 

we have 

s, =D r cos W-4) 

D+r sin (p-4) ’ (108) 
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Equations (106) and (108) can be utilized to express (104) in terms of U and 
S’: 

> Ds s’UD sUD 
- 

J~=dm--di%?’ (109) 

Substituting (109) in (103), we get 

We will now express the convolving kernel h in this equation in a form closer 
to that given by (61). Note that, nominally, h(t) is the inverse Fourier 
transform of ( WI in the frequency domain: 

h(t) = iy, 1 w 1 ejzrwf dw. 

Therefore, 

Using the transformation 

UD 
w‘=wJm 

we can rewrite (112) as follows: 

dDTs2] =E$ I:, IW’lejZr(s’-s)w’ dw’ (114) 

D2+s2 =- h(s’ -s). 
U2D2 (115) 

Substituting this in (110) we get 

f” (r, 4) = 1: $ sm -02 R&k(s’ --s) ,,& ds di3 

where 

g(s) =; h(s). 

(111) 

(112) 

(113) 

(116) 

(117) 

For the purpose of computer implementation, (116) may be interpreted as a 
weighted filtered backprojection algorithm. To show this we rewrite (116) as 
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follows: 

where 

and 

(1W 

Q,.&) = Ra’ 6) * g(s) (119) 

Equations (118) through (120) suggest the following steps for computer 
implementation: 

Step 1: 
Assume that each projection R&) is sampled with a sampling interval of 
a. The known data then are Rgi(na) where n takes integer values with n 
= 0 corresponding to the central ray passing through the origin; pi are 
the angles for which fan projections are known. The first step is to 
generate for each fan projection RB,(na) the corresponding modified 
projection R&(na) given by 

D 
R&(na)=Rp,(na) . dm . (121) 

Step 2: 
Convolve each modified projection R&(na) with g(na) to generate the 
corresponding filtered projection: 

Q&M = Rpi(na) * gW4 (W 
where the sequence g(na) is given by the samples of (117): 

g(na) =i h(na). (123) 

Substituting in this the values of h(na) given in (61) we get for the 
impulse response of the convolving filter: 

i 

1 
G’ 

n=O 

g(na)= 0, 
I 

n even (124) 
1 

y&i& n odd. 
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When the convolution of (122) is implemented in the frequency domain 
using an FFT algorithm the projection data must be padded with a 
sufficient number of zeros to avoid distortion due to interperiod 
interference. 

In practice superior reconstructions are obtained if a certain amount of 
smoothing is included with the convolution in (122). If k(na) is the 
impulse response of the smoothing filter, we can write 

Qoi(na) = Rpi(na) * g(na) * k(na). (125) 
In a frequency domain implementation this smoothing may be achieved 
by a simple multiplicative window such as a Hamming window. 

Step 3: 
Perform a weighted backprojection of each filtered projection along the 
corresponding fan. The sum of all the backprojections is the recon- 
structed image 

.0x, y)=AB 2 ’ i=, ~2k Y, Pi) Q&‘) (126) 

where U is computed using (106) and s’ identifies the ray that passes 
through (x, y) in the fan for the source located at angle pi. Of course, 
this value of s’ may not correspond to one of the values of na at which 
Qsi is known. In that case interpolation is necessary. 

3.4.3 A Re-sorting Algorithm 

We will now describe an algorithm that rapidly re-sorts the fan beam 
projection data into equivalent parallel beam projection data. After re-sorting 
one may use the filtered backprojection algorithm for parallel projection data 
to reconstruct the image. This fast re-sorting algorithm does place constraints 
on the angles at which the fan beam projections must be taken and also on the 
angles at which projection data must be sampled within each fan beam 
projection. 

Referring to Fig. 3.19, the relationships between the independent variables 
of the fan beam projections and parallel projections are given by (70): 

t=D siny and 8=P+r. (127) 

If, as before, R,(y) denotes a fan beam projection taken at angle 0, and PO(t) 
a parallel projection taken at angle 8, using (127) we can write 

R@(r) = b+-,(D sin Y). (128) 

Let A@ denote the angular increment between successive fan beam 
projections, and let A-y denote the angular interval used for sampling the fan 
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beam projections. We will assume that the following condition is satisfied: 

Afi=Ay=cu. (129) 
Clearly then fl and y in (128) are equal to ma! and na, respectively, for some 
integer values of the indices m and n. We may therefore write (128) as 

R,,(m) =Pcm+,+(D sin na). (130) 
This equation serves as the basis of a fast re-sorting algorithm. It expresses 
the fact that the nth ray in the mth radial projection is the nth ray in the (m + 
n)th parallel projection. Of course, because of the sin na factor on the right- 
hand side of (130), the parallel projections obtained are not uniformly 
sampled. This can usually be rectified by interpolation. 

3.5 Fan Beam Reconstruction from a Limited Number of Views 

Simple geometrical arguments should convince the reader that parallel 
projections that are 180” apart, Pe(t) and Pe+180~(t), are mirror images of 
each other. That is, 

PO(t)=PO+180°(-f) (131) 
and thus it is only necessary to measure the projections of an object for angles 
from 0 to 180”. 

We can extend this result by noting that an object is completely specified if 
the ray integrals of the object are known for 

e,a<e,+ 180” (132) 

Fig. 3.25: As shown in this and 
figure, each line integral can be 
thought of as a single point in the - L.x Itltm, (133) 
Radon transform of the object. 
Each line integral is identified by 

where tmax is large enough so that each projection is at least as wide as the 
its distance from the origin and object at its widest. If each ray integral is represented as a point in a polar 
its angle. coordinate system (t, 0) as shown in Fig. 3.25 then a complete set of ray 
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Fig. 3.26: An object and its 
Radon transform are shown here. 
The object in (a) is used to 
illustrate the short scan algorithm 
developed by Parker [Par82a J. 
(b) shows the Radon transform 
in rectangular coordinates, while 
(c) represents the Radon 
transform in polar coordinates. 
(Reprinted with permission from 
[Par82aJ, [Par82b J.) 

integrals will completely fill a disk of radius t,,,, . This is commonly known as 
the Radon transform or a sinogram and is shown for the Shepp and Logan 
phantom both in polar and rectangular coordinates in Fig. 3.26. 

These ideas can also be extended to the fan beam case. From Fig. 3.27 we 
see that two ray integrals represented by the fan beam angles (PI, r,) and (p2, 
72) are identical provided 

and 
P1-~1=@2-~2+180~ (134) 

Yl= -72. 

With fan beam data the coordinate transformation 

(135) 

t=D sin y 

e=j3+r (136) 
maps the (0, y) description of a ray in a fan into its Radon transform 
equivalent. This transformation can then be used to construct Fig. 3.27, 
which shows the data available in Radon domain as the projection angle fl 
varies between 0 and 180

” 

with a fan angle of 40

” 

(-ymax = 20

”

). 

Recall that points in Radon space that are periodic with respect to the 
intervals shown in (132) and (133) represent the same ray integral. Thus the 
data in Fig. 3.28 for angles 0 > 180

” 

and t > 0 are equal to the Radon data 
for 0 c 0 and t < 0. These two regions are labeled A in Fig. 3.28. On the 
other hand, the regions marked B in Fig. 3.28 are areas in the Radon space 
where there are no measurements of the object. To cover these areas it is 
necessary to measure projections over an additional 27, degrees as shown in 
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Fig. 3.27: Rays in two fan 
beams will represent the same line 
integral if they satisfy the 
relationship 0, - y, = P2 - y2 
+ 180’. 

Fig. 3.28: Collecting projections 
over 180” gives estimates of the 
Radon transform between the 
curved lines as shown on the left. 
The curved lines represent the 
most extreme projections for a 
fan angle of Y,,,. On the right is 
shown the available data in the 
0-t coordinate system used in 
describing fan beams. In both 
cases the region marked A 
represents the part of the Radon 
transform where two estimates 
are available. On the other hand, 
for 180” of projections there are 
no estimates of the Radon 
transform in the regions marked 
B. 

180+-7,,, 

180 
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Fig. 3.29: If projections are 
gathered over an angle of 180” + 
27, then the data illustrated are 
available. Again on the left is 
shown the Radon transform while 
the right shows the available data 
in the b-7 coordinate system. The 
line integrals in the shaded 
regions represent duplicate data 
and these points must be 
gradually weighted to obtain 
good reconstructions. 

l8O+y, 

180 

Fig. 3.29. Thus it should be possible to reconstruct an object using fan beam 
projections collected over 180 + 2-r,,, degrees. 

Fig. 3.30 shows a “perfect” reconstruction of a phantom used by Parker 
[Par82a], [Par82b] to illustrate his algorithm for short scan or “180 degree 
plus” reconstructions. Projection data measured over a full 360” of 0 were 
used to generate the reconstruction. 

It is more natural to discuss the projection data overlap in the (0, r) 
coordinate system. We derive the overlap region in this space by using the 
relations in (134) and (135) and the limits 

01&~18++2y, 

01&s 180” +2ym. (137) 
Substituting (134) and (135) into the first equation above we find 

Oc:&-2y2+ 180”1180”+2y, (138) 
and then by rearranging 

- 180°+2r,~&~2ym-2yz. (139) 

Substituting the same two equations into the second inequality in (137) we 
find 

OS/~,-2y,-180”~180”+2y, (140) 
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Fig. 3.30: This figure shows a and then by rearranging 
reconstruction using 360

” 

offan 
beam projections and a standard 
filtered backprojection algorithm. 180

”

+2~,1P,<360

”

+2~,+2-r,. 

(141) 
(Reprinted with permission from 
[Par82aJ, [Par82bJ.) Since the fan beam angle, y, is always less then 90

”

, 

the overlapping regions 
are given by 

05&12Ym+2y* (142) 

Fig. 3.31: This reconstruction and 
was generated with a standard 
filtered backprojection algorithm 
using 220

” 

of projections. The (1431 
large artifacts are due to the lack 
of data in some regions of the 
Radon transform and duplicate 
data in others. (Reprinted with 
permission from (Par82aJ. 
JPar82b J.) 

as is shown in Fig. 3.29. 
If projections are gathered over an angle of 180

” 

+ 27,,, and a 
reconstruction is generated using the standard fan beam reconstruction 
algorithms described in Section 3.4, then the image in Fig. 3.3 1 is obtained. 
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In this case a fan angle of 40” (ymax = 20) was used. As described above, the 
severe artifacts in this reconstruction are caused by the double coverage of the 
points in region B of Fig. 3.28. 

One might think that the reconstruction can be improved by setting the data 
to zero in one of the regions of overlap. This can be implemented by 
multiplying a projection at angle p, p@(y), by a one-zero window, w@(r), 
given by 

o<pr2y,+2y 
elsewhere. (144) 

As shown by Naparstek [Nap801 using this type of window gives only a small 
improvement since streaks obscure the resulting image. 

While the above filter function properly handles the extra data, better 
reconstructions can be obtained using a window described in [Par82a]. The 
sharp cutoff of the one-zero window adds a large high frequency component 
to each projection which is then enhanced by the 1 w 1 filter that is used to filter 
each projection. 

More accurate reconstructions are obtained if a “smoother” window is 
used to filter the data. Mathematically, a “smooth” window is both 
continuous and has a continuous derivative. Formally, the window, ws(-r), 
must satisfy the following condition: 

v3,cYd+ y32(r2)= 1 (145) 

for (or, -yr) and (f12, y2) satisfying the relations in (134) and (135), and 

woeI)= (146) 

and 

w180° +2y, =o. (147) 

To keep the filter function continuous and “smooth” at the boundary between 
the single and double overlap regions the following constraints are imposed 
on the derivative of ~~(7): 

awm 
=o ap 0=2~~+2~ 

and 

awph) =o. afl 8=180°+2y 

(148) 

(149) 
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Fig. 3.32: Using a weighting One such window that satisfies all of these conditions is 
function that minimizes the 
discontinuities in the projection 
this reconstruction is obtained 
using 220

” 

of projection data. osp12ym-2y 
(Reprinted with permission from 
[Par82a], [Par826].) 2y,-2y=/31180

”

-2y 

180

”

+2y,-/? 

1 Y+Ym ’ 
180

”

-2y1/3(180

”

+2y,. 

(150) 
A reconstruction using this weighting function is shown in Fig. 3.32. From 
this image we see that it is possible to eliminate the overlap without 
introducing errors by using a smooth window. 

3.6 Three-Dimensional Reconstructions

’ 

The conventional way to image a three-dimensional object is to illuminate 
the object with a narrow beam of x-rays and use a two-dimensional 
reconstruction algorithm. A three-dimensional reconstruction can then be 
formed by illuminating successive planes within the object and stacking the 
resulting reconstructions. This is shown in Fig. 3.33. 

A more efficient approach, to be considered in this section, is a 
generalization of the two-dimensional fan beam algorithms presented in 
Section 3.4.2. Now, instead of illuminating a slice of the object with a fan of 
x-rays, the entire object is illuminated with a point source and the x-ray flux is 
measured on a plane. This is called a cone beam reconstruction because the 

’ We are grateful for the help of Barry Roberts in the preparation of this material. 
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object 
reconstructed slices 

of the object 

Fig. 3.33: A three-dimensional rays form a cone as illustrated in Fig. 3.34. Cone beam algorithms have been 
reconstruction can be done by 
repetitively using two-dimensional 

studied for use with Mayo Clinic’s Digital Spatial Reconstructor (DSR) 
reconstruction algorithms at [Rob831 and Imatron’s Fifth Generation Scanner [Boy83]. 
different heights along the z-axis. The main advantage of cone beam algorithms is the reduction in data 
(From [Kak86].) collection time. With a single source, ray integrals are measured through 

every point in the object in the time it takes to measure a single slice in a 
conventional two-dimensional scanner. The projection data, R,(t, r), are 
now a function of the source angle, 0, and horizontal and vertical positions on 
the detector plane, t and r. 

3.6.1 Three-Dimensional Projections 

A ray in a three-dimensional projection is described by the intersection of 
two planes 

t=x cos B+y sin 8 (151) 

r= -(-x sin 8+y cos 0) sin y+z cos y. (152) 

A new coordinate system (t, s, r) is obtained by two rotations of the (x, y, z)- 
axis as shown in Fig. 3.35. The first rotation, as in the two-dimensional case, 
is by 0 degrees around the z-axis to give the (t, s, z)-axes. Then a second 
rotation is done out of the (t, s)-plane around the t-axis by an angle of y. In 
matrix form the required rotations are given by 

A three-dimensional parallel projection of the object f is expressed by the 
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Fig. 3.34: In cone beam 
projections the detector measures 
the x-ray flux over a plane. By 
rotating the source and detector 
plane completely around the 
object all the data necessary for a 
three-dimensional reconstruction 
can be gathered in the time a 
conventional fan beam system 
collects the data for its 
two-dimensional reconstruction. 
(From (Kak86].) 

following integral: 

h,(t, r) = jys f(t, s, r) ds. (154) 
m 

Note that four variables are being used to specify the desired ray; (t, t9) 
specify the distance and angle in the x-y plane and (r, y) in the s-z plane. 

In a cone beam system the source is rotated by /3 and ray integrals are 
measured on the detector plane as described by R,(p ’ , {‘). To find the 
equivalent parallel projection ray first define 

P’DSO 
P= r= 

I’Dso 
(155) 

as was done in Section 3.4.2. Here we have used Dso to indicate the distance 
from the center of rotation to the source and DDE to indicate the distance from 
the center of rotation to the detector. For a given cone beam ray, Ro(p, j-), 
the parallel projection ray is given by 

Dso t=pe 
8 = p + tan - l (p/D,,) 

where t and 0 locate a ray in a given tilted fan, and similarly 

(156) 

(157) 

(158) 
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Fig. 3.35: To simplifv the 
discussion of the cone beam 
reconstruction the coordinate 
system is rotated by the angle of 
the source to give the (s, t)-axis. 
The r-ax& is not shown but is 
perpendicular to the t- and s-axes. 
(From [Kak86].) 

y = tan-’ ({IDso). (159) 
were r and y specify the location of the tilted fan itself. 

The reconstructions shown in this section will use a three-dimensional 
version of the Shepp and Logan head phantom. The two-dimensional ellipses 
of Table 3.1 have been made ellipsoids and repositioned within an imaginary 
skull. Table 3.2 shows the position and size of each ellipse and Fig. 3.36 
illustrates their position. 

Because of the linearity of the Radon transform, a projection of an object 
consisting of ellipsoids is just the sum of the projection of each individual 

Table 3.2: Summary of parameters for three-dimensional tomography simulations. 

Ellipsoid 

Coordinates of 
the Center 
0, Y, 2) 

Axis Lengths 
(A B, 0 

Rotation Gray 
Angle p Level 

(deg) P 

(0, 0, 0) 
(0, 0, 0) 

( - 0.22, 0, - 0.25) 
(0.22, 0, -0.25) 
(0, 0.1, -0.25) 
(0, 0.1, -0.25) 

(-O&-0.65, -0.25) 
(0.06, - 0.065, - 0.25) 
(0.06, - 0.105, 0.625) 

(0, 0.1, -0.625) 

(0.69, 0.92, 0.9) 0 2.0 
(0.6624, 0.874, 0.88) 0 -0.98 

(0.41, 0.16, 0.21) 108 - 0.02 
(0.31, 0.11, 0.22) 72 - 0.02 

(0.046, 0.046, 0.046) 0 0.02 
(0.046, 0.046, 0.046) 0 0.02 
(0.046, 0.023, 0.02) 0 0.01 
(0.046, 0.023, 0.02) 90 0.01 

(0.56, 0.04, 0.1) 90 0.02 
(0.056, 0.056, 0.1) 0 - 0.02 
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Fig. 3.36: A three-dimensional 
version of the Shepp and Logan 
head phantom is used to test the 
cone beam reconstruction 
algorithms in this section, (a) A 
vertical slice through the object 
illustrating the position of the 
two reconstructed planes. (b) An 
image at plane B (z = - 0.25) 
and (c) an illustration of the level 
of each of the ellipses. (d) An 
image at plane A (z = 0.625) and 
(e) an illustration of the gray 
levels with the slice. (From 
[KakS6f .) 
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ellipsoid. If the ellipsoid is constant and described by 

.I-(-% Y9 2) = 
I 

x2 y2 22 
P -+-+--11 

A2 B2 C= 
0 otherwise 

then its projection on the detector plane is written 

(160) 

2pABC 
e&, 4 = - 

a2(W 
ti2(8, y) - t2(C2cos2 y + (B2 cos2 8 + A2 sin2 0) sin2 y) 

-r2(A2 cos2 8+B2 sin2 8)( 7+cy (4y)) 

1 l/2 

-2tr sin y cos t9 sin 8(B2-A2) (161) 

where 

a2(8, y) = C2(B2 sin2 0 + A2 cos2 0) cos2 y + A2B2 sin2 7. (162) 

If the tilt angle, y, is zero then (161) simplifies to (5). 

3.6.2 Three-Dimensional Filtered Backprojection 

We will present a filtered backprojection algorithm based on analyses 
presented in [Fe1841 and [Kak86]. The reconstruction is based on filtering and 
backprojecting a single plane within the cone. In other words, each elevation 
in the cone (described by z or r) is considered separately and the final three- 
dimensional reconstruction is obtained by summing the contribution to the 
object from all the tilted fan beams. 

The cone beam algorithm sketched above is best derived by starting with 
the filtered backprojection algorithm for equispatial rays. In a tbree- 
dimensional reconstruction each fan is angled out of the source-detector 
plane of rotation. This leads to a change of variables in the backprojection 
algorithm. 

First consider the two-dimensional fan beam reconstruction formula for the 
point (r, 4): 

g(r3 +I=; 1: j$ I”“, 4dpYO -P) d& dp d/3 (163) 

aor cos (P - 4) 
“=Dso+r sin (P-4) 

h(p)= iy, lulejWP do (164) 

W, 9, PI= 
Dso+r sin (p-4) 

Dso 
(165) 
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Equation (163) is the same as (116)) except that we have now used different 
names for some of the variables. To further simplify this expression we will 
replace the (r, +) coordinate system by the rotated coordinates (t, s). Recall 
that (t, S) is the location of a point rotated by the angular displacement of the 
source-detector array. The expressions 

t=x cos /3+y sin /3 s= -x sin fl+y cos /3 (166) 

x=r cos 4 y=r sin 4, (167) 

lead to 

Dsot &o-s -- 
p’ -Dso-s U(x, Y, PI=- - 

Dso 
(168) 

The fan beam reconstruction algorithm is now written as 

In a cone beam reconstruction it is necessary to tilt the fan out of the plane 
of rotation; thus the size of the fan and the coordinate system of the 
reconstructed point change. As shown in Fig. 3.37 a new coordinate system 
(c 5) is defined that represents the location of the reconstructed point with 
respect to the tilted fan. Because of the changing fan size both the source 
distance, Dso , and the angular differential, 0, change. The new source 

Fig. 3.37: The (t i) coordinate 
system represents a point in the 

distance is given by 
object with respect to a tilted fan 
beam. (From [Kak86].) D;;=D2,0+{2 (170) 
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where !: is the height of the fan above the center of the plane of rotation. In 
addition, the increment of angular rotation d/3 ’ becomes 

Dso d/3 = Die d/3’ (171) 

Substituting these new variables, D i. for Dso and d@ ’ for do, and writing 
the projection data as RP I (p, {), (169) becomes 

To return the reconstruction to the original (t, s, 2) coordinate system we 
substitute 

r z ;ct, +i, -=- 
i. Dso Dso Go-s (173) 

and (170) and (171) to find 

g(t, s)=i 1; ,,Eb,,, 

- I- RB(P, Oh (E-P) JD;o;;z+pz dp d@. (174) -m 

The cone beam reconstruction algorithm can be broken into the following 
three steps: 

Step 1: 
Multiply the projection data, R,(p, r), by the function (Dsol 
JD”,, + r2 + p2) to find R&p, r): 

(175) 

Step 2: 
Convolve the weighted projection Ri(p, {) with h(p)/2 by multiplying 
their Fourier transforms with respect top. Note this convolution is done 
independently for each elevation, [. The result, Qo(p, {), is written 

QB(P, S-)=R; (P, f-) * ; h(p). (176) 

Step 3: 
Finally, each weighted projection is backprojected over the three- 
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dimensional reconstruction grid: 

&a s, z)= jr (Dz$s)2 Qp (Es sEs) d@. (177) 

The two arguments of the weighted projection, Qp, represent the 
transformation of a point in the object into the coordinate system of the 
tilted fan shown in Fig. 3.37. 

Only those points of the object that are illuminated from all directions can 
be properly reconstructed. In a cone beam system this region is a sphere of 
radius Ds,-, sin (P,) where Pm is half the beamwidth angle of the cone. 
Outside this region a point will not be included in some of the projections and 
thus will not be correctly reconstructed. 

Figs. 3.38 and 3.39 show reconstructions at two different levels of the 
object described in Fig. 3.36. In each case 100 projections of 127 x 127 
elements were simulated and both a gray scale image of the entire plane and a 
line plot are shown. The reconstructed planes were at z = 0.625 and z = 
-0.25 planes and are marked as Plane A and Plane B in Fig. 3.36. 

In agreement with [Smi85], the quality of the reconstruction varies with the 
elevation of the plane. On the plane of rotation (z = 0) the cone beam 
algorithm is identical to a equispatial fan beam algorithm and thus the results 
shown in Fig. 3.38 are quite good. Farther from the central plane each point 
in the reconstruction is irradiated from all directions but now at an oblique 
angle. As shown in Fig. 3.39 there is a noticeable degradation in the 
reconstruction. 

3.7 Bibliographic Notes 

The current excitement in tomographic imaging originated with Houns- 
field’s invention [Hou72] of the computed tomography (CT) scanner in 1972, 
which was indeed a major breakthrough. His invention showed that it is 
possible to get high-quality cross-sectional images with an accuracy now 
reaching one part in a thousand in spite of the fact that the projection data do 
not strictly satisfy theoretical models underlying the efficiently implement- 
able reconstruction algorithms. (In x-ray tomography, the mismatch with the 
assumed theoretical models is caused primarily by the polychromaticity of the 
radiation used. This will be discussed in Chapter 4.) His invention also 
showed that it is possible to process a very large number of measurements 
(now approaching a million) with fairly complex mathematical operations, 
and still get an image that is incredibly accurate. The success of x-ray CT has 
naturally led to research aimed at extending this mode of image formation to 
ultrasound and microwave sources. 

The idea of filtered backprojection was first advanced by Bracewell and 
Riddle [Bra671 and later independently by Ramachandran and Lakshminaray- 
anan [Ram71]. The superiority of the filtered backprojection algorithm over 
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Fig. 3.38: (a) Cone beam 
algorithm reconstruction of plane 
B in Fig. 3.36. (b) Plot of they 
= - 0.605 line in the 
reconstruction compared to the 
original. (From (Kak86].) (b) 
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the algebraic techniques was first demonstrated by Shepp and Logan [She74]. 
Its development for fan beam data was first made by Lakshminarayanan 
[Lak75] for the equispaced collinear detectors case and later extended by 
Herman and Naparstek [Her771 for the case of equiangular rays. The fan 
beam algorithm derivation presented here was first developed by Scudder 
[Scu78]. Many authors [Bab77], [Ken79], [Kwo77], [Lew79], [Tan751 have 
proposed variations on the filter functions of the filtered backprojection 
algorithms discussed in this chapter. The reader is referred particularly to 
[Ken79], $2~791 for ways to speed up the filtering of the projection data by 
using binary approximations and/or inserting zeros in the unit sample 
response of the filter function. Images may also be reconstructed from fan 
beam data by first sorting them into parallel projection data. Fast algorithms 
for ray sorting of fan beam data have been developed by Wang lWan77], 
Dreike and Boyd [Dre77], Peters and Lewitt [Pet77], and Dines and Kak 
[Din76]. The reader is referred to [Nah81] for a filtered backprojection 
algorithm for reconstructions from data generated by using very narrow angle 
fan beams that rotate and traverse continuously around the object. The 
reader is also referred to [Hor78], [Hor79] for algorithms for nonuniformly 
sampled projection data, and to [Bra67], [Lew78], [Opp75], [SatgO], 
[Tam811 for reconstructions from incomplete and limited projections. Full 
three-dimensional reconstructions have been discussed in [Chi79], [Chi80], 
[Smi85]. We have also not discussed the circular harmonic transform method 
of image reconstruction as proposed by Hansen [Han8 1 a], [Han8 1 b] . 

Tomographic imaging may also be accomplished, although less accurately, 
by direct Fourier inversion, instead of the filtered backprojection method 
presented in this chapter. This was first shown by Bracewell [Bra561 for 
radioastronomy, and later independently by DeRosier and Klug [DeR68] in 
electron microscopy and Rowley [Row691 in optical holography. Several 
workers who applied this method to radiography include Tretiak et al. 
[Tre69], Bates and Peters [Bat71], and Mersereau and Oppenheim [Mer74]. 
In order to utilize two-dimensional FFT algorithms for image formation, the 
direct Fourier approach calls for frequency domain interpolation from a polar 
grid to a rectangular grid. For some recent methods to minimize the resulting 
interpolation error, the reader is referred to [Sta81]. Recently Wernecke and 
D’Addario [Wer77] have proposed a maximum-entropy approach to direct 
Fourier inversion. Their procedure is especially applicable if for some reason 
the projection data are insufficient. 

3.8 References 

[Bab77] N. Baba and K. Murata, “Filtering for image reconstruction from projections,” J. 
Opt. Sot. Amer., vol. 67, pp. 662-668, 1977. 

[Bat711 R. H. T. Bates and T. M. Peters, “Towards improvements in tomography,” New 
Zealand J. Sci., vol. 14, pp. 883-896, 1971. 

[Boy831 D. P. Boyd and M. J. Lipton, “Cardiac computed tomography,” Proc. IEEE, vol. 
71, pp. 298-307, Mar. 1983. 

110 COMPUTERIZED TOMOGRAPHIC IMAGING 



[Bra561 

[Bra671 

[Chi79] 

[Chi80] 

[Cro’lO] 

[DeR68] 

[Din761 

[Dre77] 

[Fe1841 

[Ham771 
[HanSla] 

[Hanglb] 

[Her771 

[Hor78] 

[Hor79] 

[Hot1721 

[Jak76] 

[Kak79] 

[Kak85] 

[Kak86] 

[Kea’lS] 

[Ken791 

[Kwo77] 

[Lak75] 

[Lew78] 

R. N. Bracewell, “Strip integration in radio astronomy,” Aust. J. Phys., vol. 9, pp. 
198-217, 1956. 
R. N. Bracewell and A. C. Riddle, “Inversion of fan-beam scans in radio 
astronomy,” Astrophys. J., vol. 150, pp. 427-434, Nov. 1967. 
M. Y. Chiu, H. H. Barrett, R. G. Simpson, C. Chou, J. W. Arendt, and G. R. Gindi, 
“Three dimensional radiographic imaging with a restricted view angle,” J. Opt. 
Sot. Amer., vol. 69, pp. 1323-1330, Oct. 1979. 
M. Y. Chiu, H. H. Barrett, and R. G. Simpson, “Three dimensional reconstruction 
from planar projections,” J. Opt. Sot. Amer., vol. 70, pp. 755-762, July 1980. 
R. A. Crowther, D. J. DeRosier, and A. Klug, “The reconstruction of a three- 
dimensional structure from projections and its applications to electron microscopy,” 
Proc. Roy. Sot. London, vol. A317, pp. 319-340, 1970. 
D. J. DeRosier and A. Klug, “Reconstruction of three dimensional structures from 
electron micrographs,” Nature, vol. 217, pp. 130-134, Jan. 1968. 
K. A. Dines and A. C. Kak, “Measurement and reconstruction of ultrasonic 
parameters for diagnostic imaging,” Research Rep. TR-EE 77-4, School of Electrical 
Engineering, Purdue Univ., Lafayette, IN, Dec. 1976. 
P. Dreike and D. P. Boyd, “Convolution reconstruction of fan-beam reconstruc- 
tions,” Comp. Graph. Image Proc., vol. 5, pp. 459-469, 1977. 
L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam algorithm,” J. 
Opt. Sot. Amer., vol. 1, pp. 612-619, June 1984. 
R. W. Hamming, Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, 1977. 
E. W. Hansen, “Theory of circular image reconstruction,” J. Opt. Sot. Amer., vol. 
71, pp. 304-308, Mar. 1981. 
~ “Circular harmonic image reconstruction: Experiments,” Appl. Opt., vol. 
20, pp. 2266-2274, July 1981. 
G. T. Herman and A. Naparstek, “Fast image reconstruction based on a Radon 
inversion formula appropriate for rapidly collected data,” SIAM J. Appl. Math., 
vol. 33, pp. 511-533, Nov. 1977. 
B. K. P. Horn, “Density reconstruction using arbitrary ray sampling schemes,” 
Proc. IEEE, vol. 66, pp. 551-562, May 1978. 
~ “Fan-beam reconstruction methods,” 
1979.’ 

Proc. IEEE, vol. 67, pp. 1616-1623, 

G. N. Hounsfield, “A method of and apparatus for examination of a body by 
radiation such as x-ray or gamma radiation,” Patent Specification 1283915, The 
Patent Office, 1972. 
C. V. Jakowatz, Jr. and A. C. Kak, “Computerized tomography using x-rays and 
ultrasound,” Research Rep. TR-EE 76-26, School of Electrical Engineering, Purdue 
Univ., Lafayette, IN, 1976. 
A. C. Kak, ‘Computerized tomography with x-ray emission and ultrasound 
sources,” Proc. IEEE, vol. 67, pp. 1245-1272, 1979. 
-, “Tomographic imaging with diffracting and non-diffracting sources,” in 
Array Signal Processing, S. Haykin, Ed. Englewood Cliffs, NJ: Prentice-Hall, 
1985. 
A. C. Kak and B. Roberts, “Image reconstruction from projections,” in Handbook 
of Pattern Recognition and Image Processing, T. Y. Young and K. S. Fu, Eds. 
New York, NY: Academic Press, 1986. 
P. N. Keating, “More accurate interpolation using discrete Fourier transforms,” 
IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-26, pp. 368-369, 
1978. 
S. K. Kenue and J. F. Greenleaf, “Efficient convolution kernels for computerized 
tomography,” Ultrason. Imaging, vol. 1, pp. 232-244, 1979. 
Y. S. Kwoh, I. S. Reed, and T. K. Truong, “A generalized 1 WI-filter for 3-D 
reconstruction,” IEEE Trans. Nucl. Sci., vol. NS-24. DO. 1990-1998. 1977. 
A. V. Lakshminarayanan, “Reconstruction from divergeniray data,” Tech. Rep. 92, 
Dept. of Computer Science, State Univ. of New York at Buffalo, 1975. 
R. M. Lewitt and R. H. T. Bates, “Image reconstruction from projections,” Optik, 
vol. 50, pp. 19-33 (Part I), pp. 85-109 (Part II), pp. 189-204 (Part III), pp. 269-278 
(Part IV), 1978. 

ALGORITHMS FOR RECONSTRUCTION WITH NONDIFFRACTING SOURCES 111 



[Lew79] 

[Mer74] 

[Nah81] 

PW301 

1OPP751 

[Pan831 

[Par82a] 

[Par82b] 

[Pet771 

[Ram7 l] 

[Rob831 

[Ros82] 

[Row691 

[SatSO] 

[Sch73] 

[Scu78] 

[She741 

[Smi85] 

[Sta81] 

[Tam8 l] 

[Tan751 

[Tre69] 

[wan771 

[Wer77] 

R. M. Lewitt, “Ultra-fast convolution approximation for computerized tomog- 
raphy,” IEEE Trans. Nucl. Sci., vol. NS-26, pp. 2678-2681, 1979. 
R. M. Mersereau and A. V. Oppenheim, “Digital reconstruction of multidimensional 
signals from their projections,” Proc. IEEE, vol. 62, pp. 1319-1338, 1974. 
D. Nahamoo, C. R. Crawford, and A. C. Kak, “Design constraints and reconstruc- 
tion algorithms for transverse-continuous-rotate CT scanners,” IEEE Trans. 
Biomed. Eng., vol. BME-28, pp. 79-97, 1981. 
A. Naparstek, “Short-scan fan-beam algorithms for CT,” IEEE Trans. Nucl. Sci., 
vol. NS-27, 1980. 
B. E. Oppenheim, “Reconstruction tomography from incomplete projections,” in 
Reconstruction Tomography in Diagnostic Radiology and Nuclear Medicine, M. 
M. Ter Pogossian et al., Eds. Baltimore, MD: University Park Press, 1975. 
S. X. Pan and A. C. Kak, “A computational study of reconstruction algorithms for 
diffraction tomography: Interpolation vs. filtered-backpropagation,” IEEE Trans. 
Acoust. Speech Sinnal Processinn, vol. ASSP-31, DD. 1262-1275. Oct. 1983. 
D. L. Parker, “O$imal short-s& convolution reconstruction for’ fanbeam CT,” 
Med. Phys., vol. 9, pp. 254-257, Mar.lApr. 1982. 
-, “Optimization of short scan convolution reconstruction for fan-beam CT,” in 
Proc. International Workshop on Physics and Engineering in Medical Imaging, 
Mar. 1982, pp. 199-202. 
T. M. Peters and R. M. Lewitt, “Computed tomography with fan-beam geometry,” 
J. Comput. Assist. Tomog., vol. 1, pp. 429-436, 1977. 
G. N. Ramachandran and A. V. Lakshminarayanan, “Three dimensional reconstruc- 
tions from radiographs and electron micrographs: Application of convolution instead 
of Fourier transforms,” Proc. Nat. Acad. Sci., vol. 68, pp. 2236-2240, 1971. 
R. A. Robb, E. A. Hoffman, L. J. Sinak, L. D. Harris, and E. L. Ritman, “High- 
speed three-dimensional x-ray computed tomography: The dynamic spatial rec&- 
structor,” Proc. IEEE, vol. 71, DD. 308-319. Mar. 1983. 
A. Rosenfeld and A. C..Kak, Dig*%1 Picture processing, 2nd ed. New York, NY: 
Academic Press, 1982. 
P. D. Rowley, “Quantitative interpretation of three dimensional weakly refractive 
phase objects using holographic interferometry,” J. Opt. Sot. Amer., vol. 59, pp. 
1496-1498, Nov. 1969. 
T. Sato, S. J. Norton, M. Linzer, 0. Ikeda, and M. Hirama, “Tomographic image 
reconstruction from limited projections using iterative revisions in image and 
transform spaces,” Appl. Opt., vol. 20, pp. 395-399, Feb. 1980. 
R. W. Schafer and L. R. Rabiner, “A digital signal processing approach to 
interpolation,” Proc. IEEE, vol. 61, pp. 692-702, 1973. 
H. J. Scudder, “Introduction to computer aided tomography,” Proc. IEEE, vol. 66, 
pp. 628-637, June 1978. 
L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE 
Trans. Nucl. Sci., vol. NS-21, pp. 21-43, 1974. 
B. D. Smith, “Image reconstruction from cone-beam projections: Necessary and 
sufficient conditions and reconstruction methods,” IEEE Trans. Med. Imaging, 
vol. MI-4, pp. 14-25, Mar. 1985. 
H. Stark, J. W. Woods, I. Paul, and R. Hingorani, “Direct Fourier reconstruction in 
computer tomography,” IEEE Trans. Acoust. Speech Signal Processing, vol. 
ASSP-29, pp. 237-244, 1981. 
K. C. Tam and V. Perez-Mendez, “Tomographical imaging with limited angle 
input,” J. Opt. Sot. Amer., vol. 71, pp. 582-592, May 1981. 
E. Tanaka and T. A. Iinuma, “Correction functions for optimizing the reconstructed 
image in transverse section scan,” Phys. Med. Biol., vol. 20, pp. 789-798, 1975. 
0. Tretiak, M. Eden, and M. Simon, “Internal structures for three dimensional 
images,” in Proc. 8th Znt. Conf. on Med. Biol. Eng., Chicago, IL, 1969. 
L. Wang, “Cross-section reconstruction with a fan-beam scanning geometry,” IEEE 
Trans. Comput., vol. C-26, pp. 264-268, Mar. 1977. 
S. J. Wemecke and L. R. D’Addario, “Maximum entropy image reconstruction,” 
IEEE Trans. Comput., vol. C-26, pp. 351-364, 1977. 

112 COMPUTERIZED TOMOGRAPHIC IMAGING 



4 Measurement of Projection Data- 
The Nondiffracting Case 

The mathematical algorithms for tomographic reconstructions described in 
Chapter 3 are based on projection data. These projections can represent, for 
example, the attenuation of x-rays through an object as in conventional x-ray 
tomography, the decay of radioactive nucleoids in the body as in emission 
tomography, or the refractive index variations as in ultrasonic tomography. 

This chapter will discuss the measurement of projection data with energy 
that travels in straight lines through objects. This is always the case when a 
human body is illuminated with x-rays and is a close approximation to what 
happens when ultrasonic tomography is used for the imaging of soft 
biological tissues (e.g., the female breast). 

Projection data, by their very nature, are a result of interaction between the 
radiation used for imaging and the substance of which the object is composed. 
To a first approximation, such interactions can be modeled as measuring 
integrals of some characteristic of the object. A simple example of this is the 
attenuation a beam of x-rays undergoes as it travels through an object. A line 
integral of x-ray attenuation, as we will show in this chapter, is the log of the 
ratio of monochromatic x-ray photons that enter the object to those that leave. 

A second example of projection data being equal to line integrals is the 
propagation of a sound wave as it travels through an object. For a narrow 
beam of sound, the total time it takes to travel through an object is a line 
integral because it is the summation of the time it takes to travel through each 
small part of the object. 

In both the x-ray and the ultrasound cases, the measured data correspond 
only approximately to a line integral. The attenuation of an x-ray beam is 
dependent on the energy of each photon and since the x-rays used for imaging 
normally contain a range of energies the total attenuation is a more 
complicated sum of the attenuation at each point along the line. In the 
ultrasound case, the errors are caused by the fact that sound waves almost 
never travel through an object in a straight line and thus the measured time 
corresponds to some unknown curved path through the object. Fortunately, 
for many important practical applications, approximation of these curved 
paths by straight lines is acceptable. 

In this chapter we will discuss a number of different types of tomography, 
each with a different approach to the measurement of projection data. An 
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excellent review of these and many other applications of CT imaging is 
provided in [Bat83]. The physical limitations of each type of tomography to 
be discussed here are also presented in [Mac83]. 

4.1 X-Ray Tomography 

Since in x-ray tomography the projections consist of line integrals of the 
attenuation coefficient, it is important to appreciate the nature of this 
parameter. Consider that we have a parallel beam of x-ray photons 
propagating through a homogeneous slab of some material as shown in Fig. 
4.1. Since we have assumed that the photons are traveling along paths parallel 
to each other, there is no loss of beam intensity due to beam divergence. 
However, the beam does attenuate due to photons either being absorbed by 
the atoms of the material, or being scattered away from their original 
directions of travel. 

For the range of photon energies most commonly encountered for 
diagnostic imaging (from 20 to 150 keV), the mechanisms responsible for 
these two contributions to attenuation are the photoelectric and the Compton 
effects, respectively. Photoelectric absorption consists of an x-ray photon 
imparting all its energy to a tightly bound inner electron in an atom. The 
electron uses some of this acquired energy to overcome the binding energy 
within its shell, the rest appearing as the kinetic energy of the thus freed 
electron. The Compton scattering, on the other hand, consists of the 
interaction of the x-ray photon with either a free electron, or one that is only 
loosely bound in one of the outer shells of an atom. As a result of this 
interaction, the x-ray photon is deflected from its original direction of travel 
with some loss of energy, which is gained by the electron. 

Both the photoelectric and the Compton effects are energy dependent. This 
means that the probability of a given photon being lost from the original beam 
due to either absorption or scatter is a function of the energy of that photon. 
Photoelectric absorption is much more energy dependent than the Compton 
scatter effect-we will discuss this point in greater detail in the next section. 

4.1.1 Monochromatic X-Ray Projections 

Consider an incremental thickness of the slab shown in Fig. 4.1. We will 
assume that N monochromatic photons cross the lower boundary of this layer 
during some arbitrary measurement time interval and that only N + AN 
emerge from the top side (the numerical value of AN will obviously be 
negative), these N + AN photons being unaffected by either absorption or 
scatter and therefore propagating in their original direction of travel. If all 
the photons possess the same energy, then physical considerations that we 
will not go into dictate that AN satisfy the following relationship [Ter67]: 

AN 1 - . -c-7--(1 
N Ax (1) 
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Fig. 4.1: An x-ray tube is shown 
here illuminating a homogeneous 

where r and u represent the photon loss rates (on a per unit distance basis) due 

material with a beam of x-rays. to the photoelectric and the Compton effects, respectively. For our purposes 
The beam is measured on the-far we will at this time lump these two together and represent the above equation 
side of the object to determine 
the attenuation of the object. 

as 

AN 1 
N * x= -pFL. 

In the limit, as Ax goes to zero we obtain the differential equation 

(2) 

;dN= -p dx (3) 

which can be solved by integrating across the thickness of the slab 

s 
N dN 

-=-P s ’ dx 
No IV 0 

(4) 

where NO is the number of photons that enter the object. The number of 
photons as a function of the position within the slab is then given by 

In N-In NO= -@x (5) 

or 

N(x) = Noe-@. (6) 

The constant p is called the attenuation coefficient of the material. Here we 
assumed that p is constant over the interval of integration. 

Now consider the experiment illustrated in Fig. 4.2, where we have shown 
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A 

Fig. 4.2: A parallel beam of 
x-rays is shown propagating 
through a cross section of the 
human body. (From [Kak79].) 

a cross section of the human body being illuminated by a single beam of x- 
rays. If we confine our attention to the cross-sectional plane drawn in the 
figure, we may now consider p to be a function of two space coordinates, x 
and y, and therefore denote the attenuation coefficient by ~(x, y). Let Ni” be 
the total number of photons that enter the object (within the time interval of 
experimental measurement) through the beam from side A. And let Nd be the 
total number of photons exiting (within the same time interval) through the 
beam on side B. When the width, 7, of the beam is sufficiently small, 
reasoning similar to what was used for the one-dimensional case now leads to 
the following relationship between the numbers Nd and Ni” [Ha174], [Ter67]: 

Nd = Ni” exp 14x, Y) ds 
ray 1 

or, equivalently, 

s Nin ~(x, y) ds=ln - 
ray Nd 

(7) 

where ds is an element of length and where the integration is carried out along 
line AB shown in the figure. The left-hand side precisely constitutes a ray 
integral for a projection. Therefore, measurements like In (Nin/Nd) taken for 
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different rays at different angles may be used to generate projection data for 
the function ~(x, y). We would like to reiterate that this is strictly true 
only under the assumption that the x-ray beam consists of monoenergetic 
photons. This assumption is necessary because the linear attenuation 
coefficient is, in general, a function of photon energy. Other assumptions 
needed for this result include: detectors that are insensitive to scatter (see 
Section 4.1.4), a very narrow beam so there are no partial volume effects, 
and a very small aperture (see Chapter 5). 

4.1.2 Measurement of Projection Data with Polychromatic Sources 

In practice, the x-ray sources used for medical imaging do not produce 
monoenergetic photons. (Although by using the notion of beam hardening 
explained later, one could filter the x-ray beam to produce x-ray photons of 
almost the same energy. However, this would greatly reduce the number of 
photons available for the purpose of imaging, and the resulting degradation in 
the signal-to-noise ratio would be unacceptable for practically all purposes.) 
Fig. 4.3 shows an example of an experimentally measured x-ray tube 
spectrum taken from Epp and Weiss [Epp663 for an anode voltage of 105 kvp. 
When the energy in a beam of x-rays is not monoenergetic, (7) does not hold, 

Fig. 4.3: An experimentally and must be replaced by 
measured x-ray spectrum from 
[Epp66] is shown here. The anode 
voltage was IO5 kvp. (From dE (9) 
fKak791.) 

Nd= 1 &n(E) exP 1 

Energy in KeV 
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where Sin(E) represents the incident photon number density (also called 
energy spectral density of the incident photons). Sin(E) dE is the total number 
of incident photons in the energy range E and E + dE. This equation 
incorporates the fact that the linear attenuation coefficient, CL, at a point (x, JJ) 
is also a function of energy. The reader may note that if we were to measure 
the energy spectrum of exiting photons (on side B in Fig. 4.2) it would be 
given by 

1 . (10) 

In discussing polychromatic x-ray photons one has to bear in mind that 
there are basically three different types of detectors [McC75]. The output of a 
detector may be proportional to the total number of photons incident on it, or 
it may be proportional to total photon energy, or it may respond to energy 
deposition per unit mass. Most counting-type detectors are of the first type, 
most scintillation-type detectors are of the second type, and most ionization 
detectors are of the third type. In determining the output of a detector one 
must also take into account the dependence of detector sensitivity on photon 
energy. In this work we will assume for the sake of simplicity that the 
detector sensitivity is constant over the energy range of interest. 

In the energy ranges used for diagnostic examinations the linear attenuation 
coefficient for many tissues decreases with energy. For a propagating 
polychromatic x-ray beam this causes the low energy photons to be 
preferentially absorbed, so that the remaining beam becomes proportionately 
richer in high energy photons. In other words, the mean energy associated 
with the exit spectrum, S&E), is higher than that associated with the 
incident spectrum, Sin(E). This phenomenon is called beam hardening. 

Given the fact that x-ray sources in CT scanning are polychromatic and that 
the attenuation coefficient is energy dependent, the following question arises: 
What parameter does an x-ray CT scanner reconstruct? To answer this 
question McCullough [McC74], [McC75] has introduced the notion of 
effective energy of a CT scanner. It is defined as that monochromatic 
energy at which a given material will exhibit the same attenuation coefficient 
as is measured by the scanner. McCullough et al. [McC74] showed 
empirically that for the original EM1 head scanner the effective energy was 72 
keV when the x-ray tube was operated at 120 kV. (See [Mi178] for a practical 
procedure for determining the effective energy of a CT scanner.) The concept 
of effective energy is valid only under the condition that the exit spectra are 
the same for all the rays used in the measurement of projection data. (When 
the exit spectra are not the same, the result is the appearance of beam 
hardening artifacts discussed in the next subsection.) It follows from the 
work of McCullough [McC75] that it is a good assumption that the measured 
attenuation coefficient P,,,,~ at a point in a cross section is related to the 
actual attenuation coefficient p(E) at that point by 
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s P(E)&t(E) dE 
(11) 

This expression applies only when the output of the detectors is proportional 
to the total number of photons incident on them. McCullough has given 
similar expressions when detectors measure total photon energy and when 
they respond to total energy deposition/unit mass. Effective energy of a 
scanner depends not only on the x-ray tube spectrum but also on the nature of 
photon detection. 

Although it is customary to say that a CT scanner calculates the linear 
attenuation coefficient of tissue (at some effective energy), the numbers 
actually put out by the computer attached to the scanner are integers that 
usually range in values from - 1000 to 3000. These integers have been given 
the name Hounsfield units and are denoted by HU. The relationship between 
the linear attenuation coefficient and the corresponding Hounsfield unit is 

H = cc - Pwater -x1000 (W 
hater 

where p,ater is the attenuation coefficient of water and the values of both p and 
cc,,, are taken at the effective energy of the scanner. The value W = 0 
corresponds to water; and the value H = - 1000 corresponds to p = 0, 
which is assumed to be the attenuation coefficient of air. Clearly, if a scanner 
were perfectly calibrated it would give a value of zero for water and - 1000 
for air. Under actual operating conditions this is rarely the case. However, if 
the assumption of linearity between the measured Hounsfield units and the 
actual value of the attenuation coefficient (at the effective energy of the 
scanner) is valid, one may use the following relationship to convert the 
measured number H,,, into the ideal number HI 

H= Hrn - Hm, water 

H 
x 1000 

m, water - Hm, air 
(13) 

where E-I,, water and H,,,, air are, respectively, the measured Hounsfield units 
for water and air. [This relationship may easily be derived by assuming that ,U 
= aN, + b, calculating a and b in terms of H,,,, water, H,, air, and bwater, and 
then using (12).] 

Brooks [Bro77a] has used (11) to show that the Hounsfield unit Hat a point 
in a CT image may be expressed as 

H= f&+&Q 

l+Q 
(14) 

where H, and HP are the Compton and photoelectric coefficients of the 
material being measured, expressed in Hounsfield units. The parameter Q, 
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called the spectral factor, depends only upon the x-ray spectrum used and 
may be obtained by performing a scan on a calibrating material. A 
noteworthy feature of H, and HP is that they are both energy independent. 
Equation (14) leads to the important result that if two different CT images are 
reconstructed using two different incident spectra (resulting in two different 
values of Q), from the resulting two measured Hounsfleld units for a given 
point in the cross section, one may obtain some degree of chemical 
identification of the material at that point from H, and HP. Instead of 
performing two different scans, one may also perform only one scan with 
split detectors for this purpose [Bro78a]. 

4.1.3 Polychromaticity Artifacts in X-Ray CT 

Beam hardening artifacts, whose cause was discussed above, are most 
noticeable in the CT images of the head, and involve two different types of 
distortions. Many investigators [Bro76], [DiC78], [Gad75], [McD77] have 
shown that beam hardening causes an elevation in CT numbers for tissues 
close to the skull bone. To illustrate this artifact we have presented in Fig. 4.4 
a computer simulation reconstruction of a water phantom inside a skull. The 
projection data were generated on the computer using the 105~kvp x-ray tube 
spectrum (Fig. 4.3) of Epp and Weiss [Epp66]. The energy dependence of the 
attenuation coefficients of the skull bone was taken from an ICRU report 
[ICR64] and that of water was taken from Phelps et al. [Phe75]. 
Reconstruction from these data was done using the filtered backprojection 
algorithm (Chapter 3) with 101 projections and 101 parallel rays in each 
projection. 

Note the “whitening” effect near the skull in Fig. 4.4(a). This is more 
quantitatively illustrated in Fig. 4.4(b) where the elevation of the recon- 
structed values near the skull bone is quite evident. (When CT imaging was in 
its infancy, this whitening effect was mistaken for gray matter of the cerebral 
cortex.) For comparison, we have also shown in Fig. 4.4(b) the reconstruc- 
tion values along a line through the center of the phantom obtained when the 
projection data were generated for monochromatic x-rays. 

The other artifact caused by polychromaticity is the appearance of streaks 
and flares in the vicinity of thick bones and between bones [Due78], [Jos78], 
[Kij78]. (Note that streaks can also be caused by aliasing [Bro78b], [Cra78] .> 
This artifact is illustrated in Fig. 4.5. The phantom used was a skull with 
water and five circular bones inside. Polychromatic projection data were 
generated, as before, using the 105-kvp x-ray spectrum. The reconstruction 
using these data is shown in Fig. 4.5(a) with the same number of rays and 
projections as before. Note the wide dark streaks between the bones inside the 
skull. Compare this image with the reconstruction shown in Fig. 4.5(b) for 
the case when x-rays are monochromatic. In x-ray CT of the head, similar 
dark and wide streaks appear in those cross sections that include the petrous 
bones, and are sometimes called the interpetrous lucency artifact. 
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Fig. 4.4: This reconstruction 
shows the effect of 
polychromaticity artifacts in a 
simulated skull. (a) shows the 
reconstructed image using the 
spectrum in Fig. 4.3, while (b) is 
the center line of the 
reconstruction for both the 
polychromatic and 
monochromatic cases. (From 
fKak79].) 
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Various schemes have been suggested for making these artifacts less 
apparent. These fall into three categories: 1) preprocessing of projection data, 
2) postprocessing of the reconstructed image, and 3) dual-energy imaging. 

Preprocessing techniques are based on the following rationale: If the 
assumption of the photons being monoenergetic were indeed valid, a ray 
integral would then be given by (8). For a homogeneous absorber of 
attenuation coefficient CL, this implies 

Nn CL&?= In - 
Nci 

(1% 
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Fig. 4.5: Hard objects such as 
bones also can cause streaks in 
the reconstructed image. (a) 
Reconstruction from 
polychromatic projection data of 
a phantom that consists of a skull 
with five circular bones inside. 
The rest of the “‘

tissue

” 

inside 
the skull is water. The wide dark 
streaks are caused by the 
polychromaticity of x-rays. The 
polychromatic projections were 
simulated using the spectrum in 
Fig. 4.3. (b) Reconstruction of 
the same phantom as in (a) using 
projections generated with 
monochromatic x-rays. The 
variations in the gray levels 
outside the bone areas within the 
skull are less than 0.1% of the 
mean value. The image was 
displayed with a narrow window 
to bring out these variations. 
Note the absence of streaks 
shown in (a). (From [Kak79].) 

where P is the thickness of the absorber. This equation says that under ideal 
conditions the experimental measurement In (Nin/Nd) should be linearly 
proportional to the absorber thickness. This is depicted in Fig. 4.6. However, 
under actual conditions a result like the solid curve in the figure is obtained. 
Most preprocessing corrections simply specify the selection of an “

appropri- 

ate

” 

absorber and then experimentally obtain the solid curve in Fig. 4.6. 
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ideal case 
(no beam hardening) 

Fig. 4.6: The solid curve shows 
that the experimental 
measurement of a ray integral 
depends nonlinearly on the 
thickness of a homogeneous 
absorber. (Adapted from 
[Kak79].) 

Thickness of a 
homxjeneous absorber 

Thus, should a ray integral be measured at A, it is simply increased to A ’ for 
tomographic reconstruction. This procedure has the advantage of very rapid 
implementation and works well for soft-tissue cross sections because 
differences in the composition of various soft tissues are minimal (they are all 
approximately water-like from the standpoint of x-ray attenuation). For 
preprocessing corrections see [Bro76], [McD75], [McD77], and for a 
technique that combines preprocessing with image deconvolution see 
[Cha78]. 

Preprocessing techniques usually fail when bone is present in a cross 
section. In such cases it is possible to postprocess the CT image to improve 
the reconstruction. In the iterative scheme one first does a reconstruction 
(usually incorporating the linearization correction mentioned above) from the 
projection data. This reconstruction is then thresholded to get an image that 
shows only the bone areas. This thresholded image is then “forward- 
projected” to determine the contribution made by bone to each ray integral in 
each projection. On the basis of this contribution a correction is applied to 
each ray integral. The resulting projection data are then backprojected again 
to form another estimate of the object. Joseph and Spital [Jos78] and Kijewski 
and Bjamgard [Kij78] have obtained very impressive results with this 
technique. A fast reprojection technique is described in [Cra86]. 

The dual-energy technique proposed by Alvarez and Macovski [Alv76a], 
[Due781 is theoretically the most elegant approach to eliminating the beam 
hardening artifacts. Their approach is based on modeling the energy 
dependence of the linear attenuation coefficient’ by 

CL&, Y, E)=al(x yk(E)+az(x, y)fKd'% (16) 

The part a,(x, y)g(E) describes the contribution made by photoelectric 
absorption to the attenuation at point (x, y); a,(x, y) incorporates the material 
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parameters at (x, JJ) and g(E) expresses the (material independent) energy 
dependence of this contribution. The function g(E) is given by 

(See also Brooks and DiChiro [Bro77b]. They have concluded that g(E) = 
E-2.8.) The second part of (16) given by a2(x, Y)&(E) gives the Compton 
scatter contribution to the attenuation. Again a2(x, JJ) depends upon the 
material properties, whereas f&(E), the Klein-Nishina function, describes 
the (material independent) energy dependence of this contribution. The 
functionfxN(E) is given by 

l+cr 
fKN&) =- 

2(1+o) 1 
--- 

0? 
In 

1+2a (Y 
(1+2a) 1 

1 
In (1 +ZCX)- 

(1 + 3o) 
+iG (1 +2a)2 (18) 

with LY = E/510.975. The energy E is in kilo-electron volts. 
The importance of (16) lies in the fact that all the energy dependence has 

been incorporated in the known and material independent functions g(E) and 
fKN(E). Substituting this equation in (9) we get 

where 

Nd= j SO(E) exp 1 -(A&E) +A2fKN@))l dE (19) 

(20) 

and 

A2={ a2k Y) ds. (21) 
ray path 

Al and A2 are, clearly, ray integrals for the functions a,(~, u) and az(x, JJ). 
Now if we could somehow determine A, and A2 for each ray, from this 
information the functions ar(x, y) and a2(x, JJ) could be separately 
reconstructed. And, once we know al(x, JJ) and 02(x, JJ), using (16) an 
attenuation coefficient tomogram could be presented at any energy, free 
from beam hardening artifacts. 

A few words about the determination of Al and A2: Note that it is the 
intensity Nd that is measured by the detector. Now suppose instead of making 
one measurement we make two measurements for each ray path for two 
different source spectra. Let us call these measurements 1, and 12; then 

ZI(AI, 4 = 1 S(E) exp [ - (A&E) + A2fKdE))I dE (22) 
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and 

MAI, Ad= j WE) exp [-(AI~(E)+A~~KN(E))I dE (23) 

which gives us two (integral) equations for the two unknowns Al and AZ. The 
two source spectra, S,(E) and S2(E), may for example be obtained by simply 
changing the tube voltage on the x-ray source or adding filtration to the 
incident beam. This, however, requires that two scans be made for each 
tomogram. In principle, one can obtain equivalent results from a single scan 
with split detectors [Bro78a] or by changing the tube voltage so that 
alternating projections are at different voltages. Alvarez and Macovski 
[Alv76b] have shown that statistical fluctuations in a,(x, y) and a2(x, y) 
caused by the measurement errors in Ii and I2 are small compared to the 
differences of these quantities for body tissues. 

4.1.4 Scatter 

X-ray scatter leads to another type of error in the measurement of a 
projection. Recall that an x-ray beam traveling through an object can be 
attenuated by photoelectric absorption or by scattering. Photoelectric 
absorption is energy dependent and leads to beam hardening as was discussed 
in the previous section. On the other hand, attenuation by scattering occurs 
because some of the original energy in the beam is deflected onto a new path. 
The scatter angle is random but generally more x-rays are scattered in the 
forward direction. 

The only way to prevent scatter from leading to projection errors is to build 
detectors that are perfectly collimated. Thus any x-rays that aren’t traveling 
in a straight line between the source and the detector are rejected. A perfectly 
collimated detector is especially difficult to build in a fourth-generation, 
fixed-detector scanner (to be discussed in Section 4.13. In this type of 
machine the detectors must be able to measure x-rays from a very large angle 
as the source rotates around the object. 

X-ray scatter leads to artifacts in reconstruction because the effect changes 
with each projection. While the intensity of scattered x-rays is approximately 
constant for different rotations of the object, the intensity of the primary beam 
(at the detector) is not. Once the x-rays have passed through the collimator the 
detector simply sums the two intensities. For rays through the object where 
the primary intensity is very small, the effect of scatter will be large, while 
for other rays when the primary beam is large, scattered x-rays will not lead 
to much error. This is shown in Fig. 4.7 [Glo82], [Jos82]. 

For reasons mentioned above, the scattered energy causes larger errors in 
some projections than others. Thus instead of spreading the error energy over 
the entire image, there is a directional dependence that leads to streaks in 
reconstruction. This is shown in the reconstructions of Fig. 4.8. 

Correcting for scatter is relatively easy compared to beam hardening. 
While it is possible to estimate the scatter intensity by mounting detectors 
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Fig. 4.1: The effect of scatter 
on two different projections is 
shown here. For the projections 
where the intensity of the primary 
beam is high the scatter makes 
little difference, When the 
intensity of the scattered beam is 
high compared to the primary 
beam then large (relative) errors 
are seen. 

slightly out of the imaging plane, good results have been obtained by 
assuming a constant scatter intensity over the entire projection [Glo82]. 

4.1.5 Different Methods for Scanning 

There are two scan configurations that lead to rapid data collection. These 
are i) fan beam rotational type (usually called the rotate-rotate or the third 
generation) and ii) fixed detector ring with a rotating source type (usually 
called the rotate-fixed or the fourth generation). As we will see later, both of 
these schemes use fan beam reconstruction concepts. While the reconstruc- 
tion algorithms for a parallel beam machine are simpler, the time to scan with 
an x-ray source across an object and then rotate the entire source-detector 
arrangement for the next scan is usually too long. The time for scanning 
across the object can be reduced by using an array of sources, but only at 
great cost. Thus almost all CT machines in production today use a fan beam 
configuration. 

In a (third-generation) fan beam rotation machine, a fan beam of x-rays is 
used to illuminate a multidetector array as shown in Fig. 4.9. Both the source 
and the detector array are mounted on a yoke which rotates continuously 
around the patient over 360”. Data collection time for such scanners ranges 
from 1 to 20 seconds. In this time more than 1000 projections may be taken. 
If the projections are taken “on the fly” there is a rotational smearing present 
in the data; however, it is usually so small that its effects are not noticeable in 
the final image. Most such scanners use fan beams with fan angles ranging 
from 30 to 60”. The detector bank usually has 500 to 700 or more detectors, 
and images are reconstructed on 256 x 256, 320 x 320, or 512 x 512 
matrices. 

There are two types of x-ray detectors commonly used: solid state and 
xenon gas ionization detectors. Three xenon ionization detectors, which are 
often used in third-generation scanners, are shown in Fig. 4.10. Each 
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Fig. 4.8: Reconstructions are 
shown from an x-ray phantom 
with 15-cm-diameter water and 
two 4-cm Teflon rods. (A) 
Without I20-kvp correction; (B) 
same with polynomial beam 
hardening correction; and (C) 
120-kvp/80-kvp dual-energy 
reconstruction. Note fhat the 
artifacts remain after 
polychromaticity correction. 
(Reprinted with permission from 
[Glo82].) 

Fig. 4.9: In a third-generation 
fan beam x-ray tomography 
machine a point source of x-rays 
and a detector array are rotated 
continuously around the patient. 
(From fKak79j.) 

Detector 
Array 

Plate 
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width of one detector 
T 

Fig. 4.10: A xenon gas detector 
is often used to measure the 
number of x-ray photons that 
pass through the object. (From 
[Kak79].) 
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detector consists of a central collecting electrode with a high voltage strip on 
each side. X-ray photons that enter a detector chamber cause ionizations with 
high probability (which depends upon the length, P, of the detector and the 
pressure of the gas). The resulting current through the electrodes is a measure 
of the incident x-ray intensity. In one commercial scanner, the collector plates 
are made of copper and the high voltage strips of tantalum. In the same 
scanner, the length P (shown in Fig. 4.10) is 8 cm, the voltage applied 
between the electrodes 170 V, and the pressure of the gas 10 atm. The overall 
efficiency of this particular detector is around 60%. The primary advantages 
of xenon gas detectors are that they can be packed closely and that they are 
inexpensive. The entrance width, 7, in Fig. 4.10 may be as small as 1 mm. 

Yaffee et al. [Yaf77] have discussed in detail the energy absorption 
efficiency, the linearity of response, and the sensitivity to scattered and off- 
focus radiation for xenon gas detectors. Williams [wi178] has discussed their 
use in commercial CT systems. 

In a fixed-detector and rotating-source scanner (fourth generation) a large 
number of detectors are mounted on a fixed ring as shown in Fig. 4.11. Inside 
this ring is an x-ray tube that continually rotates around the patient. During 
this rotation the output of the detector integrators facing the tube is sampled 
every few milliseconds. All such samples for any one detector constitute what 
is known as a detector-vertex fan. (The fan beam data thus collected from a 
fourth-generation machine are similar to third-generation fan beam data.) 
Since the detectors are placed at fixed equiangular intervals around a ring, the 
data collected by sampling a detector are approximately equiangular, but not 
exactly so because the source and the detector rings must have different radii. 
Generally, interpolation is used to convert these data into a more precise 
equiangular fan for reconstruction using the algorithms in Chapter 3. 

Note that the detectors do not have to be packed closely (more on this at the 
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a fixed ring 
of detectors 

an x-ray source 
rotating around 
the patient 

Fig. 4.11: In a fourth-generation end of this section). This observation together with the fact that the detectors 
scanner an x-ray source rotates 
continuously around the patient. 

are spread all around on a ring allows the use of scintillation detectors as 
A stationary ring of detectors opposed to ionization gas chambers. Most scintillation detectors currently in 
comnletelv surrounds the oatient. 
(From [Khk79].) z 

use are made of sodium iodide, bismuth germanate, or cesium iodide crystals 
coupled to photo-diodes. (See [Der77a] for a comparison of sodium iodide 
and bismuth germanate.) The crystal used for fabricating a scintillation 
detector serves two purposes. First, it traps most of the x-ray photons which 
strike the crystal, with a degree of efficiency which depends upon the photon 
energy and the size of the crystal. The x-ray photons then undergo 
photoelectric absorption (or Compton scatter with subsequent photoelectric 
absorption) resulting in the production of secondary electrons. The second 
function of the crystal is that of a phosphor-a solid which can transform the 
kinetic energy of the secondary electrons into flashes of light. The 
geometrical design and the encapsulation of the crystal are such that most of 
these flashes of light leave the crystal through a side where they can be 
detected by a photomultiplier tube or a solid state photo-diode. 

A commercial scanner of the fourth-generation type uses 1088 cesium 
iodide detectors and in each detector fan 1356 samples are taken. This 
particular system differs from the one depicted in Fig. 4.9 in one respect: the 
x-ray source rotates around the patient outside the detector ring. This makes 
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it necessary to nutate the detector ring so that measurements like those shown 
in the figure may be made [Haq78]. 

An important difference exists between the third- and the fourth-generation 
configurations. The data in a third-generation scanner are limited essentially 
in the number of rays in each projection, although there is no limit on the 
number of projections themselves; one can have only as many rays in each 
projection as the number of detectors in the detector array. On the other hand, 
the data collected in a fourth-generation scanner are limited in the number of 
projections that may be generated, while there is no limit on the number of 
rays in each projection. ’ (It is now known that for good-quality reconstruc- 
tions the number of projections should be comparable to the number of rays in 
each projection. See Chapter 5.) 

In a fan beam rotating detector (third-generation) scanner, if one detector is 
defective the same ray in every projection gets recorded incorrectly. Such 
correlated errors in all the projections form ring artifacts [She77]. On the 
other hand, when one detector fails in a fixed detector ring type (fourth- 
generation) scanner, it implies a loss or partial recording of one complete 
projection; when a large number of projections are measured, a loss of one 
projection usually does not noticeably degrade the quality of a reconstruction 
[Shu77]. The reverse is true for changes in the x-ray source. In a third- 
generation machine, the entire projection is scaled and the reconstruction is 
not greatly affected; while in fourth-generation scanners source instabilities 
lead to ring artifacts. Reconstructions comparing the effects of one bad ray in 
all projections to one bad projection are shown in Fig. 4.12. 

The very nature of the construction of a gas ionization detector in a third- 
generation scanner lends them a certain degree of collimation which is a 
protection against receiving scatter radiation. On the other hand, the detectors 
in a fourth-generation scanner cannot be collimated since they must be 
capable of receiving photons from a large number of directions as the x-ray 
tube is rotating around the patient. This makes fixed ring detectors more 
vulnerable to scattered radiation. 

When conventional CT scanners are used to image the heart, the 
reconstruction is blurred because of the heart’s motion during the data 
collection time. The scanners in production today take at least a full second to 
collect the data needed for a reconstruction but a number of modifications 
have been proposed to the standard fan beam machines so that satisfactory 
images can be made [Lip83], [Mar82]. 

Certainly the simplest approach is to measure projection data for several 
complete rotations of the source and then use only those projections that occur 
during the same instant of the cardiac cycle. This is called gated CT and is 
usually accomplished by recording the patient’s EKG as each projection is 

I Although one may generate a very large number of rays by taking a large number of samples 
in each projection, “useful information” would be limited by the width of the focal spot on the x- 
ray tube and by the size of the detector aperture. 
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Fig. 4.12: Three reconstructions 
are shown here to demonstrate 
the ring artifact due to a bad 
detector in a third-generation 
(rotating detector) scanner. (a) 
shows a standard reconstruction 
with 128 projections and 128 
rays. (b) shows a ring artifact due 
to scaling detector 80 in all 
projections by 0.99.5. (c) shows 
the effect of scaling all rays in 
projection 80 by 0.995. 

measured. A full set

’

of 

projection data for any desired portion of the EKG 
cycle is estimated by selecting all those projections that occur at or near the 
right time and then using interpolation to estimate those projections where no 
data are available. More details of this procedure can be found in [McK8 11. 

Notwithstanding interpolation, missing projections are a shortcoming of 
the gated CT approach. In addition, for angiographic imaging, where it is 
necessary to measure the flow of a contrast medium through the body, the 
movement is not periodic and the techniques of gated CT do not apply. Two 
new hardware solutions have been proposed to overcome these problems-in 
both schemes the aim is to generate all the necessary projections in a time 
interval that is sufficiently short so that within the time interval the object may 
be assumed to be in a constant state. In the Dynamic Spatial Reconstructor 
(DSR) described by Robb et al. in [Rob83], 14 x-ray sources and 14 large 
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circular fluorescent screens are used to measure a full set (112 views) of 
projections in a time interval of 0.127 second. In addition, since the x-ray 
intensity is measured on a fluorescent screen in two dimensions (and then 
recorded using video cameras), the reconstructions can be done in three 
dimensions. 

A second approach described by Boyd and Lipton [Boy83], [Pes85], and 
implemented by Imatron, uses an electron beam that is scanned around a 
circular anode. The circular anode surrounds the patient and the beam 
striking this target ring generates an x-ray beam that is then measured on the 
far side of the patient using a fixed array of detectors. Since the location of the 
x-ray source is determined completely by the deflection of the electron beam 
and the deflection is controlled electronically, an entire scan can be made in 
0.05 second. 

4.1.6 Applications 

Certainly, x-ray tomography has found its biggest use in the medical 
industry. Fig. 4.13 shows an example of the fine detail that has made this type 
of imaging so popular. This image of a human head corresponds to an axial 
plane and the subject

’

s 

eyes, nose, and ear lobes are clearly visible. The 

Fig. 4.13: This figure shows a 
typical x-ray tomographic image 
produced with a third-generation 
machine. (Courtesy of Carl 
Crawford of the General Electric 
Medical Systems Division in 
Milwaukee, WI.) 
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reader is referred to [Axe831 and a number of medical journals, including the 
Journal of Computerized Tomography, for additional medical applica- 
tions. 

Computerized tomography has also been applied to nondestructive testing 
(NDT) of materials and industrial objects. The rocket motor in Fig. 4.14 was 

Fig. 4.14: A conventional examined by the Air Force-Aerojet Advanced Computed Tomography 
photograph is shown here of a System I (AF/ACTS-I)* and its reconstruction is shown in Fig. 4.15. In the 
solid fuel rocket motor studied by 
the Aerojet Corporation. 

reconstruction, the outer ring is a PVC pipe used to support the motor, a 

(Courtesy of Jim Berry and Gary grounding wire shows in the upper left as a small circular object, and the 
Cawood of Aerojet Strategic large mass with the star-shaped void represents solid fuel propellant. Several 
Propulsion Company.) anomalies in the propellant are indicated with square boxes. 

’ This project was sponsored by Air Force Wright Aeronautical Laboratories, Air Force 
Materials Laboratory, Air Force Systems Command, United States Air Force, Wright-Patterson 
AFB, OH. 
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Fig. 4.15: A cross section of the 
motor in Fig, 4.14 is shown here. 

An Optical Society of America meeting on Industrial Applications of 

The white squares indicate flaws Computerized Tomography described a number of unique applications of CT 
in the rocket propellant. [OSA85]. These include imaging of core samples from oil wells [Wan85], 
(Courtesy of Aerojet Strategic 
Propulsion Company,) 

quality assurance [A1185], [Hef85], [Per85], and noninvasive measurement of 
fluid flow [Sny85] and flame temperature [Uck85]. 

4.2 Emission Computed Tomography 
In conventional x-ray tomography, physicians use the attenuation coeffi- 

cient of tissue to infer diagnostic information about the patient. Emission CT, 
on the other hand, uses the decay of radioactive isotopes to image the 
distribution of the isotope as a function of time. These isotopes may be 
administered to the patient in the form of radiopharmaceuticals either by 
injection or by inhalation. Thus, for example, by administering a radioactive 
isotope by inhalation, emission CT can be used to trace the path of the isotope 
through the lungs and the rest of the body. 

Radioactive isotopes are characterized by the emission of gamma-ray 
photons or positrons, both products of nuclear decay. (Note that gamma-ray 
photons are indistinguishable from x-ray photons; different terms are used 
simply to indicate their origin.) The concentration of such an isotope in any 
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cross section changes with time due to radioactive decay, flow, and 
biochemical kinetics within the body. This implies that all the data for one 
cross-sectional image must be collected in a time interval that is short 
compared to the time constant associated with the changing concentration. 
But then this aspect also gives emission CT its greatest potential and utility in 
diagnostic medicine, because now by analyzing the images taken at different 
times for the same cross section we can determine the functional state of 
various organs in a patient’s body. 

Emission CT is of two types: single photon emission CT and positron 
emission CT. The word single in the former refers to the product of the 
radioactive decay, a single photon, while in positron emission CT the decay 
produces a single positron. After traveling a short distance the positron comes 
to rest and combines with an electron. The annihilation of the emitted 
positron results in two oppositely traveling gamma-ray photons. We will first 
discuss CT imaging of (single) gamma-ray photon emitters. 

4.2.1 Single Photon Emission Tomography 

Fig. 4.16 shows a cross section of a body with a distributed source emitting 
gamma-ray photons. For the purpose of imaging, any very small, neverthe- 
less macroscopic, element of this source may be considered to be an isotropic 
source of gamma-rays. The number of gamma-ray photons emitted per 

Fig. 4.16: In single photon second by such an element is proportional to the concentration of the source at 
emission tomography a 
distributed source of gamma-rays 

that point. Assume that the collimator in front of the detector has infinite 
is imaged using a collimated collimation, which means it accepts only those photons that travel toward it in 
detector. (From [Kak79].) the parallel ray-bundle RlR2. (Infinite collimation, in practice, would imply 

- collimator 

A distributed 
source of gamma-ray 

A cross-section 
of the patient 
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Fig. 4.17: Axial SPECT images 
showing the concentration of 
iodine-123 at four cross-sectional 
planes are shown here. The 64 x 
64 reconstructions were made by 
measuring 128 projections each 
with 64 rays. (The images were 
produced on a General Electric 
4000T/Star and are courtesy of 
Grant Gullberg of General 
Electric in Milwaukee, WI,) 

an infinitely long time to make a statistically meaningful observation.) Then 
clearly the total number of photons recorded by the detector in a “

statistically 

meaningful

” 

time interval is proportional to the total concentration of the 
emitter along the line defined by R1R2. In other words, it is a ray integral as 
defined in Chapter 3. By moving the detector-collimator assembly to an 
adjacent position laterally, one may determine this integral for another ray 
parallel to R1R2. After one such scan is completed, generating one 
projection, one may either rotate the patient or the detector-collimator 
assembly and generate other projections. Under ideal conditions it should be 
possible to generate the projection data required for the usual reconstruction 
algorithms. 

Figs. 4.17 and 4.18 show, respectively, axial and sag&al SPECT images of 
a head. The axial images are normal CT reconstructions at different cross- 
sectional locations, while the images of Fig. 4.18 were found by reformatting 
the original reconstructed images into four sagittal views. The reconstruc- 
tions are 64 x 64 images representing the concentration of an amphetamine 
tagged with iodine-123. The measured data for these reconstructions 
consisted of 128 projections (over 360

”

) 

each with 64 rays. 
As the reader might have noticed already, the images in Figs. 4.17 and 

4.18 look blurry compared to the x-ray CT images as exemplified by the 
reconstructions in Fig. 4.13. To get better resolution in emission CT, one 
might consider using more detectors to provide finer sampling of each 
projection; unfortunately, that would mean fewer events per detector and thus 
a diminished signal-to-noise ratio at each detector. One could consider 
increasing the dosage of the radioactive isotope to enhance the signal-to-noise 
ratio, but that is limited by what the body can safely absorb. The length of 
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Fig. 4.18: The reconstructed 
data in Fig. 4. I7 were 
reformatted to produce the four 
sagittal images shown here. (The 
images were produced on a 
General Electric 4000TLStar and 
are courtesy of Grant Gullberg of 
General Electric in Milwaukee, 
WI) 

time over which the events are integrated could also be prolonged for an 
increased signal-to-noise ratio, but usually that is constrained by body motion 
[Bro8 11. 

A serious difficulty with tomographic imaging of a gamma-ray emitting 
source is caused by the attenuation that photons suffer during their travel from 
the emitting nuclei to the detector. 3 The extent of this attenuation depends 
upon both the photon energy and the nature of the tissue. Consider two 
elemental sources of equal strength at points A and B in Fig. 4.16: because of 
attenuation the detector will find the source at A stronger than the one at B. 
The effect of attenuation is illustrated in Fig. 4.19, which shows reconstruc- 
tions of a disk phantom for three different values of the attenuation: p = 
0.05, 0.11, and 0.15 cm-

‘

, 

obtained by using three different media in the 
phantom. The original disk phantom is also shown for comparison. (These 
reconstructions were done using 360

” 

of projection data.) 
A number of different approaches for attenuation compensation have been 

developed. These will now be briefly discussed in the following section. 

4.2.2 Attenuation Compensation for Single Photon Emission CT 

Consider the case where gamma-ray emission is taking place in a medium 
that can everywhere be characterized by a constant linear attenuation 

3 There is also the difficulty caused by the fact that for a collimator the parallel beam RIR2 in 
Fig. 4.16 is only an idealization. The detector in that figure will accept photons from a point 
source anywhere within the volume R3R2R4. Also, in this volume the response of the detector 
will decrease as an isotropic source is moved away from it. However, such nonuniformities are 
not large enough to cause serious distortions in the reconstructions. This was first shown by 
Budinger [Bud74]. See also [Gus78]. 
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Fig. 4.19: Four reconstructions 
of a gamma-ray emitting disk 
phantom are shown in (a) for 
different values of attenuation. 
(b) shows a quantitative 
comparison of the reconstructed 
values on the center line. 
(Courtesy of T. Budinger.) 
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coefficient. Let p(x, y) denote the source distribution in a desired cross 
section. In the absence of any attenuation the projection data PO(t) are given 
from Chapter 3 by 

l%(t) = [ 1 p(x, y)6(x cos 8 +y sin 19 - t) dx dy. (24) 

However, in the presence of attenuation this relationship must be modified to 
include an exponential attenuation term, e-r(d-@, where, as shown in Fig. 
4.20, s = -x sin 13 + y cos t? and d = d(t, 0) is the distance from the line 
CC’ to the edge of the object. Thus the ray integral actually measured is 
given by 

&(t)= 11 ,o(x, y) exp [-~(d-s)]6(x cos B+y sin 0-t) dx dy. (25) 

For convex objects the distance d, which is a function of x, y, and 8, can be 
determined from the external shape of the object. We can now write 

Se(t) =&(t) exp [pd] = j 1 p(x, y) exp [ - ~(x sin 0 -y cos e)] 

- 6(x cos tY+y sin 0-t) dx dy. (26) 

The function Se(t) has been given the name exponential Radon transform. 
In [Tre80], Tretiak and Metz have shown that 

b(r, 4)= jr [ jy, &(r cos (0 - 4) - t)h(t) dt 1 exp [pr sin (0 - I$)] de 

(27) 

is an attenuation compensated reconstruction of p(x, y) provided the 
convolving function h(t) is chosen such that the point spread function of the 
system given by 

W, 4)= jf 4 r cos (e-4)) exp [pr sin (e-4)] d0 P-0 

fits some desired point spread function (ideally a delta function but in practice 
a low pass filtered version of a delta function). Note that because the 
integration in (28) is over one period of the integrand (considered as a 
function of t9), the function b(r, 4) is independent of 4 which makes it radially 
symmetric. Good numerical approximations to /z(t) are presented in [Tre80]. 
In [Tre80] Tretiak and Metz have provided analytical solutions for h(t). Note 
that (27) possesses a filtered backprojection implementation very similar to 
that described in Chapter 3. Each modified projection Se(t) is first convolved 
with the function h(t); the resulting filtered projections are then backpro- 
jetted as discussed before. For each 8 the backprojected contribution at a 
given pixel is multiplied by the exponential weight ec’ sin(e-+). 

Budinger and his associates have done considerable work on incorporating 
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Fig. 4.20: Several parameters 
for attenuation correction are 
shown here. (From [Kak79].) 

attenuation compensation in their iterative least squares reconstruction 
techniques [Bud76]. In these procedures one approximates an image to be 
reconstructed by a grid as shown in Fig. 4.21 and an assumption is made that 
the concentration of the nuclide is constant within each grid block, the 
concentration in block m being denoted by p(m). In the absence of 
attenuation, the projection measured at a sampling point tk with projection 
angle ej is given by 

PI&)= c PWf~W) (29) 
m 
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cexecto’ I3 
7u collimator 

Fig. 4.21: This figure shows the 
grid representation for a source 
distribution. The concentration of 
the source is assumed to be 
constant in each grid square. 
(From [Kak79].) 

where f i(m) is a geometrical factor equal to that fraction of the mth block 
that is intercepted by the kth ray in the view at angle 8. (The above equation 
may be solved by a variety of iterative techniques [Ben70], [Goi72], 
[Her7 11.) 

Once the problem of image reconstruction is set up as in (29), one may 
introduce attenuation compensation by simply modifying the geometrical 
factors as shown here: 

Mtk) = i dm)f t(m) exp [-P&I 
m-l 

(30) 

where P”, is the distance from the center of the mth cell to the edge of the 
reconstruction domain in the view 8. The above equations could be solved, as 
any set of simultaneous equations, for the unknowns p(n). 
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Fig. 4.22: In positron emission 
tomography the decay of a 
positron/electron pair is detected 
by a pair of photons. Since the 
photons are released in opposite 
directions it is possible to 
determine which ray it came from 
and measure a projection. (From 
[Kak79J.) 

Unfortunately, this rationale is flawed: In actual practice the attenuating 
path length for the mth cell does not extend all the way to the detector or, for 
that matter, even to the end of the reconstruction domain. For each cell and 
for a given ray passing that cell it only extends to the end of the object along 
that ray. To incorporate this knowledge in attenuation compensation, 
Budinger and Gullberg [Bud761 have used an iterative least squares approach. 
They first reconstruct the emitter concentration ignoring the attenuation. This 
reconstruction is used to determine the boundaries of the object by using 
an edge detection algorithm. With this information the attenuation factors 
exp ( - PCLP~) can now be calculated where P”, is now the distance from the mth 
pixel to the edge of the object along a line 13 + 90”. The source concentration 
is then calculated using the least squares approach. This method, therefore, 
requires two reconstructions. Also required is a large storage file for the 
coefficients f;. 

For other approaches to attenuation compensation the reader is referred to 
[Be179], [Cha79a], [Cha79b], [Hsi76]. 

4.2.3 Positron Emission Tomography 

With positron emission tomography (PET), we want to determine the 
concentration and location of a positron emitting compound in a desired cross 
section of the human body. Perhaps the most remarkable feature of a positron 
emitter, at least from the standpoint of tomographic imaging, is the fact that 
an emitted positron can’t exist in nature for any length of time. When brought 
to rest, it interacts with an electron and, as a result, their masses are 
annihilated, creating two photons of 5 11 keV each. [Note that the mass of an 
electron (or positron) at rest is equivalent to an energy of approximately 5 11 
keV.1 These two photons are called annihilation gamma-ray photons and are 
emitted at very nearly 180” from one another (Fig. 4.22). It is also important 
to note that the annihilation of a positron occurs with high probability only 
after it has been brought to rest. Note that, on the average, I-MeV and 5- 

positron electron + 
;4 -; 

annihilation 

photon of < c photon of energy 
.S”lSl-gy 511 Kev 

511 Kev 
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Fig. 4.23: A pair of detectors 
and a coincidence testing circuit 
are used to determine the location 
of a positron emission. Arrival of 
coincident photons at the 
detectors D, and Dz implies that 
there was a positron emission 
somewhere on the line AA’. This 
is known as electronic 
collimation. (From [Kak79].) 

MeV positrons traverse 4 mm and 2.5 cm, respectively, in water before 
annihilation. Therefore, for accurate localization it is important that the 
emitted positrons have as little kinetic energy as possible. Usually, in 
practice, this desirable property for a positron emitting compound has to be 
balanced against the competing property that in a nuclear decay if the positron 
emission process is to dominate over other competing processes, such as 
electron capture decay, the decay energy must be sufficiently large and, 
hence, lead to large positron kinetic energy. 

The fact that the annihilation of a positron leads to two gamma-ray photons 
traveling in opposite directions forms the basis of a unique way of detecting 
positrons. Coincident detection by two physically separated detectors of two 
gamma-ray photons locates a positron emitting nucleus on a line joining the 
two detectors. Clearly, a few words about coincident detection are in order. 
Recall that in emission work, each photon is detected separately and therefore 
treated as a distinct entity (hence the name “event” for the arrival of a 
photon). Now suppose the detectors D, and Dz in Fig. 4.23(a) record two 
photons simultaneously (i.e., in coincidence) that would indicate a positron 
annihilation on the line joining AA ’ . We have used the phrase “simultaneous 
detection” here in spite of the fact that the distances SA and SA ’ may not be 
equal. The “coincidence resolving time” of circuits that check for whether 
the two photons have arrived simultaneously is usually on the order of 10 to 
25 ns-a sufficiently long interval of time to make path difference 
considerations unimportant. This means that if the two annihilation photons 
arrive at the two detectors within this time interval, they are considered to be 
in coincidence. 

Positron devices have one great advantage over single photon devices 
discussed in the preceding subsection, that is, electronic collimation. This is 

circuits for - 
C testing 

coincidence r 

+& - 
e .vMe 

(4 

circuits for 
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illustrated by Fig. 4.23(b). Let us say we have a small volume of a positron 
emitting source at location S, in the figure. For all the annihilation photons 
emitted into the conical volume A2S1A2, their counterparts will be emitted 
into the volume A3SA4 so as to miss the detector 4 completely. Clearly 
then, with coincident detection, the source Si will not be detected at all with 
this detector pair. On the other hand, the source located at & will be detected. 
Note that, by the same token, if the same small source is located at S3 it will 
be detected with a slightly reduced intensity (therefore, sensitivity) because of 
its off-center location. (This effect contributes to spatial variance of the point 
spread function of positron devices.) In order to appreciate this electronic 
collimation the reader should bear in mind that if we had used the detectors 
Di and DZ as ordinary (meaning noncoincident) gamma-ray detectors (with 
no collimation), we wouldn’t have been able to differentiate between the 
sources at locations Sr and S, in the figure. The property of electronic 
collimation discussed here was first pointed out in 1951 by Wrenn et al., 
[WreSl] who also pointed out how it might be somewhat influenced by 
background scatter. 

It is easy to see how the projection data for positron emission CT might be 
generated. In Fig. 4.23 if we ignore variations in the useful solid angle 
subtended at the detectors by various point sources within AIAZASA6 (and, 
also, if for a moment we ignore attenuation), then it is clear that the total 
number of coincident counts by detectors Di and Dz is proportional to the 
integral of the concentration of the positron emitting compound over the 
volume A1A2A5A6. This by definition is a ray integral in a projection, 
provided the width 7 shown in the figure is sufficiently small. 

This principle has been incorporated in the many positron scanners. As an 
example, the detector arrangement in the positron system (PETT) developed 
originally at Washington University by TerPogossian and his associates 
[Hof76] is shown in Fig. 4.24(a). The system uses six detector banks, 
containing eight scintillation detectors each. Each detector is operated in 
coincidence with all the detectors in the opposite bank. For finer sampling of 
the projection data and also to generate more views, the entire detector gantry 
is rotated around the patient in 3’ increments over an arc of 60’) and for each 
angular position the gantry is also translated over a distance of 5 cm in l-cm 
increments. A multislice version of this scanner is described in [Ter78a] and 
[Mu178]. These scanners have formed the basis for the development of Ortec 
ECAT [Phe78]. Many other scanners [Boh78], [Cho76], [Cho77], [Der77b], 
[Ter78b], [Yam771 use a ring detector system, a schematic of which is shown 
in Fig. 4.24(b). Derenzo [Der77a] has given a detailed comparison of sodium 
iodide and bismuth germanate crystals for such ring detector systems. The 
reader will notice that the detector configuration in a positron ring system is 
identical to that used in the fixed-detector x-ray CT scanners described in 
Section 4.1. Therefore, by placing a rotating x-ray source inside the ring in 
Fig. 4.24(b) one can have a dual-purpose scanner, as proposed by Cho 
[Cho78]. The reader is also referred to [Car78a] for a characterization of the 
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a ring 
detector 
system for 
positron 
tomography 

Fig. 4.24: (a) Detector performance of positron imaging systems and to [Bud771 for a comparison of 
arrangement in the PETT III 
CAT, (b) A ring detector system 

positron tomography with single photon gamma-ray tomography. While our 
for positron cameras. Each discussion here has focused on reconstructing two-dimensional distributions 
detector in the ring works in of positron concentration (from the one-dimensional projection data), by 
coincidence with a number of the 
other detectors. (From [Kak79].) 

using planar arrays for recording coincidences there have also been attempts 
at direct reconstruction of the three-dimensional distribution of positrons 
[Chu77], [Tam78]. 

4.2.4 Attenuation Compensation for Positron Tomography 

Two major engineering advantages of positron tomography over single 
photon emission tomography are: 1) the electronic collimation already 
discussed, 2) easier attenuation compensation.4 We will now show why 
attenuation compensation is easier in positron tomography. 

Let’s say that the detectors D1 and Dz in Fig. 4.25 are being used to 
measure one ray in a projection and let’s also assume that there is a source of 
positron emitters located at the point S. Suppose for a particular positron 
annihilation, the two annihilation gamma-ray photons labeled y1 and y2 in the 
figure are released toward D1 and D2, respectively. The probability of y1 
reaching detector D, is given by 

4 On the other hand, one of the disadvantages of positron emission CT in relation to single 
gamma-ray emission CT is that the dose of radiation delivered to a patient from the 
administration of a positron emitting compound (radionuclide) includes, in addition to the 
contribution from the annihilation radiation, that contributed by the kinetic energy of positrons. 
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Fig. 4.25: A photon emitted at 
S and traveling toward the D, 
detector is attenuated over a 
distance of L, - L. while a 
photon tr&eiing to-ward the Dz 
detector undergoes an attenuation 
proportional to L - L2. (From 
fKak79].) 

where p(x) is the attenuation coefficient at 5 11 keV as a function of distance 
along the line joining the two detectors. Similarly, the probability of the 
photon y2 reaching the detector D2 is given by 

Then the probability that this particular annihilation will be recorded by the 
detectors is given by the product of the above two probabilities 

(33) 

which is equal to 

(34) 

This is a most remarkable result because, first, this attenuation factor is the 
same no matter where positron annihilation occurs on the line joining II1 and 
02, and, second, the factor above is exactly the attenuation that a beam of 
monoenergetic photons at 511 keV would undergo in propagating from L, at 
one side to L2 at the other. Therefore, one can readily compensate for 
attenuation by first doing a transmission study (one does not have to do a 
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reconstruction in this study) to record total transmission loss for each ray in 
each projection. Then, in the positron emission study, the data for each ray 
can simply be attenuation compensated when corrected (by division) by this 
transmission loss factor. This method of attenuation compensation has been 
used in the PETT and other [Bro78] positron emission scanners. 

There are other approaches to attenuation compensation in positron CT 
[Cho77]. For example, at 511-keV photon energy, a human head may be 
modeled as possessing constant attenuation (which is approximately equal to 
that of water). If in a head study the head is surrounded by a water bath, the 
attenuation factor given by (34) may now be easily calculated from the shape 
of the water bath [Eri76]. 

4.3 Ultrasonic Computed Tomography 

When diffraction effects can be ignored, ultrasound CT is very similar to 
x-ray tomography. In both cases a transmitter illuminates the object and a line 
integral of the attenuation can be estimated by measuring the energy on the far 
side of the object. Ultrasound differs from x-rays because the propagation 
speed is much lower and thus it is possible to measure the exact pressure of 
the wave as a function of time. From the pressure waveform it is possible, for 
example, to measure not only the attenuation of the pressure field but also the 
delay in the signal induced by the object. From these two measurements it is 
possible to estimate the attenuation coefficient and the refractive index of the 
object. The first such tomograms were made by Greenleaf et al. [Gre74], 
[Gre75], followed by Carson et al. [Car76], Jackowatz and Kak [Jak76], and 
Glover and Sharp [Glo77]. 

Before we discuss ultrasonic tomography any further it should be borne in 
mind that the conventional method of using pulse-echo ultrasound to form 
images is also tomographic-in the sense that it is cross-sectional. In other 
words, in a conventional pulse-echo B-scan image (see Chapter 8), tissue 
structures aren’t superimposed upon each other. One may, therefore, ask: 
Why computerized ultrasonic tomography? The answer lies in the fact that 
with pulse-echo systems we can only see tissue interfaces, although, on 
account of scattering, there are some returns from within the bulk of the 
tissue. [Work is now progressing on methods of correlating (quantitatively) 
these scattered returns with the local properties of tissue [Fla83], [Kuc84]. 
This correlation is made difficult by the fact that the scattered returns are 
modified every time they pass through an interface; hence the interest in 
computed ultrasonic tomography as an alternative strategy for quantitative 
imaging with sound.] 

From the discussion in a previous chapter on algorithms, it is clear that in 
computerized tomography it is essential to know the path that a ray traverses 
from the source to the detector. In x-ray and emission tomography these paths 
are straight lines (within limits of the detector collimators), but this isn’t 
always the case for ultrasound tomography. When an ultrasonic beam 
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propagates through tissue, it undergoes a deflection at every interface 
between tissues of different refractive indices. Carson et al. [Car771 have 
discussed some of the distortions introduced in a CT image by hard tissues 
such as bone. (For a computer simulation study of these distortions, see 
[Far78].) It has been suggested [Joh75] that perhaps we could correct for 
refraction by using the following iterative scheme: we could first reconstruct 
a refractive index tomogram ignoring refraction; rays could then be digitally 
traced through this tomogram indicating the propagation paths; these curved 
paths could then be used for a subsequent reconstruction, and the process 
repeated. Another possible approach is to use inverse scattering solutions to 
the problem [Iwa75], [Mue80]. Both of these approaches will be discussed in 
later chapters. The problem of tomographic imaging of hard tissues with 
ultrasound remains unsolved. 

In this section we will assume that we are only dealing with soft-tissue 
structures. (The refraction effects are much smaller now and can generally be 
ignored.) An important application of this case is ultrasonic tumor detection 
in the female breast [Car78b], [Gre78], [Gregl], [Sch84]. 

Our review here will only deal with transmission ultrasound. Recently it 
has been shown theoretically that it is also possible to achieve (computed) 
tomographic imaging with reflected ultrasound [Nor79a], [Nor79b]. Clinical 
verification of this new technique has yet to be carried out. (See Chapter 8 for 
more information.) 

4.3.1 Fundamental Considerations 

Like the x-ray case, first consider ultrasonic waves propagating from a 
transmitting transducer through a single layer of tissue and measured by a 
receiver on the far side of the tissue, as diagrammed in Fig. 4.26(a). Because 
ultrasonic waves in the range 1 to 10 MHz are highly attenuated by air, the 
tissue layer is immersed in water or another fluid. Water serves to couple the 
energy of the transducer into the object and provides a good refractive index 
match with the tissue. Ignoring the effects of refraction, here we will model 
the received waveform by considering only the direct path (or ray) between 
the two transducers. 

If an electrical signal, x(t), is applied to the transmitting transducer as 
shown in Fig. 4.26(a), a number of effects can be identified that determine 
the electrical signal produced by the receiving transducer. We can write an 
expression for the received signal, y(t), by considering each of these effects 
in the frequency domain. Thus the Fourier transform of the received signal, 
Y(f), is given by a simple multiplication of the following factors: 

1) the transmitter transfer function relating the electrical signal to the 
resulting pressure wave, N,(f); 

2) the attenuation, e- olw(f)Pw,, and phase change, e-jpw(f)pw,, caused by the 
water on the near side of the tissue; 
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Fig. 4.26: As an ultrasonic 
beam travels between two 
transducers (a) it undergoes a 
phase shift in water over a 
distance of PW, and t&, and both a 
phase shift and an attenuation 
due to the object. In (b) the beam 
undergoes a phase shift as it goes 
through the water and in (c) the 
beam travels through both the 
water and a multilayered object. 
(From [Kak79].) 
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3) the transmittance of the front surface of the tissue or the percentage of 
energy in the water that is coupled into the tissue, 71; 

4) the attenuation, e-OL(fjP, and phase change, e-ismr, caused by the layer 
of tissue; 

5) the transmittance of the rear surface of the tissue or the percentage of 
energy in the tissue that is coupled into the water, 72; 

6) the attenuation, e+Jf)tw,, and phase change, e-jfldf)C,, caused by the 
water on the far side of the tissue; . 

7) the receiver transfer function relating a pressure wave to the resulting 
electrical signal, Hz(f). 

We will assume the center frequency of the transducers is high enough so 
that beam divergence may be neglected. (If the center frequency is too low, 
the transmitted wavefront will diverge excessively as it propagates toward the 
receiver; the resulting loss of signal would then have to be compensated for 
by another factor.) With these assumptions the Fourier transform Y(f) of the 
received signal y(t) is related to X(f), the Fourier transform of the signal 
x(t), as follows [Din76], [Kak78]: 

Y(f) =~m~df)~2m~7 

* exp [ - b(f) +AWllWxp [ - [GU) +.A(.f)l~wl (35) 

where 

c = f&v, + &* (36) 

C, and e,, being water path lengths on two sides of the tissue layer and 0 
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being the thickness of the tissue. a(f) and /3(f) are the attenuation and phase 
coefficients, respectively, of the tissue layer; a,(f) and P,,(f) are the 
corresponding coefficients for the water medium; Hi(j) and Hz(f) are, 
respectively, the transfer functions of the transducers T, and T2. In the above 
equation A, is given by 

A~=T, * r2 (37) 

where 7l and 72 are, respectively, the transmittances of the front and the back 
faces of the layer. 

In order not to concern ourselves with the transducer properties, as 
depicted by functions H,(f) and Hz(f), we will always normalize the 
received signal y(t) by the direct water path signal y,(t); see Fig. 4.26(b). 
Clearly, 

Y&f) =~(f)~d.f)~2(f) exp t - l%U) +AMf)l(f+ &)I (38) 

where Y,(f) is the Fourier transform of y,(t). Therefore, from (35) and (38) 

Y(f) = Ydf)A exp [ - [G-G) - %v(f))~+m(f) - Pwm)~ll. (39) 

In most cases, the attenuation coefficient of water is much smaller than that of 
tissue [Din79b] and may simply be neglected. Therefore, 

Y(f) = Y&%4, exp [ - MfY+.WW - ,&Lf))~ll. (40) 

Extending this rationale to multilayered objects such as the one shown in 
Fig. 4.26(c), we get for the Fourier transform Y(f) of the received signal: 

-exp [ -ALUYwl (41) 

where A, = ~17273 * * * rN (7; being the transmittance at the ith interface) and 
where o(f) and /3(f) have been replaced by CY(X, f) and p(x, f) since, now, 
they are functions of position along the path of propagation. This equation 
corresponds to (35) for the single layer case. Combining it with (37) and 
again ignoring the attenuation of water, we get 

* exp 
[ s 

-j2rf ’ (l/V(x)- l/V,) dx 1 (42) 
0 

where we have ignored dispersion in each layer (it is very small for soft 
tissues [We177]) and expressed 0(x, f) and P,(f) as 2?rf/ V(x) and 2?rf/ V,, 
respectively. V(x) and V, are propagation velocities in the layer at x, and 
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water, respectively. Now let y;(t) denote the inverse transform of 

We may consider y;(t) to be an “attenuated” water path signal. This is the 
hypothetical signal that would be received if it underwent the same loss as the 
actual signal going through tissue. By the shift property, the relationship 
depicted in (42) may be expressed as 

where 

u(O=y:(t- Ted (44) 

Ti=+ ip [n(x)-- 11 dx 
w 0 

with the refractive index n(x) given by 

VW n(x)=-. 
VW 

(46) 

The relationship among the signals x(t), y,,,(t), y:(t), and y(t) is also 
depicted in Fig. 4.27. 

As implied by our discussion on refraction, in the actual tomographic 
imaging of soft biological tissues the assumptions made above regarding the 
propagation of a sound beam are only approximately satisfied. In propagating 
through a complex tissue structure, the interfaces encountered are usually not 
perpendicular to the beam. However, since the refractive index variations in 
soft tissues are usually less than 5 % the beam bending effects are usually not 
that serious; especially so at the resolution with which the projection data are 
currently measured. But minor geometrical distortions are still introduced. 
For example, when the projection data are taken with a simple scan-rotate 
configuration, a round disk-like soft-tissue phantom with a refractive index 
less than one would appear larger by about 3 to 5% as a result of such 
distortion. 

4.3.2 Ultrasonic Refractive Index Tomography 

Here the aim is to make cross-sectional images for the refractive index 
coefficient of soft tissue. From the discussion in the preceding section, for a 
ray like AB in Fig. 4.28 

s ’ [I-n(x,y)] ds= -V,T,. 
A 

Therefore, a measurement of T, gives us a ray integral for the function 
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Fig. 4.27: The phase shift and 
the attenuation of an ultrasonic 
signal, x(t), as it travels through 
water, yW(t), and is attenuated, 
y;(t), and then phase shifted by 
the object, y(t), are shown here. 
(From [Kak79].) 

(1 - n(x, y)), and hence, from such measurements we may reconstruct 1 - 
n(x, y) (or n(x, y)). Note that one usually makes the image for 1 - n(x, y) 
rather than n(x, y ) itself. This is to ensure that in the reconstructed image the 
numerical values reconstructed for background are zero, since the refractive 
index of water is 1. In (47) Td is positive if the transit time through the tissue 
structure is longer than the transit time through the direct water path. Usually 
the opposite is the case, since most tissues are faster than water. Therefore, 
most often Td is negative making the right-hand side of the above equation 
positive. 

Measuring the time of flight (TOF) of an ultrasonic pulse is generally done 
by thresholding the received signal and measuring the time between the 
source excitation and the first time the received signal is larger than the 
threshold. Since acoustic energy travels at 1500 m/s in water, the TOF 
measured is on the order of 100 ps and is easily measured with fairly 
straightforward digital hardware. More details of this process and prepro- 
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Fig. 4.28: In ultrasound 
refractive index tomography the 
time it takes for an ultrasound 
pulse to travel between points A 
and B is measured. (From 
[Kak79].) 

cessing algorithms that can be used to clean up the projection data are 
described in [Cra82]. 

A refractive index reconstruction made for a Formalin-fixed dog’s heart is 
shown in Fig. 4.29. 5 After this and other experiments reported in this section, 
the heart was cut at the level chosen; the cut section is shown in Fig. 4.30. 
The reconstruction shown here was made with only 18 measured projections 
(which were then extrapolated to 72; see [Din76]) and 56 rays in each 
projection. 

4.3.3 Ultrasonic Attenuation Tomography 

Here one seeks to construct cross-sectional images of soft-tissue structures 
for the attenuation coefficient. Let CY(X, y, f) be the attenuation coefficient as 
a function of frequency at a point (x, y) in a cross-sectional plane. Since 
o(x, y, f) is a function of frequency, strictly speaking one may make the 
tomogram at only one chosen frequency. This can be done by using pulsed 
CW6 transmission through tissue [Mi177] since in pulsed CW signals most of 
the energy is concentrated around a single frequency. Another approach to 
the problem is to recognize that in soft tissues 

4x9 Y9 f) = ~o(X9 Y)lfl (48). 

is a good approximation in the low MHz range. Clearly now, instead of 
reconstructing the attenuation coefficient a(x, y, S) one can reconstruct the 
parameter oo(x, y). To the extent the above approximation applies, ao(x, y) 
completely characterizes the attenuation properties of the soft tissue at 
location (x, y). 

In order to obtain a tomogram for (YO(X, y), we need projection data with 
each ray being given by 

s ~o(X, Y) ds. (49) 
ray 

The path of integration could, for example, be the ray AB in Fig. 4.28. We 
will call the above integral the integrated attenuation coefficient, although it 
must be multiplied by a frequency in order to get Ja(x, y, f) ds at that 
frequency. 

A number of different techniques for measuring the integrated attenuation 
coefficient using broadband pulsed ultrasound are presented in [Kak78]. In 

5 The reconstructions of a dog’s heart presented here are not meant to imply the suitability of 
computerized ultrasonic tomography for in vivo cardiovascular imaging. Air in the lungs and 
refraction due to the surrounding rib cage would preclude that as a practical possibility. 
Ultrasonic tomography of the female breast for tumor detection would be an ideal 
candidate for such techniques. The reconstructions presented were done on dogs’ hearts 
because of their easy availability. 

6 CW is an abbreviation for continuous wave. Pulsed CW means that the signal is a few cycles 
of a continuous sinusoid. 
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Fig. 4.29: A refractive index what follows we will list some of these techniques with brief descriptions and 
reconstntction of the dog

’

s 

heart. 
(From [Kak79].) 

show reconstructions obtained by using them. 
i) Energy-Ratio Method: It has been shown in [Kak78] that 

s 

1 
aok Y) ds= 

=aY w2 -fl) 

Fig. 4.30: After data collection 
the dog

’

s 

heart was cut at the 
level for which reconstructions 
were made. (From fKak79J.) 

where El and E2 are, respectively, weighted energies in frequency bands 
(Jr - Q,.f, + 0) and (f2 - Q, f2 + Q) of the transfer functions of the tissue 
structure along the desired ray. The transfer function, H(f), is defined by 

y&f 1 
H(f) = - (51) 

x7(f) 
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where Y,,(f) and X,(f) are Fourier transforms of the signals v,(t) and x,(t), 
respectively (Fig. 4.26(c)). One can show that in terms of the experimentally 
measured signals y(t) and v,,(t) [Din79b]: 

(52) 

In terms of the function H(f), El and Ez required in (50) are given by (Fig. 
4.31): 

E,=2 1;;: IX(f-fJ121H(f)12 df (53) 
1 

and 

E2=2 j;;; I~W-f2)121Wf)12 df 
2 

(54) 

where X(f) is any arbitrary weighting function. The weighting function can 
be used to emphasize those frequencies at which there is more confidence in 
the calculation of H(f). 

A major advantage of the energy-ratio method is that the calculation of the 
integrated attenuation coefficient doesn’t depend upon the knowledge of 
transmittances (as incorporated in the factor A,). To the extent this 
calculation doesn’t depend on the magnitude of the received signal (but only 
on its spectral composition) this method should also be somewhat insensitive 

Fig. 4.31: H(J) is the transfer to the partial loss of signal caused by beam refraction. The extent of this 
function of the tissue structure. 
The weighted integrals of IH(f 

“insensitivity” is not yet known. 
over the two intervals shown give A reconstruction using this method is shown in Fig. 4.32. 
El and E2. (From [Kak79].) ii) Division of Transforms Followed by Averaging Method: Let H,,(f) 

H(f) 

frequency - 
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Fig. 4.32: An attenuation denote 
reconstruction of the dog

’

s 

heart 
by the energy-ratio method. 
(From [Kak79].) 

Y(f) 
HA(f)= -In IH(f -In - . 

I I Y,(f) 
(55) 

Now let F(fi, f2, Q,, Q2) denote the following: 

F(h,fz, Ql, a,,=$ j;;: HA(f) df-& J;;l

’ 

HA(f) df. (56) 
2 2 1 1 

Then one can show that 

projection data = s a,,(~, y) ds = F. (57) 
ray 

Again, the method is independent of the value of transmittances at tissue- 
tissue and tissue-medium interfaces. The method may also possess some 
immunity to noise because of the integration in (56). In Fig. 4.33 a 
reconstruction for the dog

’

s 

heart is shown using this method. The level 
chosen was the same as that for the refractive index tomogram. 

iii) Frequency-Shift Method: From the standpoint of data processing the 
above two methods suffer from a disadvantage. In order to use them one must 
determine the transfer function H(f) from the recorded waveform y(t) for 
each ray and y,,,(t). This requires that for each ray the entire time signal y(t) 
be digitized and recorded, and this may take anywhere from 100 to 300 
samples depending upon the maximum frequency (above the noise level) in 
the acoustic pulse produced by the transmitting transducer. This is in marked 
contrast to the case of x-ray tomography where for each ray one records only 
one number, i.e., the total number of photons arriving at the detector during 
the measurement time interval. 

156 COMPUTERIZED TOMOCXAPHIC IMAGING 



Fig. 4.33: An attenuation In the frequency-shift method the integrated attenuated coefficient is 
reconstruction of the dog

’

s 

heart 
obtained from the averages of the 

measured by measuring the center frequencies of the direct water path signal 
function H..,(f). (From [Kak791.) y,,,(t) and the signal received after transmission through tissue, y(t). The 

relationship is [Din79b] 

s ray 
ao(x, y) ds=fg (58) 

where f. is the frequency at which Y,(f) is a maximum and fr is that at which 
Y(f) is a maximum; u2 is a measure of the width of the power spectrum of 
YWW. 

For a precise implementation this method also requires that the entire 
waveform y(t) be recorded for each ray. However, we are speculating that it 
might be possible to construct some simple circuit that could be attached to 
the receiving transducer the output of which would directly be fr [Nap8 11. 
(Such a circuit could estimate, perhaps suboptimally, the frequency fr from 
the zeros and locations of maxima and minima of the waveforms.) The 
center frequency f. needs to be determined only once for an experiment so it 
shouldn

’

t 

pose any logistical problems. 
In Fig. 4.34 we have shown a reconstruction using this method. The 

reconstruction was made from the same data that were recorded for the 
preceding two experiments. 

4.3.4 Applications 

A clinical study discussing the use of ultrasound tomography for the 
diagnosis of breast abnormalities was described by Schreiman et al. in 
[Sch84]. In this study the information from refractive index images was 
combined with that from attenuation images and compared against mammo- 
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Fig. 4.34: An attenuation 
reconstruction obtained by using 
the frequency-shift method. 
(From [Kak79J.) 

grams. In addition, the design of a program to automatically diagnose breast 
tomograms based on the attenuation constant and the index of refraction near 
the lesion was described. 

The mammograms and ultrasound tomographic images in Figs. 4.35 and 
4.36, respectively, show a small spiculated cancer in the upper outer quadrant 
of a right breast. The tomographic reconstructions shown in Fig. 4.36 were 
based on the measurement of 60 parallel projections each with 200 rays. For 
each ray the time of arrival and the signal level of a ~-MHZ ultrasound signal 
were measured and stored on tape for off-line processing. The total data 
collection time was 5 minutes. 

In this study the attenuation and refractive index images were based on a 
full wave rectified and low pass filtered version of the measured ultrasonic 
pressure wave. The time delay caused by the object was measured by timing 
the instant when the filtered signal first crossed a threshold. This gives a 
direct estimate of the time delay, Td, as described in Section 4.3.2. On the 
other hand, the attenuation of the signal was measured by integrating the first 
two microseconds of the filtered signal. While this method doesn

’

t 

take into 
account the frequency dependence of the attenuation coefficient, it does have 
the overriding advantage that its hardware implementation is very simple and 
fast. 

4.4 Magnetic Resonance Imaging

’ 

No book describing tomographic imaging would be complete without a 
discussion of (nuclear) magnetic resonance imaging (MRI). While the 
principles of nuclear magnetic resonance have been well known since the 

’ We appreciate the help of Kevin King of General Electric

’

s 

Medical Systems Group and 
Greg Kirk of Resonex, Inc. in preparing this material. 
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Fig. 4.35: The x-ray 195Os, only since 1972 has it been used for imaging. In the sense that the 
mammograms of these female 
breasts show a small spiculated 

images produced represent a cross section of the object, MRI is a 
cancer in the upper outer tomographic technique. Two head images obtained using MRI are shown in 
quadrant of the right breast. Fig. 4.37. 
(Courtesy of Jim Greenleaf of the 
Mayo Clinic in Rochester, MN.) 

The fundamentals of chemistry and physics required to derive MRI are 
beyond the scope of this book. A rigorous derivation requires the use of 
quantum mechanics, but since acceptable models of the process can be built 
using classical mechanics, this will be the approach used here. For more 
information the reader is referred to excellent accounts of the theory in 
[Man82], [Mac83], [Cho82], [Hin83], [Pyk82]. 

Magnetic resonance imaging is based on the measurement of radio 
frequency electromagnetic waves as a spinning nucleus returns to its 
equilibrium state. Any nucleus with an odd number of particles (protons and 
neutrons) has a magnetic moment, and, when the atom is placed in a strong 
magnetic field, the moment of the nucleus tends to line up with the field. If 
the atom is then excited by another magnetic field it emits a radio frequency 
signal as the nucleus returns to its equilibrium position. Since the frequency 
of the signal is dependent on not only the type of atom but also the magnetic 
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Fig. 4.36: The time of flight 
(TOF) images on top and the 
combined TOF and attenuation 
(A TN) images on the bottom 
show the small cancer. (Reprinted 
with permission from [Sch84J.) 

fields present, the position and type of each nucleus can be detected by 
appropriate signal processing. 

Two of the more interesting atoms for MRI are hydrogen and phosphorus. 
The hydrogen atom is found most often bound into a water molecule while 
phosphorus is an important link in the transfer of energy in biological 
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Fig. 4.37: These two images 
demonstrate the contrast and 
resolution obtainable using MRI. 
They were obtained using a 
1.5-Tesla Signa

” 

system at 
General Electric ‘

S 

MR 
Development Center. (Courtesy 
of General Electric

’

s 

Medical 
Systems Group.) 

systems. Both of these atoms have an odd number of nucleons and thus act 
like a spinning magnetic dipole when placed into a strong field. 

When a spinning magnetic moment is placed in a strong magnetic field and 
perturbed it precesses much like a spinning top or gyroscope. The frequency 
of precession is determined by the magnitude of the external field and the type 
and chemical binding of the atom. The precession frequency is known as the 
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Larmor frequency and is given by 

w=yH (59) 

where H is the magnitude of the local magnetic field and y is known as the 
gyromagnetic constant. The gyromagnetic constant, although primarily a 
function of the type of nucleus, also changes slightly due to the chemical 
elements surrounding the nucleus. These small changes in the gyromagnetic 
constant are known as chemical shifts and are used in NMR spectroscopy to 
identify the compounds in a sample. In MRI, on the other hand, a spatially 
varying field is used to code each position with a unique resonating 
frequency. Image reconstruction is done using this information. 

Recalling that a magnetic field has both a magnitude and direction at a point 
in three space, (x, y, z), the field is described by the vector quantity H(x, y, 
z). When necessary we will use the orthogonal unit vectors 2, 9, and 2 to 
represent the three axes. Conventionally, the z-axis is aligned along the axis 
of the static magnetic field used to align the magnetic moments. The static 
magnetic field is then described by H0 = Ho& 

A radio frequency magnetic wave in the (x, y)-plane and at the Larmor 
frequency, w. = yH0, is used to perturb the magnetic moments from their 
equilibrium position. The degree of tipping or precession that occurs is 
dependent on the strength of the field and the length of the pulse. Using the 
classical mechanics model a sinusoidal field of magnitude H, that lasts tp 
seconds will cause the magnetic moment to precess through an angle given by 

O=yH,t,. 

The actual transmitted field, Hi(x, y, z), is given by 

(60) 

gt(x, y, z) = 2Hi cos wet 22. (61) 

Generally, HI and tp are varied so that the moment will be flipped either 90 or 
180”. By flipping the moments 90” the maximum signal is obtained as the 
system returns to equilibrium while 180” flips are often used to change the 
sign of the phase (with respect to the Hi-axis) of the moment. 

It is important to note that only those nuclei where the magnitude of the 
local field is Ho will flip according to (60). Those nuclei with a local magnetic 
field near Ho will flip to a small degree while those nuclei with a local field 
far from Ho will not be flipped at all. This property of spinning nuclei in a 
magnetic field is used in MRI to restrict the active nuclei to restricted sections 
of the body [Man82]. Typical slice thicknesses in 1986 machines are from 3 
to 10 mm. 

After the radio frequency (RF) pulse is applied there are two effects that 
can be measured as the magnetic moment returns to its equilibrium position. 
They are known as the longitudinal and transverse relaxation times. The 
longitudinal or spin-lattice relaxation time, T,, is the simpler of the two and 
represents the time it takes for the energy to dissipate and the moment to 
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Fig. 4.38: As an excited 
magnetic moment relaxes toward 
its equilibrium position it emits a 
free induction decay (FID) signal 
which can be thought of as the 
transverse component of the 
precessing moment. In addition, 
as the moment returns to its 
equilibrium state the longitudinal 
component of the magnetic field 
returns to the value of MO. 

return to its equilibrium position along the Z-axis. In addition, after the RF 
pulse is applied, the spinning magnetic moments gradually become out of 
phase due to the effects of nearby nuclei. The time for this to occur is known 
as the transverse or spin-spin relaxation time, T2. In practice, there is a third 
parameter called T,*that also takes into account the local inhomogeneities of 
the magnetic field. Because of physical constraints the following relationship 
always holds: 

T,*s T,I T,. (62) 

Note that T; includes the effect of T2. 
The process of tipping (or even flipping) a moment and its eventual return 

to the equilibrium state are diagrammed in Fig. 4.38. Conventionally the 
magnetic moments are shown in a coordinate system that rotates at the 
Larmor frequency. The direction of the magnetic moment before and 
immediately after a 45” pulse is shown in Figs. 4.38(a) and (b). Fig. 4.38(c) 
diagrams the moments as they start to return to the equilibrium position and 
some of the moments become out of phase. The time T2 is shorter than T, so 
the moments are totally out of phase before they return to the equilibrium 
position. This is shown in Fig. 4.38(d). Finally, after several T, intervals the 
moments return to their equilibrium position as shown in Fig. 4.38(e). 

As the spinning moments return to their equilibrium position they generate 
an electromagnetic wave at the Larmor frequency. This wave is known as the 
free induction decay (FID) signal and can be detected using coils around the 
object. When the magnetic moments are in phase, as they are immediately 
following an RF excitation, the FID signal is proportional to both the density 
and the transverse component of the magnetic moments. Near time t = 0, 

(‘1 TRANSVERSE 
“, 

’ 
MAGNETIC 
FIELD 

LONGITUDINAL 
MAGNETIC 
FIELD 
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immediately following the end of the RF pulse, the received signal is given by 

S(t) = p sin (0) cos (wet) (63) 

where again 8 is the flip angle and p is the density of the magnetic moments. 
From this signal it is easy to verify that the largest FID signal is generated by 
a 90” pulse. 

Both the spin-spin and the spin-lattice relaxation processes contribute to 
the decay of the FID signal. The FID signal after a 90” pulse can be written as 

S(t) = p cos (coot) exp [ - t/T,*] exp [ - t/T,] (64) 

where the exponent& with respect to Tr and T; represent the attenuation of 
the FID signal due to the return to equilibrium ( Tl) and the dephasing (Tz). 

In tissue the typical times for Tl and T2 are 0.5 s and 50 ms, respectively. 
Thus the decay of the FID signal is dominated by the spin-spin relaxation 
time (T2 and TF) and the effects of the spin-lattice time (e-‘jrl in the 
equation above) are hidden. A typical FID signal is shown in Fig. 4.38(f). 

A clinician is interested in three parameters of the object: spin density, T, 
and Tz. The spin density is easiest to measure; it can be estimated from the 
magnitude of the FID immediately following the RF pulse. On the other 
hand, the T, and the T2 parameters are more difficult. 

To give our readers just a flavor of the algorithms used in MRI we will only 
discuss imaging of the spin density. More complicated pulse sequences, such 
as those described in [Cho82], are used to weight the image by the object’s T, 
or T2 parameters. In addition, much work is being done to discover 
combinations of the above parameters that make tissue characterization 
easier. 

There are many ways to spatially encode the FID signal so that 
tomographic images can be formed. We will only discuss two of them here. 
The first measures line integrals of the object and then uses the Fourier Slice 
Theorem to reconstruct the object. The second approach measures the two- 
dimensional Fourier transform of the object directly so that a simple inverse 
Fourier transform can be used to estimate the object. 

To restrict the imaging to a single plane a magnetic gradient 

AH, = Gzz (65) 

is superimposed on the background field Ho as is shown in Fig. 4.39. If a 
narrow band excitation at the Larmor frequency 00 = “/HO is then applied to 
the object only those nuclei near the plane z = 0 will be excited. For 
maximum response the excitation should be long enough to cause each 
nucleus to precess through 90”. 

A projection of the object in the plane z = 0 is measured by applying a 
readout gradient of the form 

AH, = G,x + Gyy (66) 
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Fig. 4.39: To measure 
projections of a three-dimensional 
object a field of strength AHP = 
Gzz used to restrict the initial flip 
to a single plane. Then a readout 
gradient AH, = GA + G,y is 
used to measure projections of 
the object. In the case shown here 
the integrals are along lines 
perpendicular to the page. 

\ A”, 
(while measuring 

FID) 

as the nuclei return to the equilibrium state. This second gradient serves to 
split each line integral into a separate frequency. 

Consider the line 

G,x + GYy = AH, = constant. (67) 

Along this line the FID signal will be at a unique frequency given by 

w = - y(H+ AHr). (68) 

To measure a projection in the plane it is necessary to apply the readout 
gradient and then find the Fourier transform of the received signal. Each 
temporal frequency component of the FID signal will then correspond to a 
single line integral of the object. This is illustrated in Fig. 4.39. 

A two-dimensional reconstruction of an object can be easily found by 
rotating the readout gradient and then using the reconstruction algorithms 
discussed in Chapter 3. A full three-dimensional reconstruction is easily 
formed by stacking the two-dimensional images. 

A more common approach to magnetic resonance imaging is to use a phase 
encoding gradient. The gradient, applied between the excitation pulse and the 
readout of the FID, spatially encodes each position in the object with a phase. 
This leads to a very natural reconstruction scheme because data can be 
collected over a rectangular grid in the Fourier domain. Thus reconstructions 
using this method can be performed using a two-dimensional FFT instead of 
the Fourier backprojection usually found in computerized tomography. 

One possible sequence of events is presented next. Like the projection 
approach described above, a magnetic gradient is applied to the object as the 
nuclei are excited. This restricts the imaging to a single plane where the local 
magnetic field and the frequency of the excitation satisfy the Larmor 
equation. This is shown in Fig. 4.40. 

Two perpendicular gradients are used to encode each point in the plane. 
First a gradient, for example in they direction or AH, = G,,y, is applied for 
T seconds. Because the frequency of precession is related to the local 
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Fig. 4.40: Three different 
gradients are used to measure the 
Fourier transform of an object 
using MRI. First a gradient in the 
z direction is used to restrict the 
frip to a single plane of the 
object. Then a second gradient, 
this time in y, is used to encode 
each line of constant y with a 
different phase. Finally, a third 
gradient, in x, is used while the 
FID signal is read to split each 
line of constant x into a different 
line integral. 

magnetic field, nuclei at different points in the object start spinning at 
different rates. After T seconds, when the phase encoding gradient is turned 
off, each line of constant y will have accumulated a phase given by 

4=wt=(Ho+AHp)yT (69) 
= w. T+ G,, yy T. (70) 

Like the projection case the FID is measured while applying a readout 
gradient, this time along the x-axis or 

AH, = G,x. (71) 

As before, the number of spinning nuclei along each line of constant x is now 
encoded by the frequency of the received signal. Unlike the previous case 
each position along the line is also encoded with a unique phase (see (69)). 
The following phase encoded line integral is measured: 

P, (0 = 11 P(X, Y) exp Liml exp Lix4,l exp Lb04 dx & (72) 
where q,, = GyrT and qx = G,yt. Note that except for the ej%’ term this 
equation is similar to the inverse Fourier transform of the data p(x, y). To 
recover the phase encoded line integrals it is necessary to find the inverse 
Fourier transform of the data with respect to time or 

P(W, qy) =& l P,W exp L-.&w1 dqx. (73) 

Finally, to recover the phase shifted projections it is necessary to shift the 
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frequency of p(w, q,J by the Larmor frequency, wo, or 

P(X, qy) =P(w- 009 qy). (74) 

A complete reconstruction is formed by stepping the phase encoding 
gradient, G,,, through N steps between GMAX and - GMUIAX and measuring the 
phase encoded line integrals p,(t). To prevent aliasing it is important that 

(75) 

where the minimum feature size in the object is described by A. Note that in 
general the FID signal, p,(t), will be sampled in both qy and t and thus the 
integral equations presented here will be approximated with discrete 
summations. 

Since each line integral containing the point x, y is encoded with a different 
phase the spin density at any point can be recovered by inverting the integral 
equations. This is easily done by finding the Fourier transform of the 
collection of line integrals or 

P(X, Y)=& j P(X, qy) exp I--&YI dq,. (76) 

While a reconstruction can be done with either approach most images today 
are produced by direct Fourier inversion as opposed to the convolution 
backprojection algorithms described in Chapter 3. Two errors found in MRI 
machines are nonlinear gradients and a nonuniform static magnetic field. 
These errors affect the final reconstruction in different ways depending on the 
reconstruction technique. 

First consider nonlinear gradients. In the direct Fourier approach only the 
magnitude of the gradients changes and not their direction. Thus any 
nonlinearities show up as a warping of the image space. As long as the 
gradient is monotonic the image will look sharp, although a bit distorted. On 
the other hand, in the projection approach the direction of the gradients is 
constantly changing so that each projection is warped differently. This leads 
to a blurring of the final reconstruction [ODo85]. 

The effect is similar with a nonhomogeneous static field, HO. Since the 
gradient fields are simply added to the static field to determine the Larmor 
frequency a nonhomogeneous field can be thought of as a warping of the 
projection data. Since the Fourier approach doesn’t change the angle of the 
projections, using phase changes to distinguish the different parts of the line 
integral, the direct Fourier approach yields sharper images. 

In the simple analysis above we have ignored two important limitations on 
MRI. The first is the frequency spreading due to the T2 relaxation time. In the 
analysis above we assumed a short enough measurement interval so that the 
relaxation could be considered negligible. Since the resolution in the 
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frequency domain is linearly dependent on the measurement time the 
maximum possible measurement time should be used. Unfortunately the 
exponential attenuation of the FID signal broadens the frequency spectrum 
thereby determining the ultimate resolution of the magnetic resonance image. 

A much more difficult problem is the data collection time. In the procedure 
described above each measurement is made assuming all the magnetic 
moments are at rest. Since the spin-lattice relaxation time is on the order of a 
second this implies that only a single FID can be measured per second. Since 
a three-dimensional image requires at least a million data points this is a 
severe restriction. 

In practice, pulse sequences have been designed that allow more than one 
FID to be measured during the Tl relaxation time. This can be done using a 
combination of gradients and selective gradients to only excite a single piane 
within the object and also using selective spin-echo pulses to measure more 
than one projection (or Fourier transform) within a single plane. 

4.5 Bibliographic Notes 

Because of the absence of any refraction or diffraction, with x-rays the 
problem of tomographic imaging reduces to reconstructing an image from its 
line integrals. A mathematical solution to the problem of reconstructing a 
function from its projections was given by Radon [Radl7] in 1917. More 
recently, some of the first investigators to examine this problem either 
theoretically or experimentally (and often independently) include (in a 
roughly chronological order): Bracewell [Bra56], Oldendorf [Old6 11, Cor- 
mack [Cor63], [Cor64], Kuhl and Edwards [Kuh63], DeRosier and Klug 
[DeR68], Tretiak et al. [Tre69], Rowley [Row69], Berry and Gibbs [Ber70], 
Ramachandran and Lakshminarayanan [Ram71], Bender et al. [Ben70], and 
Bates and Peters [Bat7 11. A detailed survey of the work done in computed 
tomographic imaging till 1979 appears in [Kak79]. 

Detailed information about a number of the applications described in this 
book is also covered in books by Macovski [Mac831 and Herman [HergO]. 
For information about alternate approaches to single photon emission 
tomography the reader is referred to [Kno83]. A more detailed presentation 
of ultrasound tomography can be found in [Cra82], [Car78b]. Additional 
information about the physical basis of nuclear magnetic resonance can be 
found in a number of chemistry and physics texts including [Sha76], [Far7 11, 
[Man82], [Pyk82]. The algorithms used to reconstruct images using NMR 
information are described in [Cho82], [Hin831, [Man82], [Pyk821. 

The reader is also referred to [Kak79], [Kak81] for a survey of medical 
tomographic imaging. For applications in radio astronomy, where the aim is 
to reconstruct the “brightness” distribution of a celestial source of radio 
waves from its strip integral measurements taken with special antenna beams, 
the reader is referred to [Bra56], [Bra67]. For electron microscopy 
applications, where one attempts to reconstruct the molecular structure of 
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complex biomolecules from transmission micrograms, the reader should look 
to [Cro70], [Gor7 11. The applications of this technique in optical interferom- 
etry, where the aim is to determine the refractive index field of an optically 
transparent medium, are discussed in [Ber70], [Row69], [Swe73]. The 
applications of tomography in earth resources imaging are presented in 
[Din79a], [Lyt80]. For information about a large number of industrial 
applications the reader is referred to [OSASS]. 
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5 Aliasing Artifacts and Noise in CT 
Images 

The errors discussed in the last chapter are fundamental to the projection 
process and depend upon the interaction of object inhomogeneities with the 
form of energy used. The effects of these errors can’t be lessened by simply 
increasing the number of measurements in each projection or the total number 
of projections. 

This chapter will focus on reconstruction errors of a different type: those 
caused either by insufficiency of data or by the presence of random noise in 
the measurements. An insufficiency of data may occur either through 
undersampling of projection data or because not enough projections are 
recorded. The distortions that arise on account of insufficiency of data are 
usually called the aliasing distortions. Aliasing distortions may also be caused 
by using an undersampled grid for displaying the reconstructed image. 

5.1 Aliasing Artifacts 

We will discuss aliasing from two points of view. First we will assume 
point sources and detectors and show the artifacts due to aliasing. With this 
assumption it is easy to show the effects of undersampling a projection, using 
too small a number of views, and choosing an incorrect reconstruction grid or 
filter. We will then introduce detectors and sources of nonzero width and 
discuss how they in effect help reduce the severity of aliasing distortions. 

5.1.1 What Does Aliasing Look Like? 

Fig. 5.1 shows 16 parallel beam reconstructions of an ellipse with various 
values of K, the number of projections, and N, the number of rays in each 
projection. The projections for the ellipse were generated as described in 
Chapter 3. The gray level inside the ellipse was 1 and the background 0 and 
the data were generated assuming a point source and point detector. To bring 
out all the artifacts, the reconstructed images were windowed between 0.1 
and - 0.1. (In other words, all the gray levels above 0.1 were set at white and 
all below -0.1 at black.) The images in Fig. 5.1 are displayed on a 128 x 
128 matrix. Fig. 5.2 is a graphic depiction of the reconstructed numerical 
values on the middle horizontal lines for two of the images in Fig. 5.1. From 
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Fig. 5.1: Sixteen reconstructions 
of an ellipse are shown for 
different values of K, the number 
of projections, and N, the 
number of rays in each 
projection. In each case the 
reconstructions were windowed to 
emphasize the distortions. 
(Courtesy of Carl Crawford of 
the General Electric Medical 
Systems Division in Milwaukee, 
WI.) 

Figs. 5.1 and 5.2 the following artifacts are evident: Gibbs phenomenon, 
streaks, and Moire patterns. 

We will now show that the streaks evident in Fig. 5.1 for the cases when N 
is small and K is large are caused by aliasing errors in the projection data. 
Note that a fundamental problem with tomographic images in general is that 
the objects (in this case an ellipse), and therefore their projections, are not 
bandlimited. In other words, the bandwidth of the projection data exceeds the 
highest frequency that can be recorded at a given sampling rate. To illustrate 
how aliasing errors enter the projection data assume that the Fourier 
transform Se(f) of a projection PO(~) looks as shown in Fig. 5.3(a). The 
bandwidth of this function is B as also shown there. Let

’

s 

choose a sampling 
interval 7 for sampling the projection. By the discussion in Chapter 2, with 
this sampling interval we can associate a measurement bandwidth W which is 
equal to l/27. We will assume that W < B. It follows that the Fourier 
transform of the samples of the projection data is given by Fig. 5.3(b). We 
see that the information within the measurement band is contaminated by the 
tails (shaded areas) of the higher and lower replications of the original 
Fourier transform. This contaminating information constitutes the aliasing 
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Fig. 5.2: The center lines of the errors in the sampled projection data. These contaminating frequencies 
reconstructions shown in Fig. 5. I 
for (a) N = 64, K = 512 and(b) 

constitute the aliased spectrum. 
N = 512, K = 512 areshown Backprojection is a linear process so the final image can be thought to be 
here. (From fCra79J.) made up of two functions. One is the image made from the bandlimited 

projections degraded primarily by the finite number of projections. The 
second is the image made from the aliased portion of the spectrum in each 
projection. 

The aliased portion of the reconstruction can be seen by itself by 
subtracting the transforms of the sampled projections from the corresponding 
theoretical transforms of the original projections. Then if this result is filtered 
as before, the final reconstructed image will be that of the aliased spectrum. 
We performed a computer simulation study along these lines for an elliptical 
object. In order to present the result of this study we first show in Fig. 5.4(a) 
the reconstruction of the ellipse for N = 64. (The number of projections was 
512, which is large enough to preclude any artifacts due to insufficient 
number of views, and will remain the same for the discussion here.) We have 
subtracted the transform of each projection for the N = 64 case from the 
corresponding transform for the N = 1024 case. The latter was assumed to 
be the true transform because the projections are oversampled (at least in 
comparison to the N = 64 case). The reconstruction obtained from the 
difference data is shown in Fig. 5.4(b). Fig. 5.4(c) is the bandlimited image 
obtained by subtracting the aliased-spectrum image of Fig. 5.4(b) from the 
complete image shown in Fig. 5.4(a). Fig. 5.4(c) is the reconstruction that 
would be obtained provided the projection data for the N = 64 case were 
truly bandlimited (i.e., did not suffer from aliasing errors after sampling). 
The aliased-spectrum reconstruction in Fig. 5.4(b) and the absence of streaks 
in Fig. 5.4(c) prove our point that when the number of projections is large, 
the streaking artifacts are caused by abasing errors in the projection data. 

We will now present a plausible argument, first advanced by Brooks et al. 
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i I W: measurement 
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8: projection data 
bandwidth 

ie Projection band -4 

(b) 

Fig. 5.3: If a projection (a) is [Bro79], for when a streak may be dark and when it may be light. Note that 
sampled at below the Nyquist rate 
(28 in this case), then aliasing 

when an object is illuminated by a source, a projection of the object is formed 
will occur. As shown in (b) the at the detector array as shown in Fig. 5.5. If the object has a discontinuity at 
result is aliasing or spectrum its edges, then the projection will also. We will now show how the position of 
foldover. (Adapted from 
[Cra79].) 

this discontinuity with respect to the detector array has a bearing on the sign 
of the aliasing error. When the filtered projection is backprojected over the 
image array the sign of the error will determine the shade of the streak. 

Consider sampling a projection described by 

x>o 
elsewhere. 

The Fourier transform of this function is given by 

- 2j 
F(w)=-. 

w 

(1) 

(2) 

For the purpose of sampling, we can imagine that the function f is multiplied 
by the function 

h(x)= i 6(x-/w) 
k=-m 

(3) 
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Fig. 5.4: (a) Reconstruction of 
an ellipse with N = 64 and K = 

where T represents the sampling interval of the projection. The Fourier 
5 12. (b) Reconstruction .from only transform of the sampling function is then given by 
the aliased spectrum. N&e that - 
the streaks exactly match those in 
(a). (c) Image obtained by 
subtracting (b) from (a). This is 

H(w) = 2 6(w - kw,,,) 
k=-m 

(4) 

the reconstruction that would be 
obtained provided the data for 
the N = 64 case were truly 
bandlimited. (From fCra79/.) 

where wN = 27r/T. Clearly, the Fourier transform of the sampled function is 
a convolution of the expressions in (2) and (4): 

F sampkdw = ,ga s * 
N 

This function is shown in Fig. 5.6(a). Before these projection data can be 
backprojected they must be filtered by multiplying the Fourier transform of 
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**/- Detector Array 

Fig. 5.5: The projection of an 
object with sharp discontinuities 
will have significant high 
frequency energy. 

Fig. 5.6: The aliasing due to 
undersampled projections is 
illustrated here. (a) shows the 
Fourier transform of an edge 
discontinuity. The aliased 
portions of the spectrum are 
shaded. (b) shows an 
approximation to the error when 
the sampling grid is aligned with 
the discontinuity and (c) shows 
the error when the discontinuity 
is shifted by l/4 of the sampling 
interval. Note the magnitude of 
the error changes by more than a 
factor of 3 when the sampling 
grid shifts. 

the projection by ( w ) /27r. The filtered projection is then written 

To study the errors due to aliasing, we will only consider the terms for k = 
1 and k = - 1, and assume that the higher order terms are negligible. Note 
that the zeroth order term is the edge information and is part of the desired 
reconstruction; the higher order terms are part of the error but will be small 
compared to the k = + 1 terms at low frequencies. The inverse Fourier 
transform of these two aliased terms is written as 

(7) 

and is shown in Fig. 5.6(b). 
Now if the sampling grid is shifted by l/4 of the sampling 

Fourier transform is multiplied by e+jwN(r14) or 

Fshifid(W) = 5 !d - ‘j ~ ejk~,(T/4. 
k=-cc 2?r w+kWN 

interval its 

(8) 

This can be evaluated for the k = 1 and k = - 1 terms to find the error 
integral is 

e-h dw (9) 

(a) 
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and is shown in Fig. 5.6(c). If the grid is shifted in the opposite direction, 
then the error will be similar but with the opposite sign. 

As was done earlier in this section, consider the sampled projection to 
consist of two components: the true projection and the error term. The true 
projection data from each view will combine to form the desired image; the 
error in each projection will combine to form an image like that in Fig. 
5.4(b). A positive error in a projection causes a light streak when the data are 
backprojected. Likewise, negative errors lead to dark streaks. As the view 
angle changes the size of the ellipse’s “shadow” changes and the 
discontinuity moves with respect to the detector array. In addition, where the 
curvature of the object is large, the edge of the discontinuity will move 
rapidly which results in a large number of streaks. 

The thin streaks that are evident in Fig. 5.1 for the cases of large N and 
small K (e.g., when N = 512 and K = 64) are caused by an insufficient 
number of projections. It is easily shown that when only a small number of 
filtered projections of a small object are backprojected, the result is a star- 
shaped pattern. This is illustrated in Fig. 5.7: in (a) are shown four 
projections of a point object, in (b) the filtered projections, and in (c) their 
backprojections. 

Fig. 5.6: Continued. 

The number of projections should be roughly equal to the number of rays in 
each projection. This can be shown analytically for the case of parallel 
projections by the following argument: By the Fourier Slice Theorem, the 
Fourier transform of each projection is a slice of the two-dimensional Fourier 
transform of the object. In the frequency domain shown in Fig. 5.8, each 
radial line, such as AiA2, is generated by one projection. If there are Mproj 
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reconstruction. (From [Ros82/.) 

Fig. 5.7: The backprojecfion 
operation introduces a 
star-shaped pattern to the 

projections uniformly distributed over 180”, the angular interval 6 between 
successive radial lines is given by 

a=-. 
Mp*oj 

(10) 

If r is the sampling interval used for each projection, the highest spatial 
frequency W measured for each projection will be 

w= l/27. (11) 

This is the radius of the disk shown in Fig. 5.8. The distance between 
consecutive sampling points on the periphery of this disk is equal to A& and 
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Fig. 5.8: Frequency domain is given by 
parameters pertinent to parallel 
projection data. (From [Kak84J.) 1 7r 

A2Bz= W6=- - . 
27 Mproj 

(12) 

If there are NraY sampling points in each projection, the total number of 
independent frequency domain sampling points on a line such as AlAz will 
also be the same. Therefore, the distance E between any two consecutive 
sampling points on each radial line in Fig. 5.8 will be 

(13) 

Because in the frequency domain the worst-case azimuthal resolution should 
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be approximately the same as the radial resolution, we must have 

which is obtained by equating (12) and (13). Equation (14) reduces to 

which implies that the number of projections should be roughly the same as 
the number of rays per projection. 

The reader may have noticed that the thin streaks caused by an insufficient 
number of projections (see, e.g., the image for N = 512 and K = 64 in Fig. 
5.1) appear broken. This is caused by two-dimensional aliasing due to the 
display grid being only 128 x 128. When, say, N = 512, the highest 
frequency in each projection can be 256 cycles per projection length, whereas 
the highest frequency that can be displayed on the image grid is 64 cycles per 
image width (or height). The effect of this two-dimensional aliasing is very 
pronounced in the left three images for the N = 512 row and the left two 
images for the N = 256 row in Fig. 5.1. As mentioned in Chapter 2, the 
artifacts generated by this two-dimensional aliasing are called Moire patterns, 
These artifacts can be diminished by tailoring the bandwidth of the 
reconstruction kernel (filter) to match the display resolution. 

From the computer simulation and analytical results presented in this 
section, one can conclude that for a well-balanced N x N reconstructed 
image, the number of rays in each projection should be roughly N and the 
total number of projections should also be roughly N. 

5.1.2 Sampling in a Real System 

In the previous section we described aliasing errors caused by undersam- 
pling the projections, number of views, and the reconstruction grid. In 
practice, these errors are somewhat mitigated by experimental considerations 
like the size of the detector aperture and the nonzero size of the x-ray source. 
Both these factors bring about a certain smoothing of the projections, and a 
consequent loss of information at the highest frequencies. In this section, we 
will demonstrate how these factors can be taken into account to determine the 
“optimum rate” at which a projection should be sampled. 

In order to analyze the effect of a nonzero size for the detector aperture, 
note that this effect can be taken into account by convolving the ideal 
projection with the aperture function. Let the following function represent an 
aperture that is Td units wide (we are only considering aperture widths along 
the projection, the width along the perpendicular direction being irrelevant to 
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our discussion): 

1 Td 
a(x) = 

1x1 I- 
2 

0 elsewhere. 
(16) 

The Fourier transform of this aperture function is given by 

A (co) = Td sine (wTd/2). (17) 

In the frequency domain, the Fourier transform of the ideal projection is 
multiplied by this function, implying that we are in effect passing the 
projection through a low pass filter (LPF). Since the first zero of A(w) is 
located at 2n/Td, it is not unreasonable to say that the effect of A(w) is to 
filter out all frequencies higher than 

2?r 
“$JF=- . 

Td 
(18) 

In other words, we are approximating the aperture function in the frequency 
domain by 

(19) 

Let’s say that we are using an array of detectors to measure a projection 
and that the array is characterized by T, as the center-to-center spacing 
between the detectors. Measurement of the projection data is equivalent to 
multiplication of the low pass filtered projection with a train d(x) of 
impulses, where d(x) is given by 

d(x)= g 6(x-nT,) (20) 
“=-Go 

whose Fourier transform is 

D(w)=$ i 6 27rn 

s n=-ca ( > w-- . T 
s 

(21) 

In the frequency domain the effect of the detector aperture and sampling 
distance is shown in Fig. 5.9. We can now write the following expression for 
the recorded samples p,, of an ideal projection p(x): 

~~=W---ZT,)b(x)*dx)l (22) 

or, equivalently, 

(23) 
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Fig. 5.9: The Fourier transform where P(w) is the Fourier transform of the projection data and IFT is the 
of the detector array response is 
shown for three different detector 

inverse Fourier transform. Clearly, there will be aliasing in the sampled 
soacinns. For values of T, such projections unless 
that Ti > TJ2 there hi be 
aliasing. If T, 5 Td/2, then 
a&sing is minimized. Ts<;. (24) 

This relationship implies that we should have at least two samples per 
detector width [Jos8Oa]. 

There are several ways to measure multiple samples per detector width. 
With first-generation (parallel beam) scanners, it is simply a matter of 
sampling the detectors more often as the source-detector combination moves 
past the object. Increasing the sampling density can also be done in fourth- 
generation (fixed-detector) scanners by considering each detector as the apex 
of a fan. Now as the source rotates, each detector measures ray integrals and 
the ray density can be made arbitrarily dense by increasing the sampling rate 
for each detector. 

For third-generation scanners a technique known as quarter detector offset 
is used. Recall that for a fan beam scanner only data for 180” plus the width 
of the fan need be collected; if a full 360” of data is collected then the rest of 
the data is effectively redundant. But if the detector array is offset by l/4 of 
the detector spacing (ordinarily, the detector bank is symmetric with respect 
to the line joining the x-ray source and the center of rotation; by offset is 
meant translating the detector bank to the left or right, thereby causing rays in 
opposite views to be unique) and a full 360” of data is collected it is possible 
to use the extra views to obtain unique information about the object. This 
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effectively doubles the projection sampling frequency. Fig. 5.10 compares 
the effect of quarter detector offset on a first-generation and a third- 
generation scanner. 

We will now discuss the second factor that causes projections to become 
blurred, namely, the size of the x-ray beam. As we will show, we can’t 
account for the extent of blurring caused by this effect in as elegant a manner 
as we did for the detector aperture. The primary source of difficulty is that 
objects undergo different amounts of blurring depending upon how far away 
they are from the source of x-rays. Fig. 5.11 shows the effect of a source of 
nonzero width. As is evident from the figure, the effect on a projection is 
dependent upon where the object is located between the source and the 
detectors. 

Simple geometrical arguments show that for a given point in the object, the 
size of its image at the detector array is given by 

B,=+ 
s 

(25) 

where w, is the width of the source and Dd and D, are, respectively, the 
distances from the point in the object to the detectors and the source. This 
then would roughly be a measure of blurring introduced by a nonzero-width 
source in a parallel beam machine. 

In a fan beam system, the above-mentioned blurring is exacerbated by the 
natural divergence of the fan. To illustrate our point, consider two detector 
lines for a fan beam system, as shown in Fig. 5.12. The projection data 
measured along the two lines would be identical except for stretching of the 
projection function along the detector arc as we go to the array farther away 
from the center. This stretch factor is given by (see Fig. 5.13) 

W-9 

where the distances Ds and Dd are for object points at the center of the scan. If 
we combine the preceding two equations, we obtain for a fan beam system the 
blurring caused by a nonzero-width source 

B,,w,~~ DS Dd 
DsD,+Dd=ws Ds+Dd 

(27) 

with the understanding that, rigorously speaking, this equation is only valid 
for object points close to the center of rotation. 

Since the size of the image is dependent on the position along the ray 
integral this leads to a spatially varying blurring of the projection data. Near 
the detector the blurring will be small while near the source a point in the 
object could be magnified by a large amount. Since the system is linear each 
point in the object will be convolved with a scaled image of the source point 
and then projected onto the detector line. 
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5.2 Noise in Reconstructed Images 

Fig. 5.10: The ray paths for 
normal and quarter offset 
detectors are compared here, 
Each ray path is represented by 
plotting an asterisk at the point 
on the ray closest to the origin. 
In each case 6 projections of 10 
rays each were gathered by 
rotating a full 360’ around the 
object. (Note: normally only 180” 
of projection data is used 
for parallel projection 
reconstruction.) (a) shows parallel 
projections without quarter offset 
(note that the extra 180” of data 
is redundant). (b) is identical to 
(a) but the detector array has 
been shifted by a quarter of the 
sampling interval. (c) shows 
equiangular projections without 
quarter offset and (d) is identical 
to (c) but the detector array has 
been shifted by a Quarter of the 
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We will now consider the effect of noise in the projection data on a 
reconstructed image. There are two types of noise to be considered. The first, 
a continuously varying error due to electrical noise or roundoff errors, can be 
modeled as a simple additive noise. The reconstructed image can therefore be 
considered to be the sum of two images, the true image and that image 
resulting from the noise. The second type of noise is best exemplified by shot 
noise in x-ray tomography. In this case the magnitude of the possible error is 
a function of the number of x-ray photons that exit the object and the error 
analysis becomes more involved. 

5.2.1 The Continuous Case 

Consider the case where each projection, PO(t), is corrupted by additive 
noise zq(t). The measured projections, Pr(t), are now given by 

Pf(t)=P&)+Y&). (28) 

We will assume that the noise is a stationary zero-mean random process and 
that its values are uncorrelated for any two rays in the system. Therefore, 

aK9,(~lk92(~2)1 =so WI - e,)wf, - t21. (29) 

The reconstruction from the measured projection data is obtained by first 
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Fig. 5.10: Continued. 

Fig, 5.11: A finite source of 
width w, will be imaged by each 
point in the object onto the 
detector line. The size of the 
image will depend on the ratio of 
D, to Dd. The images of two 
points in the object are shown 
here. 

1.0 

.75 

.50 

(4 
filtering each projection: 

(d) 

Q;;l<t>= I:, Sr(w)(w(G(w)eJZrw* dw (30) 

where S:(w) is the Fourier transform of P:(t) and G(w) is the smoothing 
filter used; and then backprojecting the filtered projections: 

f<x, u) = s: Qr(x cos 6+y sin 0) dt3 (31) 

where !(x, y) is the reconstructed approximation to the original image f(x, 
y). For the purpose of noise calculations, we substitute (28) and (30) in (31) 
and write 

f(x, y)= 1, iy, [Se(w)+&(w)]1 wJG(w)eJ2~W(XcaSe+~Sine) dw dtl 

(32) 

I+-V+----- Dd m 
Detector Line 
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Fig. 5.12: The magnification of 
a projection due to a fan beam 
system is shown here. To find the 
effect of the source or detector 
aperture on image resolution it is 
necessary to map the blurring of 
the projection into an equivalent 
object size. 

Fig. 5.13: A finite detector 
aperture leads to a blurring of the 
object. 

Detector Line ~3 I 

where, as before, S,(w) is the Fourier transform of the ideal projection PO(~), 
and N@(w) is the Fourier transform of the additive noise, I. (Here we 
assume IVo( w) exists in some sense. Note that in spite of our notation we are 
only dealing with projections with finite support.) Clearly, 

N(w)= jy, ye (t)e-arwr dt (33) 

from which we can write 

=s, 6(wl--w#i(e,-e*) (35) 

where we have used (29). 
Since No(w) is random, the reconstructed image given by (32) is also 

random. The mean value of f^(x, JJ) is given by 

ELf(x, UN= j; j;, [Mw) 

+E(&(w))]( w~G(w)eJ2~W(XCoSe+YSine) dw de. (36) 

Since we are dealing with zero-mean noise, E[ve(t)] = 0; hence, from (33) 

Point 
Source 

- I $5 

~D----+Dd~ ]’ 

1 
1 
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we get E[iVe(w)] = 0. Substituting this in (36), we get 

E[~(x, JJ)] = j: SW Se(w)1 WI G(w)e~2~w(xcose+Ysine) dw de. (37) 
-m 

Now the variance of noise at a point (x, y) in the reconstructed image is given 
by 

u;~&, ~)=E[.f(x, ~+-E(.f(x, rNl*. (38) 

Substituting (32) and (37), we get 

u&,,~(x, y)=E 1: Srn N~(W)~WJG(w)eJ2”W(XCoSe+YSi”e) dw dtJ * (39) 
-ca 

=E j: I;, Ne(w)I w 

X N(w)1 w 

IG(w)~j2~w(x~0~e+~~ine) dw de 

I 

1 G ( w) ePw(x ~0s e+Y sin 8) dw de 1 * (40) 

= 7rSo s ;, I wl*l G(w)l* dw (41) 

where we have used (35). Therefore, we may write 
2 

~recon 
----CT 

so s 
;, I~I*IG(~)I* dw (42) 

where we have dropped the (x, y) dependence of (T&,, since it has turned out 
to be independent of position in the picture plane. 

Equation (42) says that in order to reduce the variance of noise in a 
reconstructed image, the filter function G(w) must be chosen such that the 
area under the square of I w( G( w) is as small as possible. But note that if 
there is to be no image distortion I WI G(w) must be as close to (WI as 
possible. Therefore, the choice of G(w) depends upon the desired trade-off 
between image distortion and noise variance. 

We will conclude this subsection by presenting a brief description of the 
spectral density of noise in a reconstructed image. To keep our presentation 
simple we will assume that the projections consist only of zero-mean white 
noise, ve(t). The reconstructed image from the noise projections is given by 

f(x, Y)= j: Srn No(W)1 ~~~~~~~~~~~~~~~~~~~~~~~~ dw dt’ (43) --o) 

2% cm 
= 

s s 
~~(~1 w~(W)ejZ7w(xcos B+Y sin 0) dw de (44) 0 0 
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where, as before, No(W) is the Fourier transform of t+(t). NOW let R(a, p) be 
the autocorrelation function of the reconstructed image: 

R(cY, P)=E[f(x+a, u+P)k u)l=E[f^(x+c~ v+P)fW, 1’11 (45) 

=s, If de 1: dwW*Ig(W)I*eJ2*W(olcose+psine). (46) 

From this one can show that the spectral density of the reconstructed noise is 
dependent only on the distance from the origin in the frequency domain and is 
given by 

UW @=&lGWl*~ and :$,, (47) 

where, of course, w is always positive. This may be shown by first 
expressing the result for the autocorrelation function in polar coordinates 

R(r, q5)=So 1: d0 1: dww21G(w)~2e’2rwrcos(e-~) (48) 

=so 1; wlG(w)12wJo(2awr) dw (49) 

and recognizing the Hankel transform relationship between the autocorrela- 
tion function and the spectral density given above. 

5.2.2 The Discrete Case 

Although the continuous case does bring out the dependence of the noise 
variance in the reconstructed image on the filter used for the projection data, 
it is based on a somewhat unrealistic assumption. The assumption of 
stationarity which led to (29) implies that in any projection the variance of 
measurement noise for each ray is the same. This is almost never true in 
practice. The variance of noise is often signal dependent and this has an 
important bearing on the structure of noise in the reconstructed image. 

As an illustration of the case of signal-dependent noise consider the case of 
x-ray computerized tomography. Let r be the sampling interval and also the 
width of the x-ray beam, as illustrated in Fig. 5.14. If the width r of the beam 
is small enough and the beam is monochromatic the integral of the attenuation 
function ~(x, JJ) along line AB in Fig. 5.14 is given by 

Pe(t)= S P(X, u) ds=ln Ni,-ln Ne(kr) (50) 
ray path AB 

where Ne(kr) denotes the value of Nd for the ray at location (0, kr) as shown 
in the figure. Randomness in the measurement of PO(t) is introduced by 
statistical fluctuations in Ne(kr). Note that in practice only Ne(kr) is 
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PB&d - p(x, y) ds = fan $ 

ray path AB 
d 

B 
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A 

Fig. 5.14: An x-ray beam with a 
width of z is shown traveling 

measured directly. The value of Ni” for all rays is inferred by monitoring the 
through a cross section of the x-ray source with a reference detector and from the knowledge of the spatial 
human body. (From rKak791.1 distribution of emitted x-rays. It is usually safe to assume that the reference x- 

ray flux is large enough so that Nin may be considered to be known with 
negligible error. In the rest of the discussion here we will assume that for each 
ray integral measurement Nin is a known deterministic constant, while on the 
other hand the directly measured quantity Ne(kr) is a random variable. The 
randomness of Ne(kr) is statistically described by the Poisson probability 
function [Ter67], [Pap651 : 

(51) 

where p{ *} denotes the probability and Ne(kr) the expected value of the 
measurement: 

Ne(h)=E{ Ne(h)} (52) 

where E{ } denotes statistical expectation. Note that the variance of each 
measurement is given by 

variance { Ne(k7)) =&Je(kr). (53) 

ALIASING ARTIFACTS AND NOISE IN CT IMAGES 195 



Because of the randomness in Ne(kr) the true value of Pe(k7) will differ 
from its measured value which will be denoted by Pr(k7). To bring out this 
distinction we reexpress (50) as follows: 

and 

Pf(kr)=ln Ni,-In Ne(kr) (54) 

Pe(W= S AX, U) ds. (55) 
‘aY 

By interpreting e- pe(kT) as the probability that (along a ray such as the one 
shown in Chapter 4) a photon entering the object from side A will emerge 
(without scattering or absorption) at side B, one can show that 

Ne(k7) = Nine-pe(kr). (56) 

We will now assume that all fluctuations (departures from the mean) in 
Ne(kr) that have a significant probability of occurrence are much less than 
the mean. With this assumption and using (50) and (5 1) it is easily shown that 

E{P,“(k~)}=Pg(k7) (57) 

and 

1 
variance { Pr (k7)) = 7 . 

Ne(k7) 

From the statistical properties of the measured projections, Pr(k7), we 
will now derive those of the reconstructed image. Using the discrete filtered 
backprojection algorithms of Chapter 3, the relationship between the 
reconstruction at a point (x, y) and the measured projections is given by 

f(x, u) =- l, M$ c Pz(kT)h(x cos 0i+y sin 8i-kT). (59) 
ProJ r=l k 

Using (57), (58), and (59), we get 

E{f(x, y)} =c M$ C Pe,(kT)h(x cos 8i+y sin Bi-k7) (60) 
ProJ r=l k 

and 

variance (f^(x, r)} = 

1 
- h*(x cos 8i+y sin Bi- k7) 
N+(k7) 

(61) 
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where we have used the assumption that fluctuations in PC&r) are 
uncorrelated for different rays. Equation (60) shows that the expected value 
of the reconstructed image is equal to that made from the ideal projection 
data. Before we interpret (61) we will rewrite it as follows. In terms of the 
ideal projections, P&r), we define new projections as 

Ve(k7)=ePfJ(kr) 

and a new filter function, h,(t), as 

(62) 

h”(t)=h*(t). (63) 

Substituting (56), (62), and (63) in (61), we get 

variance {p(x, y)} = 

* h,(x cos Bi + y sin Bi - kr). (64) 

We will now define a relative-uncertainty image as follows *: 

relative-uncertainty at (X, y ) = ZVi” 
variance {f^(x, y)} 

Lox9 Y)12 * 

(65) 

In computer simulation studies with this definition the relative-uncertainty 
image becomes independent of the number of incident photons used for 
measurements, and is completely determined by the choice of the phantom. 
Fig. 5.15(c) shows the relative-uncertainty image for the Shepp and Logan 
phantom (Fig. 5.15(b)) for Mproj = 120 and T = 21101 and for h(t) 
originally described in Chapter 3. Fig. 5.15(d) shows graphically the middle 
horizontal line through Fig. 5.15(c). The relative-uncertainty at (x, y) gives 
us a measure of how much confidence an observer might place in the 
reconstructed value at the point (x, y) vis-a-vis those elsewhere. 

We will now derive some special cases of (64). Suppose we want to 
determine the variance of noise at the origin. From (64) we can write 

variance {f^(O, 0)} = (66) 

where we have used the fact that h(t) is an even function. Chesler et al. 
[Che77] have argued that since h(kr) drops rapidly with k (see Chapter 3), it 
is safe to make the following approximation for objects that are approxi- 

I This result only applies when compensators aren’t used to reduce the dynamic range of the 
detector output signal. In noise analyses their effect can be approximately modeled by using 
different Ni.‘s for different rays. 
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Fig. 5.15: (a) A Shepp and mately homogeneous: 
Logan head phantom [She741 is 
shown here. (b) A reconstruction 
of the phantom from 120 
projections and 101 rays in each variance {f(O, 0)) = (67) 
parallel projection. The display 
matrix was 64 x 64. (c) The 
relative-uncertainty image for the 
reconstruction in (b). (d) A which, when r is small enough, may also be written as 
graphic depiction of the - _ 
relative-&certainty values 
through the middle horizontal 
line of(c). (From [Kak79/.) variance {f(O, O)} = (~)*7j~~n

’

w~&. 

(68) 
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Note again that the &i(O) are the mean number of exiting photons measured 
for the center ray in each projection. Using (68) Chesler et al. [Che77] have 
arrived at the very interesting result that (for the same uncertainty in 
measurement) the total number of photons per resolution element required for 
x-ray CT (using the filtered backprojection algorithm) is the same as that 
required for the measurement of attenuation of an isolated (excised) piece of 
the object with dimensions equal to those of the resolution element. 

Now consider the case where the cross section for which the CT image is 
being reconstructed is circularly symmetric. The Noi(O for all i’s will be 
equal; call their common value &. That is, let 

- - 
No=Nei(0)=Ne2(O)= m-e. 

The expression (68) for the variance may now be written as 

(69) 

variance {f^(O, 0)} = & 1: h*(t) dt. 
,XOJ 0 O1 

By Parseval’s theorem this result may be expressed in the frequency domain 
as 

variance {p(O, 0)) =A {“2r 
A4projivo -I/Z7 ‘N(W)‘2 dw (71) 

where r is the sampling interval for the projection data. This result says that 
the variance of noise at the origin is proportional to the area under the square 
of the filter function used for reconstruction. This doesn’t imply that this area 
could be made arbitrarily small since any major departure from the ( w ( 
function will introduce spatial distortion in the image even though it may be 
less noisy. None of the equations above should be construed to imply that 
the signal-to-noise ratio approaches zero as r is made arbitrarily small. 
Note from Chapter 4 that r is also the width of the measurement beam. In any 
practical system, as r is reduced biro will decrease also. 

The preceding discussion has resulted in expressions for the variance of 
noise in reconstructions made with a filtered backprojection algorithm for 
parallel projection data. As mentioned before, filtered backprojection 
algorithms have become very popular because of their accuracy. Still, given a 
set of projections, can there be an algorithm that might reconstruct an image 
with a smaller error? The answer to this question has been supplied by Tretiak 
[Tre78]. Tretiak has derived an algorithm-independent lower bound for the 
mean squared error in a reconstructed image and has argued that for the case 
of reconstructions from parallel projection data this lower bound is very close 
to the error estimates obtained by Brooks and DiChiro [Bro76] for the filtered 
backprojection algorithms, which leads to the conclusion that very little 
improvement can be obtained over the performance of such an algorithm. 
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5.3 Bibliographic Notes 

Aliasing artifacts in tomographic imaging with nondiffracting sources have 
been studied by Brooks et al. [Bro78], [Bro79] and Crawford and Kak 
[Cra79]. A different analysis of the optimum number of rays and projections 
was presented in [Sch77] and reached nearly the same conclusion. A more 
detailed analysis is in [JosSO]. Excellent work describing the effects of 
sampling on CT images has been published in [Jos80], [Jos8Ob], [Bro79]. 

With regard to the properties of noise in images reconstructed with filtered 
backprojection, Shepp and Logan [She741 first showed that when filtered 
backprojection algorithms are used, the variance of the noise is directly 
proportional to the area under the square of the filter function. This derivation 
was based on the assumption that the variance of the measurement noise is the 
same for all the rays in the projection data, a condition which is usually not 
satisfied. The variance of the reconstruction was also studied by Gore and 
Tofts [Gor78]. This assumption was also used by Riederer et al. [Rie78] to 
derive the spectral density of the noise in a CT reconstruction. 

A more general expression (not using this assumption) for the noise 
variance was derived by Kak [Kak79] who has also introduced the concept of 
“the relative-uncertainty image.” For tomographic imaging with x-rays, 
Tretiak [Tre78] has derived an algorithm-independent lower bound on the 
noise variance in a reconstructed image. An explanation of the trade-offs 
between reconstruction noise in x-ray CT and image resolution is given in 
[Che77], [Alv79], [Kow77]. 
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6 Tomographic Imaging with 
Diffracting Sources 

Diffraction tomography is an important alternative to straight ray tomog- 
raphy. For some applications, the harm caused by the use of x-rays, an 
ionizing radiation, could outweigh any benefits that might be gained from the 
tomogram. This is one reason for the interest in imaging with acoustic or 
electromagnetic radiation, which are considered safe at low levels. In 
addition, these modalities measure the acoustic and electromagnetic refrac- 
tive index and thus make available information that isn’t obtainable from x- 
ray tomography. 

As mentioned in Chapter 4, the accuracy of tomography using acoustic or 
electromagnetic energy and straight ray assumptions suffers from the effects 
of refraction and/or diffraction. These cause each projection to not represent 
integrals along straight lines but, in some cases where geometrical laws of 
propagation apply, paths determined by the refractive index of the object. 
When the geometrical laws of propagation don’t apply, one can’t even use the 
concept of line integrals-as will be clear from the discussions in this chapter. 

There are two approaches to correcting these errors. One approach is to 
use an initial estimate of the refractive index to estimate the path each ray 
follows. This approach is known as algebraic reconstruction and, for weakly 
refracting objects, will converge to the correct refractive index distribution 
after a few iterations. We will discuss algebraic techniques in Chapter 7. 

When the sizes of inhomogeneities in the object become comparable to or 
smaller than a wavelength, it is not possible to use ray theory (geometric 
propagation) based concepts; instead one must resort directly to wave 
propagation and diffraction based phenomena. In this chapter, we will show 
that if the interaction of an object and a field is modeled with the wave 
equation, then a tomographic reconstruction approach based on the Fourier 
Diffraction Theorem is possible for weakly diffracting objects. The Fourier 
Diffraction Theorem is very similar to the Fourier Slice Theorem of 
conventional tomography: In conventional (or straight ray) tomography, the 
Fourier Slice Theorem says that the Fourier transform of a projection gives 
the values of the Fourier transform of the object along a straight line. When 
diffraction effects are included, the Fourier Diffraction Theorem says that a 
“projection” yields the Fourier transform of the object over a semicircular 
arc. This result is fundamental to diffraction tomography. 

In this chapter the basics of diffraction tomography are presented for 
application with acoustic, microwave, and optical energy. For each case we 
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will start with the wave equation and use either the Born or the Rytov 
approximation to derive a simple expression that relates the scattered field to 
the object. This relationship will then be inverted for several measurement 
geometries to give an estimate of the object as a function of the scattered 
field. Finally, we will show simulations and experimental results that show 
the limitations of the method. 

6.1 Diffracted Projections 

Tomography with diffracting energy requires an entirely different ap- 
proach to the manner in which projections are mathematically modeled. 
Acoustic and electromagnetic waves don’t travel along straight rays and the 
projections aren’t line integrals, so we will describe the flow of energy with a 
wave equation. 

We will first consider the propagation of waves in homogeneous media, 
although our ultimate interest lies in imaging the inhomogeneities within an 
object. The propagation of waves in a homogeneous object is described by a 
wave equation, which is a second-order linear differential equation. Given 
such an equation and the “source” fields in an aperture, we can determine the 
fields everywhere else in the homogeneous medium. 

There are no direct methods for solving the problem of wave propagation 
in an inhomogeneous medium; in practice, approximate formalisms are used 
that allow the theory of homogeneous medium wave propagation to be used 
for generating solutions in the presence of weak inhomogeneities. The better 
known among these approximate methods go under the names of Born and 
Rytov approximations. 

Although in most cases we are interested in reconstructing three- 
dimensional objects, the diffraction tomography theory presented in this 
chapter will deal mostly with the two-dimensional case. Note that when a 
three-dimensional object can be assumed to vary only slowly along one of the 
dimensions, a two-dimensional theory can be readily applied to such an 
object. This assumption, for example, is often made in conventional 
computerized tomography where images are made of single slices of the 
object. In any case, we have two reasons for limiting our presentation to the 
two-dimensional case: First and most importantly, the ideas behind the theory 
are often easier to visualize (and certainly to draw) in two dimensions. 
Second, the technology has not yet made it practical to implement large three- 
dimensional transforms that are required for direct three-dimensional 
reconstructions of objects; furthermore, direct display of three-dimensional 
entities isn’t easy. 

6.1.1 Homogeneous Wave Equation 

An acoustic pressure field or an electromagnetic field must satisfy the 
following differential equation [Go0681 : 
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V2u(Z t)-; $ u(7, t)=O (1) 
where u represents the magnitude of the field as a function of position 7 and 
time t and c is the velocity of the field as a function of position. 

This form of the wave equation is more complicated than needed; most 
derivations of diffraction tomography are done by considering only one 
temporal frequency at a time. This decomposition can be accomplished by 
finding the Fourier transform of the field with respect to time at each position 
i? Note that the above differential equation is linear so that the solutions for 
different frequencies can be added to find additional solutions. 

A field u(i, t) with a temporal frequency of w radians per second (rps) 
satisfies the equation 

[V2+ k2(7)]u(F, t) = 0 (2) 

where k(J) is the wavenumber of the field and is equal to 

(3) 

where A is the field’s wavelength. At this point the field is at a single 
frequency and we will write it as 

Real Part { u(J)e-jut}. (4) 
In this form it is easy to see that the time dependence of the field can be 
suppressed and the wave equation rewritten as 

(V2+k2(Q4(i)=O. (5) 

For acoustic (or ultrasonic) tomography, u(J) can be the pressure field at 
position ? For the electromagnetic case, assuming the applicability of a scalar 
propagation equation, u(i) may be set equal to the complex amplitude of the 
electric field along its polarization. In both cases, u(r> represents the 
complex amplitude of the field. 

For homogeneous media the wavenumber is constant and we can further 
simplify the wave equation. Setting the wavenumber equal to 

k(7) = krJ (6) 

the wave equation becomes 

(V2+k$(7)=0. (7) 

The vector gradient operator, V, can be expanded into its two-dimensional 
representation and the wave equation becomes 

a?u(F) + a2zq) -+k$4(7)=0. ax2 ay2 (8) 

TOMOGRAPHIC IMAGING WITH DIFFRACTING SOURCES 205 



As a trial solution we let 

where the vector k’ = (k,, k,,) is the two-dimensional propagation vector and 
u(i) represents a two-dimensional plane wave of spatial frequency (k’( . This 
form of u(7) represents the basis function for the two-dimensional Fourier 
transform; using it, we can represent any two-dimensional function as a 
weighted sum of plane waves. Calculating the derivatives as indicated in (8), 
we find that only plane waves that satisfy the condition 

satisfy the wave equation. This condition is consistent with our intuitive 
picture of a wave and our earlier description of the wave equation, since for 
any frequency wave only a single wavelength can exist no matter in which 
direction the wave propagates. 

The homogeneous wave equation is a linear differential equation so we can 
write the general solution as a weighted sum of each possible plane wave 
solution. In two dimensions, at a temporal frequency of w, the field u(i) is 
given by 

m=$ J=-, a(ky)ej(kr’+kYy) dk,+l 2?r J y, P(ky)ej(-kxx+kuy) dk, (1 I) 

where by (10) 

k,=w. (12) 

The form of this equation might be surprising to the reader for two reasons. 
First we have split the integral into two parts. We have chosen to represent 
the coefficients of waves traveling to the right by a(ky) and those of waves 
traveling to the left by p(k,). In addition, we have set the limits of the 
integrals to go from - 00 to 03. For kz greater than k$ the radical in (12) 
becomes imaginary and the plane wave becomes an evanescent wave. These 
are valid solutions to the wave equation, but because ky is imaginary, the 
exponential has a real or attenuating component. This real component causes 
the amplitude of the wave to either grow or decay exponentially. In practice, 
these evanescent waves only occur to satisfy boundary conditions, always 
decaying rapidly far from the boundary, and can often be ignored at a 
distance greater than 10X from an inhomogeneity. 

We will now show by using the plane wave representation that it is possible 
to express the field anywhere in terms of the fields along a line. The three- 
dimensional version of this idea gives us the field in three-space if we know 
the field at all points on a plane. 

Consider a source of plane waves to the left of a vertical line as shown in 
Fig. 6.1. If we take the one-dimensional Fourier transform of the field along 
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Fig. 6.1: A plum wuve 
propagating between two planes 
undergoes a phase shift 
dependent on the distance 
between the planes and the 
direction of the plane wave. 

the vertical line, we can decompose the field into a number of one- 
dimensional components. Each of these one-dimensional components can 
then be attributed to one of the valid plane wave solutions to the homogeneous 
wave equation, because for any one spatial frequency component, k,,, there 
can exist only two plane waves that satisfy the wave equation. Since we have 
already constrained the incident field to propagate to the right (all sources are 
to the left of the measurement line), a one-dimensional Fourier component at 
a frequency of ky can be attributed to a two-dimensional wave with a 
propagation vector of (m, ky). 

We can put this on a more mathematical basis if we compare the one- 
dimensional Fourier transform of the field to the general form of the wave 
equation. If we ignore waves that are traveling to the left, then the general 
solution to the wave equation becomes 

m=; J;, a(ky)ej(kxx+kyy) dk,. 

If we also move the coordinate system so that the measurement line is at x = 
0, the expression for the field becomes equal to the one-dimensional Fourier 
transform of the amplitude distribution function a(k,). 

~(0, Y)=& JI, a(ky)ejkyy dk,. 

If we invert the transform relationship, this equation tells us that the 
amplitude distribution function can be obtained from the fields on the line x 
= Oby 

c~(k,) = Fourier transform of { ~(0, y)] . (1% 
This amplitude distribution function can then be substituted into the equation 
for ~(7) to obtain the fields everywhere right of the line x = 0. 
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We will now show how it is possible to relate fields on two parallel lines. 
Again consider the situation diagrammed in Fig. 6.1. If we know a priori that 
all the sources for the field are positioned, for example, to the left of the line 
at x = lo, then we can decompose the field u(x = lo, y) into its plane wave 
components. Given a plane wave z+,lane wave (x = lo, y) = (yej(kxb+kyY) the 
field undergoes a phase shift as it propagates to the line x = II, and we can 
write 

~~~~~~~~~~~~~~~~ y)=~ei(kx’O+kyy)e~kx(II-lO)=~p,anewave(~=Io, y)ejWi-‘0) 

(16) 

Thus the complex amplitude of the plane wave at x = 1, is related to its 
complex amplitude at x = 1, by a factor of ejkA’i-‘O). 

The complete process of finding the field at a line x = Ii follows in three 
steps : 

1) Take the Fourier transform of u(x = lo, u) to find the Fourier 
decomposition of u as a function of /ry . 

2) Propagate each plane wave to the line x = Ii by multiplying its complex 
amplitude by the phase factor ejkArl-IO) where, as before, k, = 
@TyI 

3) Find the mverse Fourier transform of the plane wave decomposition to 
find the field at u(x = I,, u). 

These steps can be reversed if, for some reason, one wished to implement on 
a computer the notion of backward propagation; more on that subject later. 

6.1.2 Inhomogeneous Wave Equation 

For imaging purposes, our main interest lies in inhomogeneous media. 
We, therefore, write a more general form of the wave equation as 

[V2+k(F)2]u(J)=O. (17) 

For the electromagnetic case, if we ignore the effects of polarization we can 
consider k(7) to be a scalar function representing the refractive index of the 
medium. We now write 

k(7) = kon(q= kO[l + n*(Q (18) 

where k. represents the average wavenumber of the medium and ~(9 
represents the refractive index deviations. In general, we will assume that the 
object has a finite size and therefore n@) is zero outside the object. 
Rewriting the wave equation we find 

(V+ k@(F) = - k$(7)2- l](flu(fl (1% 

where n(Q is the electromagnetic refractive index of the media and is given 
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(20) 

Here we have used p and E to represent the magnetic permeability and 
dielectric constant and the subscript zero to indicate their average values. 
This new term, on the right-hand side of (19)) is known as a forcing function 
for the differential equation (V2 + ki)u(n. 

Note that (19) is a scalar wave propagation equation. Its use implies that 
there is no depolarization as the electromagnetic wave propagates through the 
medium. It is known [Ish78] that the depolarization effects can be ignored 
only if the wavelength is much smaller than the correlation size of the 
inhomogeneities in the object. If this condition isn’t satisfied, then strictly 
speaking we must use the following vector wave propagation equation: 

V2,?(rv)+k$n2E(q-2V 
Vn [ 1 -.E co 
n 

where E is the electric field vector. A vector theory for diffraction 
tomography based on this equation has yet to be developed. 

For the acoustic case, first-order approximations give us the following 
wave equation [Kak85], [Mor68]: 

(V2+k$u(7)= -kt[n2(7)- l]u(fl (22) 

where n is the complex refractive index at position 7, and is equal to 

CO n(F)=- 
C(Q 

where co is the propagation velocity in the medium in which the object is 
immersed and c(i) is the propagation velocity at location iin the object. For 
the acoustic case where only compressional waves in a viscous compressible 
fluid are involved, we have 

c(i) = 1 
mmi (24) 

where p and K are the local density and the complex compressibility at 
location Z 

The forcing function in (22) is only valid provided we can ignore the first 
and higher order derivatives of the medium parameters. If these higher order 
derivatives can’t be ignored, the exact form for the wave equation must be 
used: 

(V2+k;)u(7)=k;y,u-V * (y,Vu) (25) 
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where 

K - Ko 
YK=- (26) 

P-P0 
yp=-. 

P 
(27) 

~~ and p. are either the compressibility and the density of the medium in 
which the object is immersed, or the average compressibility and the density 
of the object, depending upon how the process of imaging is modeled. On the 
other hand, if the object is a solid and can be modeled as a linear isotropic 
viscoelastic medium, the forcing function possesses another more compli- 
cated form. Since this form involves tensor notation, it will not be presented 
here and the interested reader is referred to [Iwa75]. 

Due to the similarities of the electromagnetic and acoustic wave equations, 
a general form of the wave equation for the small perturbation case can be 
written as 

(V2+ k;)u(F) = - o(i)u(F) (28) 

where 

o(i) = ki[n2(F) - 11. (2% 
This allows us to describe the math involved in diffraction tomography 
independent of the form of energy used to illuminate the object. 

We will consider the field, u(F), to be the sum of two components, uo(i) 
and u,(J). The component uo(F), known as the incident field, is the field 
present without any inhomogeneities, or, equivalently, a solution to the 
equation 

(V2 + k;)u,(F) = 0. (30) 

The component u,(F), known as the scattered field, will be that part of the 
total field that can be attributed solely to the inhomogeneities. What we are 
saying is that with uo(F) as the solution to the above equation, we want the 
field u(7) to be given by u(i) = uo(F’) + u,(fl. Substituting the wave 
equation for u. and the sum representation for u into (28), we get the 
following wave equation for just the scattered component: 

(V2+ k@,(i) = - u(F)o(F). (31) 

The scalar Helmholtz equation (31) can’t be solved for u,(i?) directly, but a 
solution can be written in terms of the Green’s function [Mor53]. The 
Green’s function, which is a solution of the differential equation 

(V2+k;)g(717’)= -&(7-F’), (32) 
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is written in three-space as 

g(?,P’)=g (33) 

with 

R= (i-i’/. (34) 

In two dimensions the solution of (32) is written in terms of a zero-order 
Hankel function of the first kind, and can be expressed as 

In both cases, the Green’s function, g(?13’), is only a function of the 
difference 7 - P so we will often represent the function as simply g(7 - P). 
Because the object function in (32) represents a point inhomogeneity, the 
Green’s function can be considered to represent the field resulting from a 
single point scatterer. 

It is possible to represent the forcing function of the wave equation as an 
array of impulses or 

o(i)@)= j o(i’)u(f’)6(7-7’) d7’. (36) 

In this equation we have represented the forcing function of the inhomoge- 
neous wave equation as a summation of impulses weighted by 0(7)u(F) and 
shifted by Z The Green’s function represents the solution of the wave 
equation for a single delta function; because the left-hand side of the wave 
equation is linear, we can write a solution by summing up the scattered field 
due to each individual point scatterer. 

Using this idea, the total field due to the impulse 0(7’)u(i’)6(7 - 7’) is 
written as a summation of scaled and shifted versions of the impulse 
response, g(F). This is a simple convolution and the total radiation from all 
sources on the right-hand side of (31) must be given by the following 
superposition: 

u,(i)= j g(7-?‘)o(F’)u(F’) di’. (37) 
At first glance it might appear that this is the solution we need for the 
scattered field, but it is not that simple. We have written an integral equation 
for the scattered field, u,, in terms of the total field, u = u. + u,. We still 
need to solve this equation for the scattered field and we will now discuss two 
approximations that allow this to be done. 

6.2 Approximations to the Wave Equation 

In the last section we derived an inhomogeneous integral equation to 
represent the scattered field, u,(fl, as a function of the object, o(i). This 
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equation can’t be solved directly, but a solution can be written using either of 
the two approximations to be described here. These approximations, the Born 
and the Rytov, are valid under different conditions but the form of the 
resulting solutions is quite similar. These approximations are the basis of the 
Fourier Diffraction Theorem. 

Mathematically speaking, (37) is a Fredholm equation of the second kind. 
A number of mathematicians have presented works describing the solution of 
scattering integrals [Hoc73], [Co1831 which should be consulted for the 
theory behind the approximations we will present. 

6.2.1 The First Born Approximation 

The first Born approximation is the simpler of the two approaches. Recall 
that the total field, ~(9, is expressed as the sum of the incident field, uo(iz), 
and a small perturbation, u,(fi, or 

u(i)=uo(i)+u,(i). (38) 

The integral of (37) is now written as 

u,(3)= j g(i-i’)o(i’)uo(i’) di' + j g(i-i’)o(i’)y(i’) d7' 

but if the scattered field, u,(3), is small compared to uo(J) the effects of the 
second integral can be ignored to arrive at the approximation 

u,(i)=uB(i)= 1 g(i-i')o(i')uo(i') di'. (40) 

An even better estimate can be found by substituting uo(i) + ue(fl for u@) 
in (40) to find 

z@(i)= 1 g(i-i’)o(i’)[uo(i’)+us(i’)] di'. (41) 

In general, the i&order Born field can be written 

u;+‘)(i)= 1 g(i-i’)o(i’)[uo(i’)+u$)(i’)] di’. 

(42) 

An alternate representation is possible if we write 

u(i)=uo(i)+uu1(i)+u2(i)+~*~ (43) 

where 

u(~+~)(Q= ui(i')o(i')g(i-7') dJ'. s (44) 

By expanding (42) it is possible to see that an approximate expression for the 
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scattered field, ~$1, is 

(45) 
j=O 

and in the limit 

u(~?‘uo(7)+u~(F)+u~(F)+u3(i)+~*~ . (46) 

This representation (46) has a more intuitive interpretation. The Green’s 
function gives the scattered field due to a point scatterer and thus the integral 
of (42) can be interpreted as calculating the first-order scattered field due to 
the field Ui. For this reason the first-order Born approximation represents the 
first-order scattered field and Ui represents the &order scattered field. 

The result can also be interpreted in terms of the Huygens principle; each 
point in the object produces a scattered field proportional to the scattering 
potential at the site of the scatterer. Each of these partial scattered fields 
interacts with the other scattering centers in the object and if the Born series 
converges the total field is the sum of the partial scattered fields. 

While the higher order Born series does provide a good model of the 
scattering process, reconstruction algorithms based on this series have yet to 
be developed. These algorithms are currently being researched; in the 
meantime, we will study reconstruction algorithms based on first-order 
approximations [Bar78], [Sla85]. 

The first Born approximation is valid only when the scattered field, 

u,(J) = m - u,(7), (47) 

is smaller than the incident field, u,-,. If the object is a homogeneous cylinder 
it is possible to express this condition as a function of the size of the object 
and the refractive index. Let the incident wave, uo(fi, be an electromagnetic 
plane wave propagating in the direction of the unit vector, s’. For a large 
object, the field inside the object will not be well approximated by the 
incident field 

U(i) = U&je&(F) #:AejkO”’ (48) 

but instead will be a function of the change in refractive index, ns. Along a 
line through the center of the cylinder and parallel to the direction of 
propagation of the incident plane wave, the field inside the object becomes a 
slow (or fast) version of the incident wave, that is, 

Since the wave is propagating through the object, the phase difference 
between the incident field and the field inside the object is approximately 
equal to the integral through the object of the change in refractive index. For a 
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homogeneous cylinder of radius a, the total phase shift through the object 
becomes 

Phase Change = 4ms i (50) 

where X is the wavelength of the incident wave. For the Born approximation 
to be valid, a necessary condition is that the change in phase between the 
incident field and the wave propagating through the object be less than ?r. 
This condition can be expressed mathematically as 

x 
ang<i * (51) 

6.2.2 The First Rytov Approximation 

Another approximation to the scattered field is the Rytov approximation 
which is valid under slightly different restrictions. It is derived by considering 
the total field to be represented as a complex phase or [Ish78] 

u(7> = e+(7) (52) 

and rewriting the wave equation (17) 

(V2+kz)u=0 (17) 

as 

V2e” + k2e” = 0 (53) 

(54) 

V2$e+ + (V+)2e” + k2e@ = 0 (55) 

and finally 

(W2+V24+k;= -o(i). (56) 

(Although all the fields, 4, are a function of c to simplify the notation the 
argument of these functions will be dropped.) Expressing the total complex 
phase, +, as the sum of the incident phase function 4. and the scattered 
complex phase 4S or 

where 

uo(i) = e+o(n , (58) 
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we find that 

(V+o)2+2V~o. V~~+(V~,)2+V2~0+V2~~+k;+~(i)=0. (59) 

As in the Born approximation, it is possible to set the zero perturbation 
equation equal to zero. Doing this, we find that 

k;+(V$0)2+V240=0. (60) 

Substituting this into (59) we get 

2v40 * vq5s+v2q5s= -(V&)2-o(i). (61) 

This equation is still inhomogeneous but can be linearized by considering 
the relation 

V2(uo4J = V(Vuo * 4s+ uoV4s) (62) 

or by expanding the first derivative on the right-hand side of this equation 

V2(u,,4s)=V2uo * 4s+2Vuo * V4s+uoV24s. (63) 
Using a plane wave for the incident field, 

u. = A## 5 (64) 
we find 

V2uo= - k;uo (65) 

so that (63) may be rewritten as 

2~~~4~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ (66) 

This result can be substituted into (61) to find 

(V2+k;)uo4,= -~oNV4s)~+o(iN. (67) 

The solution to this differential equation can again be expressed as an integral 
equation. This becomes 

n 
uo4s = J g(i-7') uo[(V4s)2+o(i’)] di'. VW 

V 

Using the Rytov approximation we assume that the term in brackets in the 
above equation can be approximated by 

(V4J2+o(i)=o(i). (69) 
When this is done, the first-order Rytov approximation to the function uo4s 
becomes 

uo4s = s g(i-i')uo(i')o(i') di' . (70) 
V 
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Thus 4,, the complex phase of the scattered field, is given by 

g(i- i’)uo(i’)o(i’) di’. 

Substituting the expression for us given in (40), we find that 

4s(q=s; . 
0 

(71) 

(72) 

The Rytov approximation is valid under a less restrictive set of conditions 
than the Born approximation [Che60], [Kel69]. In deriving the Rytov 
approximation we made the assumption that 

(V4s)2+o(i)=o(F). (73) 
Clearly this is true only when 

m s= (V4d2. (74) 
If o(F) is written in terms of the change in refractive index 

o(i) = ki[n2(i) - 1] = kt[(l + ns(i))2- 1] (2% 
and the square of the refractive index is expanded to find 

o(F)=ki[(l +2ns(i)+n,Z(i))- 1] (75) 
o(q = ki[2n6(i) + n,2(7)]. (76) 

To a first approximation, the object function is linearly related to the 
refractive index or 

o(i)=2k#$(i). (77) 
The condition needed for the Rytov approximation (see (74)) can be rewritten 
as 

n 
6 

~ (V4d2 
7’ (78) 

This can be justified by observing that to a first approximation the scattered 
phase, d,, is linearly dependent on the refractive index change, ns, and 
therefore the first term in (73) can be safely ignored for small ns. 

Unlike the Born approximation, the size of the object is not a factor in the 
Rytov approximation. The term V4, is the change in the complex scattered 
phase per unit distance and by dividing by the wavenumber 

ko=!f (79) 
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we find a necessary condition for the validity of the Rytov approximation is 

(80) 

Unlike the Born approximation, it is the change in scattered phase, &, over 
one wavelength that is important and not the total phase. Thus, because of the 
V operator, the Rytov approximation is valid when the phase change over a 
single wavelength is small. 

Since the imaging process is carried out in terms of the field, UB , defined in 
the previous subsection, we need to show a Rytov approximation expression 
for uB. Estimating u,(7) for the Rytov case is slightly more difficult. In an 
experiment the total field, u(J>, is measured. An expression for ~(3 is 
found by recalling the expression for the Rytov solution to the total wave 

u(i)=uo+u,(i)=e~o++~ (81) 

and then rearranging the exponentials to find 

u,=e40+4-e+0 (82) 

u,=e@(eQs- 1) (83) 

24, = uo(e+s - 1). (84) 

Inverting this to find an estimate for the scattered phase, 4,, we obtain 

r#&)=ln 4fs+l . [ 1 uo 635) 

Expanding 4, in terms of (72) we obtain the following estimate for the Rytov 
estimate of ue(i): 

ue(i) = uo(i) In [ 1 4fs+l . 
uo 

Since the natural logarithm is a multiple-valued function, one must be careful 
at each position to choose the correct value. For continuous functions this 
isn’t difficult because only one value will satisfy the continuity requirement. 
On the other hand, for discrete (or sampled) signals the choice isn’t nearly as 
simple and one must resort to a phase unwrapping algorithm to choose the 
proper phase. (Phase unwrapping has been described in a number of works 
[Tri77], [OCo78], [Kav84], [McG82].) Due to the “ + 1” factor inside the 
logarithmic term, this is only a problem if u, is on the order of or larger than 
ug. Thus both the Born and the Rytov techniques can be used to estimate 
usm. 

While the Rytov approximation is valid over a larger class of objects, it is 
possible to show that the Born and the Rytov approximations produce the 
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same result for objects that are small and deviate only slightly from the 
average refractive index of the medium. Consider first the Rytov approxima- 
tion to the scattered wave. This is given by 

u(i) = e40+% (87) 

Substituting an expression for the scattered phase, (72), and the incident field, 
(64), we find 

u(Q = ejkoS’?+e+exp (-jkoSti)u.d?) @8) 

or 
u(q = Uo(fleexp(-jkor”%e(r3e (8% 

For small uB, the first exponential can be expanded in terms of its power 
series. Throwing out all but the first two terms we find that 

u(i)=z.40(i)[l+e-~ko~r uem1 (90) 
01 

u(i) = uo(i) + tie(i). (91) 

Thus for very small objects and perturbations the Rytov solution is 
approximately equal to the Born solution given in (40). 

The similarity between the expressions for the first-order Born and Rytov 
solutions will form the basis of our reconstructions. In the Born approxima- 
tion we measure the complex amplitude of the scattered field and use this as 
an estimate of the function uB, while in the Rytov case we estimate uB from 
the phase of the scattered field. Since the Rytov approximation is considered 
more accurate than the Born approximation it should provide a better estimate 
of ue. In Section 6.5, after we have derived reconstruction algorithms based 
on the Fourier Diffraction Theorem, we will discuss simulations comparing 
the Born and the Rytov approximations. 

6.3 The Fourier Diffraction Theorem 

Fundamental to diffraction tomography is the Fourier Diffraction 
Theorem, which relates the Fourier transform of the measured forward 
scattered data with the Fourier transform of the object. The theorem is valid 
when the inhomogeneities in the object are only weakly scattering. The 
statement of the theorem is as follows: 

When an object, 0(x, y), is illuminated with a plane wave as shown in Fig. 
6.2, the Fourier transform of the forward scattered field measured on line 
TT' gives the values of the 2-D transform, O(wl, 02), of the object along a 
semicircular arc in the frequency domain, as shown in the right half of the 
figure. 
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space domain frequency domain 

Fig. 6.2: The Fourier 
Diffraction Theorem relates the 
Fourier transform of a diffracted 
projection to the Fourier 
transform of the object along a 
semicircular arc. (From [SIa83].) 

The importance of the theorem is made obvious by noting that if an object is 
illuminated by plane waves from many directions over 360”) the resulting 
circular arcs in the (pi, w2)-plane will fill up the frequency domain. The 
function 0(x, u) may then be recovered by Fourier inversion. 

Before giving a short proof of the theorem, we would like to say a few 
words about the dimensionality of the object vis-a-vis that of the wave fields. 
Although the theorem talks about a two-dimensional object, what is actually 
meant is an object that doesn’t vary in the z direction. In other words, the 
theorem is about any cylindrical object whose cross-sectional distribution is 
given by the function 0(x, y). The forward scattered fields are measured on a? 
line of detectors along TT' in Fig. 6.2. If a truly three-dimensional object 
were illuminated by the plane wave, the forward scattered fields would now 
have to be measured by a planar array of detectors. The Fourier transform of 
the fields measured by such an array would give the values of the 3-D 
transform of the object over a spherical surface. This was first shown by Wolf 
[Wo169]. More recent expositions are given in [Nah82] and [Dev84], where 
the authors have also presented a new synthetic aperture procedure for a full 
three-dimensional reconstruction using only two rotational positions of the 
object. In this chapter, however, we will continue to work with two- 
dimensional objects in the sense described here. A recent work describing 
some of the errors in this approach is [LuZ84]. 
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Earlier in this chapter, we expressed the scattered field due to a weakly 
scattering object as the convolution 

uB(i) = s o(i’)u,#‘)g(i- i’) d7’ (92) 

where us(i) represents the complex amplitude of the field as in the Born 
approximation, or the incident field, ua(Q, times the complex scattered 
phase, +,(q, as in the Rytov approximation. Starting from this integral there 
are two approaches to the derivation of the Fourier Diffraction Theorem. 
Many researchers [Mue79], [Gre78], [Dev82] have expanded the Green’s 
function into its plane wave decomposition and then noted the similarity of the 
resulting expression and the Fourier transform of the object. The alternative 
approach consists of taking the Fourier transform of both sides of (92). In this 
work we will present both approaches to the derivation of the Fourier 
Diffraction Theorem; the first because the math is more straightforward, the 
second because it provides a greater insight into the difference between 
transmission and reflection tomography. 

6.3.1 Decomposing the Green’s Function 

We will first consider the decomposition of the Green’s function into its 
plane wave components. 

The integral equation for the scattered field (92) can be considered as a 
convolution of the Green’s function, g(7 - ?), and the product of the object 
function, o(T), and the incident field, ~~(7). Consider the effect of a single 
plane wave illuminating an object. The forward scattered field will be 
measured at the receiver line as is shown in Fig. 6.3. 

A single plane wave in two dimensions can be represented as 

~~(7) = eif*’ (93) 

where B = (k,, k,J satisfies the relationship 

k;=k;+k;. (94) 

From earlier in this chapter, the two-dimensional Green’s function is given 
by 

and HO is the zero-order Hankel function of the first kind. The function H,J 
has the plane wave decomposition [Mor53] 
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Fig. 6.3: A typical diffraction 
tomography experiment is shown. 
Here a single plane wave is used 
to illuminate the object and the 
scattered field is measured on the 
far side of the object. This is 
transmission tomography. (From 
[Pan83].) 

Incident plane wave 

where 7 = (x, y), 7” = (x’, y’) and 

p4q-2. (97) 

Basically, (96) expresses a cylindrical wave, Ha, as a superposition of plane 
waves. At all points, the wave centered at 7’ is traveling outward; for points 
such that y > y ’ the plane waves propagate upward while for y c y ’ the plane 
waves propagate downward. In addition, for IQ] I kO, the plane waves are of 
the ordinary type, propagating along the direction given by tan- l (p/o). 
However, for ICY( > ko, P becomes imaginary, the waves decay exponen- 
tially and they are called evanescent waves. Evanescent waves are usually of 
no significance beyond about 10 wavelengths from the source. 

Substituting this expression, (96), into the expression for the scattered 
field, (92), the scattered field can now be written 

u,c+& i @‘)u@‘) I”“, $ ,+-h-X’)+@lU-U’ll da di’. (98) 

In order to show the first steps in the proof of this theorem, we will now 
assume for notational convenience that the direction of the incident plane 
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wave is along the positive y-axis. Thus the incident field will be given by 

uo(Q = ej%‘i (99) 

where Z,, = (0, ko). Since in transmission imaging the scattered fields are 
measured by a linear array located at y = la, where lo is greater than any y- 
coordinate within the object (see Fig. 6.3), the term Iy - y ’ 1 in the above 
expression may simply be replaced by la - y’ and the resulting form may be 
rewritten 

uE(x, y=jo)=k jy, da j $? ej[~(x-x’)+b(r,-r’)leikov’ dJ’. (100) 

Recognizing part of the inner integral as the two-dimensional Fourier 
transform of the object function evaluated at a frequency of (CY, /3 - ko) we 
find 

4(x, Y = lo) = & s 
o, A ej(ux+flto)O(a, p- ko) da 

P 
(101) -m 

where 0 has been used to designate the two-dimensional Fourier transform of 
the object function. 

Let Us(w, /a) denote the Fourier transform of the one-dimensional 
scattered field, uB(x, @, with respect to x, that is, 

UE(w, lo) = ST, uE(x, lo)e-jux dx. (102) 

As mentioned before, the physics of wave propagation dictate that the highest 
angular spatial frequency in the measured scattered field on the line y = 4-, is 
unlikely to exceed ko. Therefore, in almost all practical situations, U,(w, 4~) 
= 0 for ( w ( > ko. This is consistent with neglecting the evanescent modes as 
described earlier. 

If we take the Fourier transform of the scattered field by substituting (101) 
into (102) and using the following property of Fourier integrals 

s 
m 

ej(O-u)x dx= 27r6(w - CY) (103) --o 

where 6( *) is the Dirac delta function we discussed in Chapter 2, we find 

UE(% lo)= J 
2&57 

&GloO(a, w - ko) for I~Y[ <ko. 

(104) 

This expression relates the two-dimensional Fourier transform of the object to 
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the one-dimensional Fourier transform of the field at the receiver line. The 
factor 

is a simple constant for a fixed receiver line. As CY varies from - k0 to kO, the 
coordinates (CX, &? - kc,) in the Fourier transform of the object 
function trace out a semicircular arc in the (u, u)-plane as shown in Fig. 6.2. 
This proves the theorem. 

To summarize, if we take the Fourier transform of the forward scattered 
data when the incident illumination is propagating along the positive y-axis, 
the resulting transform will be zero for angular spatial frequencies 1 CY 1 > /co. 
For 1 (Y 1 < ks, the transform of the data gives values of the Fourier transform 
of the object on the semicircular arc shown in Fig. 6.2 in the (u, u)-plane. 
The endpoints of the semicircular arc are at a distance of fikO from the origin 
in the frequency domain. 

6.3.2 Fourier Transform Approach 

Another approach to the derivation of the Fourier Diffraction Theorem is 
possible if the scattered field 

uB(i)= j o(7’)uo(i’)g(i-7’) dt’ (106) 

is considered entirely in the Fourier domain. The plots of Fig. 6.4 will be 
used to illustrate the various transformations that take place. Again, consider 
the effect of a single plane wave illuminating an object. The forward scattered 
field will be measured at the receiver line as is shown in Fig. 6.3. 

The integral equation for the scattered field, (106), can be considered as a 
convolution of the Green’s function, g(i - 7’), and the product of the object 
function, o(i’), and the incident field, ~~(7). First define the following 
Fourier transform pairs: 

om 4-b ma 

g(i-7’) ++ G(R) (107) 

u(i) 4-b U(B). 

The integral solution to the wave equation, (40), can now be written in 
terms of these Fourier transforms, that is, 

U,(x) = G(f)(O(7i) * Uo(7i)} (108) 

where * has been used to represent convolution and x = (CY, y). In (93) an 
expression for ~0 was presented. Its Fourier transform is given by 

u,(A)=27r~(iL-R) (109) 
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Fig. 6.4: Two-dimensional 
Fourier representation of the 
Hebnholtz equation. (a) is the 
Fourier transform of the object, 
in this case a cylinder, (b) is the 
Fourier transform of the incident 
field, (c) is the Fourier transform 
of the Green

’

s 

function in (95), 
(d) shows the frequency domain 
convolution of (a) and (b), and 
finally (e) is the product in the 
frequency domain of (c) and (d). 
(From [Sla83].) 

and thus the convolution of (108) becomes a shift in the frequency domain or 

O(X) * u,(x)=2~o(x-~). (110) 

This convolution is illustrated in Figs. 6:4(a)-(c) for a plane wave 
propagating with direction vector, J? = (0, ko). Fig. 6.4(a) shows the Fourier 
transform of a single cylinder of radius 1X and Fig. 6.4(b) shows the Fourier 
transform of the incident field. The resulting multiplication in the space 
domain or convolution in the frequency domain is shown in Fig. 6.4(c). 

To find the Fourier transform of the Green

’

s 

function the Fourier 
transform of (32) is calculated to find 

(-A2+/$G(f17

’

)= 

-e-jxei

’

e 

(111) 
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Rearranging terms we see that 

G(7i I”)=& 
0 

(112) 

which has a singularity for all x such that 

(A(2=cY2+y2=k;. 

An approximation to G(x) is shown in Fig. 6.4(d). 

(113) 

The Fourier transform representation in (112) can be misleading because it 
represents a point scatterer as both a sink and a source of waves. A single 
plane wave propagating from left to right can be considered in two different 
ways depending on your point of view. From the left side of the scatterer, the 
point scatterer represents a sink to the wave, while to the right of the scatterer 
the wave is spreading from a source point. Clearly, it’s not possible for a 
scatterer to be both a point source and a sink. Later, when our expression for 
the scattered field is inverted, it will be necessary to choose a solution that 
leads to outgoing waves only. 

The effect of the convolution shown in (106) is a multiplication in the 
frequency domain of the shifted object function, (llO), and the Green’s 
function, (112), evaluated at i’ = 0. The scattered field is written as 

U,(X)=2n 
0(X 4) 

AZ-k2 ’ (114) 

This result is shown in Fig. 6.4(e) for a plane wave propagating along the y- 
axis. Since the largest frequency domain components of the Green’s function 
satisfy (113), the Fourier transform of the scattered fie!d is dominated by a 
shifted and sampled version of the object’s Fourier transform. 

We will now derive an expression for the field at the receiver line. For 
simplicity we will continue;0 assume that the incident field is propagating 
along the positive y-axis or K = (0, ko). The scattered field along the receiver 
line (x, y = lo) is simply the inverse Fourier transform of the field in (114). 
This is written as 

(115) 
which, using (114), can be expressed as 

cm ‘(% y-ko) “(x9 ‘=/,,‘$ s:, j-, a2+y2-k2 e i(-+rlo) da &. (116) 
0 

We will first find the integral with respect to y. For a given (Y, the integral 
has a singularity for 

y1,2= +dzp. (117) 
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Using contour integration we can evaluate the integral with respect to y along 
the path shown in Fig. 6.5. By adding 1/2r of the residue at each pole we find 

u,(x, y) =& 1 rl(cr; y)ejax da+& i r2(a; y)eJux da 

where 

r, = 
jO(w v--k4 eje,o 

24cp 

r 
2 
= -jO(w w--M e-jG,o 

2&5-z 

(118) 

(119) 

w-a 

Examining the above pair of equations we see that rr represents the solution 
in terms of plane waves traveling along the positive y-axis, while r2 
represents plane waves traveling in the -y direction. 

As was discussed earlier, the Fourier transform of the Green’s function 
(112) represents the field due to both a point source and a point sink, but the 
two solutions are distinct for receiver lines that are outside the extent of the 
object. First consider the scattered field along the line y = IO where lo is 
greater than the y-coordinate of all points in the object. Since all scattered 
fields originate in the object, plane waves propagating along the positive y- 
axis represent outgoing waves while waves propagating along the negative y- 
axis represent waves due to a point sink. Thus for y > object (i.e., the 
receiver line is above the object) the outgoing scattered waves are represented 
by I’, or 

u,(x, y) = & l rl(a; y)ej”lw da, y > object. (121) 

Fig. 6.5: Integration path in the Conversely, for a receiver along a line y = lo where lo is less than the y- 
complex plane for inverting the coordinate of any point in the object, the scattered field is represented by r2 
two-dimensional Fourier or 
transform of the scattered field. 
The correct Dole must be chosen 1 n 
to lead to okgoing fields. (From 
[Sla84/.) 

u,(x, y) =k 1 r2(a; y)ejax da, y c object. ww 
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In general, the scattered field will be written as 

(123) 

and it will be understood that values that lead only to outgoing waves should 
be chosen for the square root in the expression for r. 

Taking the Fourier transform of both sides of (123) we find that 

s U(X, y= lo)e-jax dx= I’(a, 10). (124) 

But since by (119) and (120)) I’(a, lo) is equal to a phase shifted version of the 
object function, the Fourier transform of the scattered field along the line y = 
lo is related to the Fourier transform of the object along a circular arc. The use 
of the contour integration is further justified by noting that only those waves 
that satisfy the relationship 

cr2+y2=k; (125) 

will be propagated and thus it is safe to ignore all waves not on the ko-circle. 
This result is diagrammed in Fig. 6.6. The circular arc represents the locus 

of all points (CY, y) such that y = m The solid line shows the 
outgoing waves for a receiver line at y = lo above the object. This can be 
considered transmission tomography. Conversely, the broken line indicates 
the locus of solutions for the reflection tomography case, or y = lo is below 
the object. 

6.3.3 Short Wavelength Limit of the Fourier Diffraction Theorem 

Fig. 6.6: Estimates of the 
two-dimensional Fourier 

While at first the derivations of the Fourier Slice Theorem and the Fourier 
transform of the object are Diffraction Theorem seem quite different, it is interesting to note that in the 
available along the solid arc for limit of very high energy waves or, equivalently, very short wavelengths the 
transmission tomography and the 
broken arc for reflection 

Fourier Diffraction Theorem approaches the Fourier Slice Theorem. Recall 
tomography. (Adapted from that the Fourier transform of a diffracted projection corresponds to samples of 
[Sla84/.) the two-dimensional Fourier transform of an object along a semicircular arc. 

0 Objects 
0 

/’ 
k, 

1’ 
I , Reflection Transmission * 
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\, 

TOMOGRAPHIC IMAGING WITH DIFFRACTING SOURCES 221 



The radius of the arc shown in Fig. 6.2 is equal to k. which is given by 

and X is the wavelength of the energy. As the wavelength is decreased, the 
wavenumber, ko, and the radius of the arc in the object’s Fourier domain 
grow. This process is illustrated in Fig. 6.7 where we have shown the 
semicircular arcs resulting from diffraction experiments at seven different 
frequencies. 

An example might make this idea clearer. An ultrasonic tomography 
experiment might be carried out at a frequency of 5 MHz which corresponds 
to a wavelength in water of 0.3 mm. This corresponds to a k. of 333 radians/ 
meter. On the other hand, a hypothetical coherent x-ray source with a lOO- 
keV beam has a wavelength of 0.012 PM. The result is that a diffraction 
experiment with x-rays can give samples along an arc of radius 5 x lo8 
radians/meter. Certainly for all physiological features (i.e., resolutions of < 
1000 radians/meter) the arc could be considered to be a straight line and the 
Fourier Slice Theorem an excellent model for relating the transforms of the 
projections with the transform of the object. 

6.3.4 The Data Collection Process 

The best that can be hoped for in any tomographic experiment is to estimate 
the Fourier transform of the object for all frequencies within a disk centered 

Fig. 6.1: As the frequency of 
at the origin. For objects whose spectra have no frequency content outside the 

the experiment goes up disk, the reconstruction procedure is perfect. 
(wavelength goes down) the There are several different procedures that can be used to estimate the 
radius of the arc increases until 
the scattered field is closely 

object function from the scattered field. A single plane wave provides exact 
approximated by the Fourier Slice information (up to a frequency of ako) about the Fourier transform of the 
Theorem discussed in Chapter 3. object along a semicircular arc. Two of the simplest procedures involve 

A Objects 

% 

k =Bk, 

k= 17k, 
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changing the orientation and frequency of the incident plane waves to move 
the frequency domain arcs to a new position. By appropriately choosing an 
orientation and a frequency it is possible to estimate the Fourier transform of 
the object at any given frequency. In addition, it is possible to change the 
radius of the semicircular arc by varying the frequency of the incident field 
and thus generating an estimate of the entire Fourier transform of the object. 

The most straightforward data collection procedure was discussed by 
Mueller et al. [Mue80] and consists of rotating the object and measuring the 
scattered field for different orientations. Each orientation will produce an 
estimate of the object’s Fourier transform along a circular arc and these arcs 
will rotate as the object is rotated. When the object has rotated through a full 
360” an estimate of the object will be available for the entire Fourier disk. 

The coverage for this method is shown in Fig. 6.8 for a simple experiment 
with eight projections of nine samples each. Notice that there are two arcs 
that pass through each point of Fourier space. Generally, it will be necessary 
to choose one estimate as better. 

On the other hand, if the reflected data are collected by measuring the field 
on the same side of the object as the source, then estimates of the object are 

Fig. 6.8: With plane wave available for frequencies greater than akO. This follows from Fig. 6.6. 
illumination, estimates of the 
object’s two-dimensional Fourier 

Nahamoo and Kak [Nah82], [Nah84] and Devaney [Dev84] have proposed 
transform are available along the a method that requires only two rotational views of an object. Consider an 
circular arcs. arbitrary source of waves in the transmitter plane as shown in Fig. 6.9. The 
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Fig. 6.9: A typical synthetic 
aperture tomography experiment 
is shown. A transmitter is 
scanned past the object. For each 
transmitter position the scattered 
field is measured. Later, 
appropriate phases are added to 
the projections to synthesize any 
incident plane wave. (From 
[Sla83/.) 

transmitted field, ur, can be represented as a weighted set of plane waves by 
taking the Fourier transform of the transmitter aperture function [Goo68]. 
Doing this we find 

u,(x) =-$ jy, At(kx)ejkxx dk,. (127) 

Moving the source to a new position, 7, the plane wave decomposition of the 
transmitted field becomes 

Given the plane wave decomposition, the incident field in the plane follows 
simply as 

ui(v; x, y)= so)_ (--$ ,4,(kx)ejkxq) ej(kxx+kyy) dk,. (129) 

In (124) we presented an equation for the scattered field from a single plane 
wave. Because of the linearity of the Fourier transform the effect of each 
plane wave, ej(+++‘), can be weighted by the expression in brackets above 
and superimposed to find the Fourier transform of the total scattered field due 
to the incident field u,(x; q) as [Nah82] 

230 COMPUTERIZED TOMOGRAPHIC IMAGING 



Taking the Fourier transform of both sides with respect to the transmitter 
position, 7, we find that 

Us(kx; a) =4(k) 
O(a-kx, r-k,) 

j27 ’ 

By collecting the scattered field along the receiver line as a function of 
transmitter position, 7, we have an expression for the scattered field. Like the 
simpler case with plane wave incidence, the scattered field is related to the 
Fourier transform of the object along an arc. Unlike the previous case, 
though, the coverage due to a single view of the object is a pair of circular 
disks as shown in Fig. 6.10. Here a single view consists of transmitting from 
all positions in a line and measuring the scattered field at all positions along 
the receiver line. By rotating the object by 90” it is possible to generate the 
complementary disk and to fill the Fourier domain. 

The coverage shown in Fig. 6.10 is constructed by calculating (g - x) for 
all vectors (a and (x) that satisfy the experimental constraints. Not only 
must each vector satisfy the wave equation but it is also necessary that only 
forward traveling plane waves be used. The broken line in Fig. 6.10 shows 

Fig. 6.10: Estimates of the the valid propagation vectors (- & for the transmitted waves. To each 
Fourier transform of an object in 
the synthetic aperture experiment 

possible vector ( - x) a semicircular set of vectors representing each possible 
are available in the shaded received wave can be added. The locus of received plane waves is shown as a 
region. solid semicircle centered at each of the transmitted waves indicated by an x . 

t ky 
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The entire coverage for the synthetic aperture approach is shown as the 
shaded areas. 

In geophysical imaging it is not possible to generate or receive waves from 
all positions around the object. If it is possible to drill a borehole, then it is 
possible to perform vertical seismic profiling (VSP) [Dev83] and obtain 
information about most of the object. A typical experiment is shown in Fig. 
6.11. So as to not damage the borehole, acoustic waves are generated at the 
surface using acoustic detonators or other methods and the scattered field is 
measured in the borehole. 

Fig. 6.11: A typical vertical 
seismic profiling (HP) 
experiment. 

The coverage in the frequency domain is similar to the synthetic aperture 
approach in [Nah84]. Plane waves at an arbitrary downward direction are 
synthesized by appropriately phasing the transmitting transducers. The 
receivers will receive any waves traveling to the right. The resulting coverage 
for this method is shown in Fig. 6.12(a). If we further assume that the object 
function is real valued, we can use the symmetry of the Fourier transform for 
real-valued functions to obtain the coverage in Fig. 6.12(b). 

It is also possible to perform such experiments with broadband illumination 
[Ken82]. So far we have only considered narrow band illumination wherein 
the field at each point can be completely described by its complex amplitude. 

Now consider a transducer that illuminates an object with a plane wave of 
the form A,(t). It can still be called a plane wave because the amplitude of the 

Borehole 
\ 

Scattered WCWCZ 
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Fig. 6.12: Available estimate of 
the Fourier transform of an 
object for a VSP experiment (a). 
If the object function is real 
valued, then the symmetry of the 
Fourier transform can be used to 
estimate the object in the region 
shown in (b). 

(4 

(b) 

field along planes perpendicular to the direction of travel is constant. Taking 
the Fourier transform in the time domain we can decompose this field into a 
number of experiments, each at a different temporal frequency, w. We let 

At@-, Y, w) = j;- A,(x, y, t)e+jwt dt (132) 

where the sign on the exponential is positive because of the convention 
defined in Section 6.1.1. 

Given the amplitude of the field at each temporal frequency, it is 
straightforward to decompose the field into plane wave components by 
finding its Fourier transform along the transmitter plane. Each plane wave 
component is then described as a function of spatial frequency, k, = 
A(-), and temporal frequency, o. The temporal frequency w is related 
to k, by 

km=: 
w (133) 
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where c is the speed of propagation in the media and the wave vector (k,, ky) 
satisfies the wave equation 

k;+k;=k;. (134) 

If a unit amplitude plane wave illumination of spatial frequency k, and a 
temporal frequency w leads to a scattered plane wave with amplitude u,(k,, 
w), then the total scattered field is given by a weighted superposition of the 
scattered fields or 

us(x Y; t) =& s;, do sTk dkA(k,, tile- jutus(kx, W; y)&(W+$Y). 
0 

(135) 

For plane wave incidence the coverage for this method is shown in Fig. 
6.13(a). Fig. 6.13(b) shows that by doing four experiments at 0,90, 180, and 
270” it is possible to gather information about the entire object. 

6.4 Interpolation and a Filtered Backpropagation Algorithm for Diffracting 
Sources 

In our proof of the Fourier Diffraction Theorem, we showed that when an 
object is illuminated with a plane wave traveling in the positive y direction, 
the Fourier transform of the forward scattered fields gives values of the arc 
shown in Fig. 6.2. Therefore, if an object is illuminated from many different 
directions, we can, in principle, fill up a disk of diameter &2k in the 
frequency domain with samples of 0( ulr Q), which is the Fourier transform 
of the object, and then reconstruct the object by direct Fourier inversion. 
Therefore, we can say that diffraction tomography determines the object up to 
a maximum angular spatial frequency of &2k. To this extent, the recon- 
structed object is a low pass version of the original. In practice, the loss of 
resolution caused by this bandlimiting is negligible, being more influenced by 
considerations such as the aperture sizes of the transmitting and receiving 
elements, etc. 

The fact that the frequency domain samples are available over circular 
arcs, whereas for convenient display it is desirable to have samples over a 
rectangular lattice, is a source of computational difficulty in reconstruction 
algorithms for diffracting tomography. To help the reader visualize the 
distribution of the available frequency domain information, we have shown in 
Fig. 6.8 the sampling points on a circular arc grid, each arc in this grid 
corresponding to the transform of one projection. It should also be clear from 
this figure that by illuminating the object over 360” a double coverage of the 
frequency domain is generated; note, however, that this double coverage is 
uniform. We may get a complete coverage of the frequency domain with 
illumination restricted to a portion of 360”; however, in that case there would 
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I Objects 
kY 

k=co * 
Objects 

kx 

k=Bk, 

Fig. 6.13: (a) Estimates of the be patches in the (wi, &-plane where we would have a double coverage. In 
Fourier transform of an object 
for broadband illumination. With 

reconstructing from circular arc grids to rectangular grids, it is often easier to 
four views the coverage shown in contend with a uniform double coverage, as opposed to a coverage that is 
(b) is possible. single in most areas and double in patches. 

However, for some applications that do not lend themselves to data 
collection from all possible directions, it is useful to bear in mind that it is not 
necessary to go completely around an object to get complete coverage of the 
frequency domain. In principle, it should be possible to get an equal quality 
reconstruction when illumination angles are restricted to a 180

” 

plus an 
interval, the angles in excess of 180

” 

being required to complete the coverage 
of the frequency domain. 

There are two computational strategies for reconstructing the object from 
the measurements of the scattered field. As pointed out in [Sou84a], the two 
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algorithms can be considered as interpolation in the frequency domain and 
interpolation in the space domain; and are analogous to the direct Fourier 
inversion and backprojection algorithms of conventional tomography. Unlike 
conventional tomography, where backprojection is the preferred approach, 
the computational expense of space domain interpolation of diffracted 
projections makes frequency domain interpolation the preferred approach for 
diffraction tomography reconstructions. 

The remainder of this section will consist of derivations of the frequency 
domain and space domain interpolation algorithms. In both cases we will 
assume plane wave illumination; the reader is referred to [Dev82], [Pan831 
for reconstruction algorithms for the synthetic aperture approach and to 
[Sou84b] for the general case. 

6.4.1 Frequency Domain Interpolation 

There are two schemes for frequency domain interpolation. The more 
conventional approach is polynomial based and assumes that the data near 
each grid point can be approximated by polynomials. This is the classical 
numerical analysis approach to the problem. A second approach is known as 
the unified frequency domain reconstruction (UFR) and interpolates data in 
the frequency domain by assuming that the space domain reconstruction 
should be spatially limited. We will first describe polynomial interpolation. 

In order to discuss the frequency domain interpolation between a circular 
arc grid on which the data are generated by diffraction tomography and a 
rectangular grid suitable for image reconstruction, we must first select 
parameters for representing each grid and then write down the relationship 
between the two sets of parameters. 

In (104), UB(W, 10) was used to denote the Fourier transform of the 
transmitted data when an object is illuminated with a plane wave traveling 
along the positive y direction. We now use UB,~(W) to denote this Fourier 
transform, where the subscript 4 indicates the angle of illumination. This 
angle is measured as shown in Fig. 6.14. Similarly, Q(w, 4) will be used to 
indicate the values of O(w,, w2) along a semicircular arc oriented at an angle 
C#I as shown in Fig. 6.15 or 

Q(o, x@-i? - k,,), Iwl <ko- (136) 

Therefore, when an illuminating plane wave is incident at angle 4, the 
equality in (104) can be rewritten as 

.i u&e(~) = - 2 d---& exp W~lQ(w 4) for (wick. (137) 

In most cases the transmitted data will be uniformly sampled in space, and 
a discrete Fourier transform of these data will generate uniformly spaced 

236 COMPUTERIZED TOMOGRAPHIC IMAGING 



Fig. 6.14: The angle $I is used to 
identify each diffraction 
projection. (From [Pan83j,) 

Fig. 6.15: Each projection is 
measured using the 6 - w 
coordinate system shown here. 
(From [Kak;85].) 

,\ I \ \ / B 

7iJ- 

WI 
\ \ \ 1’ \ ’ \ \ 

frequency domain 
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Fig. 6.16: Uniformly sampling 
the projection in the space 
domain leads to uneven spacing 
of the samples of the Fourier 
transform of the object along the 
semicircular arc. (Adapted from 
(Pan83J.) 

samples of U&o) in the o domain. Since Q(w) is the Fourier transform of 
the object along the circular arc AOB in Fig. 6.15 and since K is the 
projection of a point on the circular arc on the tangent line CD, the uniform 
samples of Q in K translate into nonuniform samples along the arc AOB as 
shown in Fig. 6.16. We will therefore designate each point on the arc AOB 
by its (0, 4) parameters. [Note that (0, 4) are not the polar coordinates of a 
point on arc AOB in Fig. 6.15. Therefore, w is not the radial distance in the 
(wi , wz)-plane. For point E shown, the parameter w is obtained by projecting 
E onto line CD.] We continue to denote the rectangular coordinates in the 
frequency domain by (wi, wz). 

Before we present relationships between (w, 4) and (wr, 4, it must be 
mentioned that we must consider separately the points generated by the A0 
and OB portions of the arc AOB as r$ is varied from 0 to 27r. We do this 
because, as mentioned before, the arc AOB generates a double coverage of 
the frequency domain, as 4 is varied from 0 to 2n, which is undesirable for 
discussing a one-to-one transformation between the (w, 4) parameters and the 
(wi, w2) coordinates. 

We now reserve (w, 4) parameters to denote the arc grid generated by the 
portion OB as shown in Fig. 6.15. It is important to note that for this arc grid, 
w varies from 0 to k and 4 from 0 to 27r. 

We now present the transformation equations between (w, 4) and (wi, WZ). 
We accomplish this in a slightly roundabout manner by first defining polar 

sampling along the are 
is non-uniform 

frequency domain 
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coordinates (Q, 0) in the (q, w2)-plane as shown in Fig. 6.17. In order to go 
from (CO,, w2) to (w , 4) , we will first transform from the former coordinates to 
(Q, 13) and then from (Q, 0) to (w, 4). The rectangular coordinates (CO,, wZ) are 
related to the polar coordinates (Q, 19) by (Fig. 6.17) 

e=m-l 2 . 
0 *I (139) 

In order to relate (Q, 8) to (w, q5), we now introduce a new angle /3, which is 
the angular position of a point (q, 02) on arc OB in Fig. 6.17. Note from the 
figure that the point characterized by angle /3 is also characterized by 
parameter w. The relationship between w and P is given by 

w=k sin fl. (140) 

The following relationship exists between the polar coordinates (0, 8) on the 
one hand and the parameters j3 and q5 on the other: 

Fig. 6.17: A second change of 
variables is used to relate the 
projection data to the object’s 
Fourier transform. (From 
[Kak85] as modified from 
[Pan83].) 

p=2 n sin-’ - 
2k (141) 

(142) 

frequency domain 
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By substituting (141) in (140) and then using (138), we can express w in terms 
of wI and w2. The result is shown below. 

w=ksin psin-i (T)] . (143) 

Similarly, by substituting (139) and (141) in (142), we obtain 

4=tan-’ (z)+sin-i (F)+i. (144) 

These are our transformation equations for interpolating from the (w, 4) 
parameters used for data representation to the (wl, w2) parameters needed for 
inverse transformation. To convert a particular rectangular point into (w, 4) 
domain, we substitute its wl and w2 values in (143) and (144). The resulting 
values for w and 9 may not correspond to any’ for which Q(w, 6) is known. 
By virtue of (137), Q(w, 6) will only be known over a uniformly sampled set 
of values for w and 6. In order to determine Q at the calculated w and 4, we 
use the following procedure. Given N, x N+ uniformly located samples, 
Q(wi, dj), we calculate a bilinearly interpolated value of this function at the 
desired w and q5 by using 

(145) 
i=l j=* 

where I-!4 
hi(W) = Aw 

IwIsAw 
(146) 

0 otherwise 

I4l~WJ 
otherwise; 

(147) 

A6 and Aw are the sampling intervals for 4 and w, respectively. When 
expressed in the manner shown above, bilinear interpolation may be 
interpreted as the output of a filter whose impulse response is hlh2. 

The results obtained with bilinear interpolation can be considerably 
improved if we first increase the sampling density in the (w, +)-plane by using 
the computationally efficient method of zero-extending the two-dimensional 
inverse fast Fourier transform (FFT) of the Q(wi, 4j) matrix. The technique 
consists of first taking a two-dimensional inverse FFT of the N, x N4 matrix 
consisting of the Q(wi, 4j) values, zero-extending the resulting N, x N+ 
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array of numbers to, let’s say, mN, x nM,, and then taking the FFT of this 
new array. The result is an mn-fold increase in the density of samples in the 
(w, +)-plane. After computing Q(w, 4) at each point of a rectangular grid by 
the procedure outlined above, the objectf(x, y) is obtained by a simple 2-D 
inverse FFT . 

A different approach to frequency domain interpolation, called the unified 
frequency domain (UFR) interpolation, was proposed by Kaveh et al. 
[Kav84]. In this approach an interpolating function is derived by taking into 
account the object’s spatial support. Consider an object’s Fourier transform 
as might be measured in a diffraction tomography experiment. If the Fourier 
domain data are denoted by F(u, v), then a reconstruction can be written 

J-(x, u) = i(x, Y) IFT {W, u>> 

where the indicator function is given by 

(148) 

where the object is known to have support 
elsewhere. (149) 

If the Fourier transform of i(x, u) is I(u, u), then the spatially limited 
reconstruction can be rewritten 

f(x, y)=IFT (4~ u) * F(u, u>) (150) 

by noting that multiplication in the space domain is equivalent to convolution 
in the frequency domain. To perform the inverse Fourier transform fast it is 
necessary to have the Fourier domain data on a rectangular grid. First 
consider the frequency domain convolution; once the data are available on a 
rectangular grid the inverse Fourier transform can easily be calculated as it is 
for polynomial interpolation. 

The frequency domain data for the UFR reconstruction can be written as 

F(u, u)= j j Z(u-u’, U-u’)F(u’, u’) du’ du’. (151) 

Now recall that the experimental data, F(u ’ , u’), are only available on the 
circular arcs in the 4 - w space shown in Fig. 6.15. By using the change of 
variables 

and the Jacobian of the transformation given by 

d(u’, u’) J(4, W)’ a(4, w) I I (153) 
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the convolution can be rewritten 

F(u, VI= j j J(4, wV(u - TIC& wh 

u- T2(4, w))F(TI(~, WI, T2(4, w)) d4 dw. (154) 

This convolution integral gives us a means to get the frequency domain data 
on a rectangular grid and forms the heart of the UFR interpolation algorithm. 

This integral can be easily discretized by replacing each integral with a 
summation over the projection angle, 4, and the spatial frequency of the 
received field, w. The frequency domain data can now be written as 

F(u, u) = A,A,EEJ(+, w) 

Z(u- Tl(4, w), u- T2(49 w)) 

F(TI(~, w), T2(6 w)) (155) 

where Ad and Aw represent the sampling intervals in the C$ - w space. 
If the indicator function, i(x, u), is taken to be 1 only within a circle of 

radius R, then its Fourier transform is written 

Z(u, u)= 
J,(Rdu2 + u2) 

Rm ’ 
(156) 

A further simplification of this algorithm can be realized by noting that only 
the main lobe of the Bessel function will contribute much to the summation in 
(155). Thus a practical implementation can ignore all but the main lobe. This 
drastically reduces the computational complexity of the algorithm and leads 
to a reconstruction scheme that is only slightly more complicated than bilinear 
interpolation. 

6.4.2 Backpropagation Algorithms 

It has recently been shown by Devaney [Dev82] and Kaveh et al. [Kav82] 
that there is an alternative method for reconstructing images from the 
diffracted projection data. This procedure, called the filtered backpropaga- 
tion method, is similar in spirit to the filtered backprojection technique of x- 
ray tomography. Unfortunately, whereas the filtered backprojection al- 
gorithms possess efficient implementations, the same can’t be said for the 
filtered backpropagation algorithms. The latter class of algorithms is 
computationally intensive, much more so than the interpolation procedure 
discussed above. With regard to accuracy, they don’t seem to possess any 
particular advantage especially if the interpolation is carried out after 
increasing the sampling density by the use of appropriate zero-padding as 
discussed above. 

We will follow the derivation of the backpropagation algorithm as first 
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presented by Devaney [Dev82]. First consider the inverse Fourier transform 
of the object function, 

1 - - 
o(i)=- s s (27r)2 -m 

O(R)ejper di?. 
--m (157) 

This integral most commonly represents the object function in terms of its 
Fourier transform in a rectangular coordinate system representing the 
frequency domain. As we have already discussed, a diffraction tomography 
experiment measures the Fourier transform of the object along circular arcs; 
thus it will be easier to perform the integration if we modify it slightly to use 
the projection data more naturally. We will use two coordinate transforma- 
tions to do this: the first one will exchange the rectangular grid for a set of 
semicircular arcs and the second will map the arcs into their plane wave 
decomposition. 

We first exchange the rectangular grid for semicircular arcs. To do this we 
represent B = (k,, k,) in (157) by the vector sum 

if= ko(s’-S,) (158) 

where f = (cos $o, sin +o) and s’ = (cos x, sin x) are unit vectors 

Fig. 6.18: - ) The kOrO and kOs used 
representing the direction of the wave vector for the transmitted and the 

in the backpropagation algorithm received plane waves,, respectively. This coordinate transformation is 
are shown here. (From [Pan83/.) illustrated in Fig. 6.18. 

frequency domain 
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To find the Jacobian of this transformation write 

k, = k. (cos x - cos 90) 

ky = ko (sin x - sin 90) 

and 

dk,dk, = Ikt sin (X - &)I dx d& 

= koh - cos2 (x-do) dx ddo 

= koJ1 - (3. G)2 dx d& 

and then (157) becomes 

(159) 

(160) 

(161) 

(162) 

(163) 

1 1 
o(F)=-- - 

0 (27r)2 2 ki 

2* 2* 
. SS” 1 -(S . Fo)2 O[k,(?-G)] ejk@WPdX dtio. (164) 0 0 

The factor of l/2 is necessary because as discussed in Section 6.4.1 the (x, 
40) coordinate system gives a double coverage of the (k,, ky) space. 

This integral gives an expression for the scattered field as a function of the 
(x, +o) coordinate system. The data that are collected will actually be a 
function of +o, the projection angle, and K, the one-dimensional frequency of 
the scattered field along the receiver line. To make the final coordinate 
transformation we take the angle x to be relative to the (K, y) coordinate 
system. This is a more natural representation since the data available in a 
diffraction tomography experiment lie on a semicircle and therefore the data 
are available only for 0 5 x I ?r. We can rewrite the x integral in (164) by 
noting 

cos x = /r/k0 (165) 

and therefore 

sin x=y/ko (166) 

dx=G dtc. 
0 

(167) 

The x integral becomes 

' j" dK IKIO[ko(~-%)]ejk(s'-~)'PdK, 
ko -koY 

(168) 
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Fig. 6.19: In backpropagation 
the projection is backprojected 
with a depth-dependent filter 
function. At each depth, 7, the 
filter corresponds to propagating 
the field a distance of Aq. (From 
[Sla83].) 

Using the Fourier Diffraction Theorem as represented by (104) we can 
approximate the Fourier transform of the object function, 0, by a simple 
function of the first-order Born field, ug, at the receiver line. Thus the object 
function in (168) can be written 

O[ko(s’-?,,)I = - 27jUB(K, y - ko)e-jY’0. (169) 

In addition, if a rotated coordinate system is used for 7 = (E, 11) where 

[=x sin 4-r cos C#J (170) 

and 

7~=xcos 4+sin 4, (171) 

then the dot product ko(s’ - &) can be written 

KC; + (Y - koh. (172) 

The coordinates (4,~) are illustrated in Fig. 6.19. Using the results above we 
can now write the x integral of (164) as 

2j ko 
k s_, dKj/cj ue(K, y-ko)e-jyroeKE+(r-k)~ 

0 0 (173) 
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and the equation for the object function in (164) becomes 

~KIKI uB(K, y- ko)e-‘y’oe’KE+‘(y-kO)‘l. (174) 

To bring out the filtered backpropagation implementation, we write here 
separately the inner integration: 

b(Et V)=& jy r,(w)N(w)-G,(w) exp (j&) dw (175) m 

where 

H(w)= IWI, IWI Sk09 (176) 

=o, 101 >ko (177) 

and 

G,(w)=exp [j(v-ko)rl], lwl Sk,, (178) 

=o, lwl>k (179) 

r&w) = UB(K, y - ko)e-W ww 

Without the extra filter function G,(w), the rest of (175) would correspond to 
the filtering operation of the projection data in x-ray tomography. The 
filtering as called for by the transfer function G,(w) is depth dependent due to 
the parameter q, which is equal to x cos $ + y sin d. 

In terms of the filtered projections I&,([, r]) in (175), the reconstruction 
integral of (174) may be expressed as 

fk Y)=& d4Wx sin 4 -y cos 4, xcos 4+ysin 9). (181) 

The computational procedure for reconstructing an image on the basis of 
(175) and (181) may be presented in the form of the following steps: 

Step 1: In accordance with (173, filter each projection with a separate filter 
for each depth in the image frame. For example, if we chose only 
nine depths as shown in Fig. 6.19, we would need to apply nine 
different filters to the diffracted projection shown there. (In most 
cases for a 128 x 128 reconstruction grid, the number of discrete 
depths chosen for filtering the projection will also be around 128. If 
there are much less than 128, spatial resolution will suffer.) 

Step 2: To each pixel (x, y) in the image frame, in accordance with (181), 
allocate a value of the filtered projection that corresponds to the , 
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nearest depth line. Since it is unlikely that a discrete implementation 
of (175) will lead to data at the precise location of each pixel, some 
form of polynomial interpolation (i.e., bilinear) will lead to better 
reconstructions. 

Step 3: Repeat the preceding two steps for all projections. As a new 
projection is taken up, add its contribution to the current sum at pixel 
(x9 Yh 

The depth-dependent filtering in Step 1 makes this algorithm computa- 
tionally very demanding. For example, if we choose Nq depth values, the 
processing of each projection will take (N,, + 1) fast Fourier transforms 
(FFTs). If the total number of projections is N+, this translates into 
(N,, + l)N, FFTs. For most N x N reconstructions, both NV and N+ will be 
approximately equal to N. Therefore, Devaney’s filtered backpropagation 
algorithm will require approximately N2 FFTs compared to 4N FFTs for 
frequency domain interpolation. (For precise comparisons, we must mention 
that the FFTs for the case of frequency domain interpolation are longer due to 
zero-padding.) 

Devaney [Dev82] has also proposed a modified filtered backpropagation 
algorithm, in which G,(w) is simply replaced by a single G,,(o) where no = 
x0 cos C#J + y. sin 4, (x0, yo) being the coordinates of the point where local 
accuracy in reconstruction is desired. (Elimination of depth-dependent 
filtering reduces the number of FFTs to 2N6.) 

6.5 Limitations 

There are several factors that limit the accuracy of diffraction tomography 
reconstructions. These limitations are caused both by the approximations that 
must be made in the derivation of the reconstruction process and the 
experimental factors. 

The mathematical and experimental effects limit the reconstruction in 
different ways. The most severe mathematical limitations are imposed by the 
Born and the Rytov approximations. These approximations are fundamental 
to the reconstruction process and limit the range of objects that can be 
examined. On the other hand, it is only possible to collect a finite amount of 
data and this gives rise to errors in the reconstruction which can be attributed 
to experimental limitations. Up to the limit in resolution caused by evanescent 
waves, and given a perfect reconstruction algorithm, it is possible to improve 
a reconstruction by collecting more data. It is important to understand the 
experimental limitations so that the experimental data can be used efficiently. 

6.5.1 Mathematical Limitations 

Computer simulations were performed to study several questions posed by 
diffraction tomography. In diffraction tomography there are different 
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approximations involved in the forward and inverse directions. In the forward 
process it is necessary to assume that the object is weakly scattering so that 
either the Born or the Rytov approximation can be used. Once an expression 
for the scattered field is derived it is necessary not only to measure the 
scattered fields but then numerically implement the inversion process. 

By carefully designing the simulations it is possible to separate the effects 
of the approximations. To study the effects of the Born and the Rytov 
approximations it is necessary to calculate (or even measure) the exact fields 
and then use the best possible (most exact) reconstruction formulas available. 
The difference between the reconstruction and the actual object is a measure 
of the quality of the approximations. 

6.5.2 Evaluation of the Born Approximation 

The exact field for the scattered field from a cylinder, as shown by Weeks 
[Wee641 and by Morse and Ingard [Mor68], was calculated for cylinders of 
various sizes and refractive indexes. In the simulations that follow a single 
plane wave of unit wavelength was incident on the cylinder and the scattered 
field was measured along a line at a distance of 100 wavelengths from the 
origin. In addition, all refractive index changes were modeled as monopole 
scatterers. By doing this the directional dependence of dipole scatterers didn’t 
have to be taken into account. 

At the receiver line the received wave was measured at 512 points spaced at 
l/2 wavelength intervals. In all cases the rotational symmetry of a single 
cylinder at the origin was used to reduce the computation time of the 
simulations. 

The results shown in Fig. 6.20 are for cylinders of four different refractive 
indexes. In addition, Fig. 6.21 shows plots of the reconstructions along a line 
through the center of each cylinder. Notice that the y-coordinate of the center 
line is plotted in terms of change from unity. 

The simulations were performed for refractive indexes that ranged from a 
0.1% change (refractive index of 1 .OOl) to a 20% change (refractive index of 
1.2). For each refractive index, cylinders of size 1, 2,4, and 10 wavelengths 
were reconstructed. This gives a range of phase changes across the cylinder 
(see (50)) from 0.004~ to 167r. 

Clearly, all the cylinders of refractive index 1.001 in Fig. 6.20 were 
perfectly reconstructed. As (50) predicts, the results get worse as the product 
of refractive index and radius gets larger. The largest refractive index that 
was successfully reconstructed was for the cylinder in Fig. 6.20 of radius 1 
wavelength and a refractive index that differed by 20 % from the surrounding 
medium. 

While it is hard to evaluate quantitatively the two-dimensional reconstruc- 
tions, it is certainly reasonable to conclude that only cylinders where the 
phase change across the object was less than or equal to 0.87r were adequately 
reconstructed. In general, the reconstruction for each cylinder where the 
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phase change across the cylinder was greater than T shows severe artifacts 
near the center. This limitation in the phase change across the cylinder is 
consistent with the condition expressed in (51). 

Finally, it is important to note that the reconstructions in Fig. 6.20 don’t 
show the most severe limitation of the Born approximation, which is that the 
real and imaginary parts of a reconstruction can get mixed up. For objects 
that don’t satisfy the 0.8r phase change limitation the Born approximation 
causes some of the real energy in the reconstruction to be rotated into the 
imaginary plane. This further limits the use of the Born approximation when 
it is necessary to separately image the real and imaginary components of the 
refractive index. 

6.5.3 Evaluation of the Rytov Approximation 

Fig. 6.22 shows the simulated results for 16 reconstructions using the 
Rytov approximation. To emphasize the insensitivity of the Rytov approxi- 
mation to large objects the largest object simulated had a diameter of lOOh. 
Note that these reconstructions are an improvement over those published in 
[Sla84] due to decreased errors in the phase unwrapping algorithm used. ’ 
This was accomplished by using an adaptive phase unwrapping algorithm as 
described in [Tri77] and by reducing the sampling interval on the receiver 
line to 0.125X. 

It should be pointed out that the rounded edges of the 1X reconstructions 
aren’t due to any limitation of the Rytov approximation but instead are the 
result of a two-dimensional low pass filtering of the reconstructions. Recall 
that for a transmission experiment an estimate of the object’s Fourier 
transform is only available up to frequencies less than &ko. Thus the 
reconstructions shown in Fig. 6.22 show the limitations of both the Rytov 
approximation and the Fourier Diffraction Theorem. 

6.5.4 Comparison of the Born and Rytov Approximations 

Reconstructions using exact scattered data show the similarity of the Born 
and the Rytov approximations. Within the limits of the Fourier Diffraction 
Theorem the reconstructions in Figs. 6.20 and 6.22 of a 1X object with a 
small refractive index are similar. In both cases the reconstructed change in 
refractive index is close to that of the simulated object. 

The two approximations differ for objects that have a large refractive index 
change or have a large radius. The Born reconstructions are good at a large 
refractive index as long as the phase shift of the incident field as predicted by 
(50) is less than ?r. 

On the other hand, the Rytov approximation is very sensitive to the 
refractive index but produces excellent reconstructions for objects as large as 

’ Many thanks to M. Kaveh of the University of Minnesota for pointing this out to the authors. 
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Fig. 6.20: Reconstructions of 16 lOOh. Unfortunately, for objects with a refractive index larger than a few 
different cylinders are shown 
indicating the effect of cylinder 

percent the Rytov approximation quickly deteriorates. 
radius and refractive index on the In addition to the qualitative studies a quantitative study of the error in the 
Born approximation. (From Born and Rytov reconstructions was also performed. As a measure of error 
[SIa84/.) we used the relative mean squared error in the reconstruction of the object 

function integrated over the entire plane. If the actual object function is o(i) 
and the reconstructed object function is o ’ (i) , then the relative mean squared 
error (MSE) is 

IS 
[0(3--o

’

(i)]~ 

di 
k-m

l2 

* (182) 
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Fig. 6.20: Continued. For this study 120 reconstructions were done of cylinders using the exact 
scattered data. In each case a 512-point receiver line was at a distance of 10X 
from the center of the cylinder. Both the receiver line and the object 
reconstruction were sampled at 1/4X intervals. 

The plots of Fig. 6.23 present a summary of the mean squared error for 
cylinders of 1, 2, and 3X in radius and for 20 refractive indexes between 1 .Ol 
and 1.20. In each case the error for the Born approximation is shown as a 
solid line while the Rytov reconstruction is shown as a broken line. 

Many researchers [Kav82], [Ke169], [Sou83] have postulated that the 
Rytov approximation is superior to the Born but as the actual reconstructions 
in Fig. 6.23(a) show for a 1X cylinder this is not necessarily true. While for 
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Fig. 6.21: Cross sections of the 
cylinders shown in Fig. 6.20 are 
shown here. 

the cylinder of radius 2X there is a region where the Rytov approximation 
shows less error than the Born reconstruction, this doesn’t occur until the 
relative error is above 20%. What is clear is that both the Born and the Rytov 
approximations are only valid for small objects and that they both produce 
similar errors. 

6.6 Evaluation of Reconstruction Algorithms 

TO study the approximations involved in the reconstruction process it is 
necessary to calculate scattered data assuming the forward approximations 
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Fig. 6.21: Continued. are valid. This can be done in one of two different ways. We have already 
discussed that the Born and Rytov approximations are valid for small objects 
and small changes in refractive index. Thus, if we calculate the exact 
scattered field for a small and weakly scattering object we can assume that 
either the Born or the Rytov approximation is exact. 

A better approach is to recall the Fourier Diffraction Theorem, which says 
that the Fourier transform of the scattered field is proportional to the Fourier 
transform of the object along a semicircular arc. Since this theorem is the 
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Fig. 6.21: Continued. basis for our inversion algorithm, if we assume it is correct we can study the 
approximations involved in the reconstruction process. 

If we assume that the Fourier Diffraction Theorem holds, the exact 
scattered field can be calculated exactly for objects that can be modeled as 
ellipses. The analytic expression for the Fourier transform of the object along 
an arc is proportional to the scattered fields. This procedure is fast and allows 
us to calculate scattered fields for testing reconstruction algorithms and 
experimental parameters. 

To illustrate the accuracy of the interpolation-based algorithms, we will 
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Fig. 6.21: Continued. 
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use the image in Fig. 6.24 as a test “object” for showing some computer 
simulation results. Fig. 6.24 is a modification of the Shepp and Logan 
“phantom” described in Chapter 3 to the case of diffraction imaging. The 
gray levels shown in Fig. 6.24 represent the refractive index values. This test 
image is a superposition of ellipses, with each ellipse being assigned a 
refractive index value as shown in Table 6.1. 

A major advantage of using an image like that in Fig. 6.24 for computer 
simulation is that one can write analytical expressions for the transforms of 
the diffracted projections. The Fourier transform of an ellipse of semi-major 
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Fig. 6.22: Reconstructions of 16 different cylinders are shown indicating the effect of cylinder radius and refractive index on 
the Rytov approximation. These reconstructions were calculated by sampling the scattered fields at 16,384 points along a line 
IOOA from the edge of the object. A sampling interval of 6(R + 100)/16,384 where R is the radius of the cylinder, was used 
to make it easier to unwrap the phase of the scattered fields. (Adapted from /Sla84].) 
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Fig. 6.22: Continued. 
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Fig. 6.23: The relative mean and semi-minor axes of lengths A and B, respectively, is given by 
squared errors for reconstructions 
with the Born (solid) and the 
Rytov (broken) approximations 
are shown here. Each plot is a 
function of the refractive index of 
the cylinder. The mean squared 
error is plotted for cylinders of where u and u are spatial angular frequencies in the x and y directions, 
radius IA, 2A, and 3h. (From respectively, and 5, is a Bessel function of the first kind and order 1. When 
[SIa84].) the center of this ellipse is shifted to the point (xl, yt), and the angle of the 

major axis tilted by CY, as shown in Fig. 6.25(b), its Fourier transform 
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Fig. 6.24: For diffraction 
tomographic simulations a 
slightly modified version of the 
Shepp and Logan head phantom 
is used. (From [Pan83].) 

becomes 

. 27rAJ,{B[((u cos a+u sin CY)A/B)~+(-u sin a+u cos c~y)~]“~} 

[((u cos CY + u sin CX)A/B)~ + (- u sin CY + u cos CX)~] u2 * 

(184) 

Now consider the situation in which the ellipse is illuminated by a plane 
wave. By the Fourier Diffraction Theorem discussed previously, the Fourier 
transform of the transmitted wave fields measured on a line like TT' shown 
in Fig. 6.2(left), will be given by the values of the above function on a 
semicircular arc as shown in Fig. 6.2(right). If we assume weak scattering 
and therefore no interactions among the ellipses, the Fourier transform of the 

Table 6.1: Summary of parameters for diffraction tomography simulations. 

Center Major 
Coordinate Axis 

Minor 
Axis 

Rotation 
Angle 

Refractive 
Index 

(0, 0) 0.92 0.69 90 1.0 
(0, -0.0184) 0.874 0.6624 90 -0.5 

(0.22, 0) 0.31 0.11 72 -0.2 
(-0.22, 0) 0.41 0.16 108 -0.2 

(0, 0.35) 0.25 0.21 90 0.1 
a 0.1) 0.046 0.046 0 0.15 

(0, -0.1) 0.046 0.046 0 0.15 
(-0.08, -0.605) 0.046 0.023 0 0.15 

(0, -0.605) 0.023 0.023 0 0.15 
(0.06, -0.605) 0.046 0.023 90 0.15 
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space domain space domain 

Fig. 6.25: Assuming the Fourier 
Slice Theorem, the field scattered 
by an ellipse can be easily 
calculated. (From [KakBs/.) 

total forward scattered field measured on the line TT’ will be a sum of the 
values of functions like (184) over the semicircular arc. This procedure was 
used to generate the diffracted projection data for the test image. 

We must mention that by generating the diffractedprojection data for 
computer simulation by this procedure, we are only testing the accuracy 
of the reconstruction algorithm, without checking whether or not the 
“test object” satisfies the underlying assumption of weak scattering. In 
order to test this crucial assumption, we must generate exactly on a computer 
the forward scattered data of the object. For multicomponent objects, such as 
the one shown in Fig. 6.24, it is very difficult to do so due to the interactions 
between the components. 

Pan and Kak [Pan831 presented the simulations shown in Fig. 6.26. Using 
a combination of increasing the sampling density by zero-padding the signal 
and bilinear interpolation, results were obtained in 2 minutes of CPU time on 
a VAX 1 l/780 minicomputer with a floating point accelerator (FPA). The 
reconstruction was done over a 128 X 128 grid using 64 views and 128 
receiver positions. The number of operations required to carry out the 
interpolation and invert the object function is on the order of NZ log N. The 
resulting reconstruction is shown in Fig. 6.26(a). 

Fig. 6.26(b) represents the result of backpropagating the data to 128 depths 
for each view, while Fig. 6.26(c) is the result of backpropagation to only a 
single depth centered near the three small ellipses at the bottom of the picture. 
The results were simulated on a VAX 1 l/780 minicomputer and the resulting 
reconstructions were done over a 128 x 128 grid. Like the previous image 
the input data consisted of 64 projections of 128 points each. 

There was a significant difference in not only the reconstruction time but 
also the resulting quality. While the modified backpropagation only took 1.25 
minutes, the resulting reconstruction is much poorer than that from the full 
backpropagation which took 30 minutes of CPU time. A comparison of the 
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various algorithms is shown in Table 6.2. Note that the table doesn’t 
explicitly show the extra CPU time required if zero-padding is used in the 
frequency domain to make space domain interpolation easier. To a very 
rough approximation space domain interpolation and modified backpropaga- 
tion algorithms take N* log N steps while the full backpropagation algorithm 
takes N3 log N steps. 

6.7 Experimental Limitations 

In addition to the limits on the reconstructions imposed by the Born and the 
Rytov approximations, there are also the following experimental limitations 
to consider: 

l Limitations caused by ignoring evanescent waves 
l Sampling the data along the receiver line 
l Finite receiver length 
l Limited views of the object. 

Each of the first three factors can be modeled as a simple constant low pass 
filtering of the scattered field. Because the reconstruction process is linear the 
net effect can be modeled by a single low pass filter with a cutoff at the lowest 
of the three cutoff frequencies. The experiment can be optimized by adjusting 
the parameters so that each low pass filter cuts off at the same frequency. 

The effect of a limited number of views also can be modeled as a low pass 
filter. In this case, though, the cutoff frequency varies with the radial 
direction. 

6.7.1 Evanescent Waves 

Since evanescent waves have a complex wavenumber they are severely 
attenuated over a distance of only a few wavelengths. This limits the highest 
received wavenumber to 

k,,=;. (185) 

This is a fundamental limit of the propagation process and can only be 
improved by moving the experiment to a higher frequency (or shorter 
wavelength). 

6.7.2 Sampling the Received Wave 

After the wave has been scattered by the object and propagated to the 
receiver line, it must be measured. This is usually done with a point receiver. 
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Fig. 6.26: The images show the 
results of using the (a) 
interpolation, (b) 
backpropagation, and (c) 
modified backpropagation 
algorithms on reconstruction 
quality. The solid lines of the 
graphs represent the reconstructed 
value along a line through the 
three ellipses at the bottom of the 
phantom. (From [Pan83].) 

Unfortunately, it is not possible to sample at every point, so a nonzero 
sampling interval must be chosen. This introduces a measurement error into 
the process. By the Nyquist theorem this can be modeled as a low pass 
filtering operation, where the highest measured frequency is given by 

k a meas = - T w36) 

where T is the sampling interval. 
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Fig. 6.26: Continued. 6.7.3 The Effects of a Finite Receiver Length 

1 

Not only are there physical limitations on the finest sampling interval but 
usually there is a limitation on the amount of data that can be collected. This 
generally means that samples of the received waveform will be collected at 
only a finite number of points along the receiver line. This is usually justified 
by taking data along a line long enough so that the unmeasured data can be 
safely ignored. Because of the wave propagation process this also introduces 
a low pass filtering of the received data. 

Consider for a moment a single scatterer at some distance, &, from the 
receiver line. The wave propagating from this single scatterer is a cylindrical 
wave in two dimensions or a spherical wave in three dimensions. This effect 
is diagrammed in Fig. 6.27. It is easy to see that the spatial frequencies vary 
with the position along the receiver line. This effect can be analyzed using 
two different approaches. 

It is easier to analyze the effect by considering the expanding wave to be 

Table 6.2: Comparison of algorithms. 

Algorithm Complexity 
CPU Time 
(minutes) 

Frequency Domain 
Interpolation 
Backpropagation 
Modified Backpropagation 

fl log N 2 
N,,N+N log N 30 

N,N log N 1.25 
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Incident 
Field 

Fig. 6.21: An object scatters a 
field which is measured with a 
finite receiver line. (From 
[Sla83].) 

locally planar at any point distant from the scatterer. At the point on the 
receiver line closest to the scatterer there is no spatial variation [Goo68]. This 
corresponds to receiving a plane wave or a received spatial frequency of zero. 

Higher spatial frequencies are received at points along the receiver line that 
are farther from the origin. The received frequency is a function of the sine of 
the angle between the direction of propagation and a perpendicular to the 
receiver line. This function is given by 

k(y) = kmax sin 8 (187) 

where 19 is the angle and k,,,,, is the wavenumber of the incident wave. Thus at 
the origin, the angle, 8, is zero and the received frequency is zero. Only at 
infinity does the angle become equal to 90” and the received spatial frequency 
approach the theoretical maximum. 

This reasoning can be justified on a more theoretical basis by considering 
the phase function of the propagating wave. The received wave at a point (x 
= 10, v) due to a scatterer at the origin is given by 

&ko w u(x=Io, y)= og (188) 

The instantaneous spatial frequency along the receiver line (JJ varies) of this 
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wave can be found by taking the partial derivative of the phase with respect to Y KWW. 
phase = kom (189) 

key -- 
krecv - &q-T 

(190) 

where k,,, is the spatial frequency received at the point (x = lo, y). From 
Fig. 6.27 it is easy to see that 

sin t9=J-.&+ (191) 

and therefore (187) and (190) are equivalent. 
This relation, (190), can be inverted to give the length of the receiver line 

for a given maximum received frequency, k,,,,. This becomes 

(192) 

Since the highest received frequency is a monotonically increasing function 
of the length of the receiver line, it is easy to see that by limiting the sampling 
of the received wave to a finite portion of the entire line a low passed version 
of the entire scattered wave will be measured. The highest measured 
frequency is a simple function of the distance of the receiver line from the 
scatterer and the length of measured data. This limitation can be better 
understood if the maximum received frequency is written as a function of the 
angle of view of the receiver line. Thus substituting 

tan l3=Y- 
X 

(193) 

we find 

k _ ko(y/x) 
recv - 

J(y/x)2+ 12 
and 

k. tan 8 
krecv=Jtan28+1 * 

(194) 

(195) 

Thus kc, is a monotonically increasing function of the angle of view, 8. It is 
easy to see that the maximum received spatial frequency can be increased 
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Fig. 6.28: These four 
reconstructions show the effect of 
a finite receiver line. 
Reconstructions of an object 
using 64 detectors spaced at (a) 
0.5X, (b) 1.0X, (c) ISA, and(d) 
2.0h are shown here. (From 
[Sla83/.) 

either by moving the receiver line closer to the object or by increasing the 
length of the receiver line. 

6.7.4 Evaluation of the Experimental Effects 

The effect of a finite receiver length was simulated and results are shown in 
Fig. 6.28. The spatial frequency content of a wave, found by taking the FFT 
of the sampled points along the receiver line, was compared to the theoretical 
result as predicted by the Fourier transform of the object. The theory predicts 
that more of the high frequency components will be present as the length of 
the receiver line increases and this is confirmed by simulation. 

While the above derivation only considered a single scatterer it is also 
approximately true for many scatterers collected at the origin. This is so 
because the inverse reconstruction process is linear and each point in the 
object scatters an independent cylindrical wave. 

6.7.5 Optimization 

Since each of the above three factors is independent of the other two, their 
effect in the frequency domain can be found by simply multiplying their 
frequency responses together. As has been described above, each of these 
effects can be modeled as a simple low pass filter so the combined effect is 
also a low pass filter but at the lowest frequency of the cutoff of the three 
effects. 

First consider the effect of ignoring the evanescent waves. Since the 
maximum frequency of the received wave is limited by the propagation filter 
to 

it is easy to combine this expression with the expression for the Nyquist 
frequency into a single expression for the smallest “

interesting

” 

sampling 
interval. This is given by 

km, = km,, (197) 

or 

2lr lr -=-. 
X T (198) 

Therefore, 

T=;. (199) 
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If the received waveform is sampled with a sampling interval of more than 
l/2 wavelength, the measured data might not be a good estimate of the 
received waveform because of aliasing. On the other hand, it is not necessary 
to sample the received waveform any finer than l/2 wavelength since this 
provides no additional information. Therefore, we conclude that the sampling 
interval should be close to l/2 wavelength. 

In general, the experiment will also be constrained by the number of data 
points (M) that can be measured along the receiver line. The distance from 
the object to the receiver line will be considered a constant in the derivation 
that follows. If the received waveform is sampled uniformly, the range of the 
receiver line is given uniquely by 

MT 
Ymax = +-. 

2 

This is also shown in Fig. 6.27. 
For a receiver line at a fixed distance from the object and a fixed number of 

receiver points, the choice of T is determined by the following two competing 
considerations: As the sampling interval is increased the length of the 
receiver line increases and more of the received wave’s high frequencies are 
measured. On the other hand, increasing the sampling interval lowers the 
maximum frequency that can be measured before aliasing occurs. 

The optimum value of T can be found by setting the cutoff frequencies for 
the Nyquist frequency equal to the highest received frequency due to the finite 
receiver length and then solving for the sampling interval. If this constraint 
isn’t met, then some of the information that is passed by one process will be 
attenuated by the others. This results in 

7r key -=- 
TdpT2 

evaluated at 

and 

y=MTT. 
Solving for T2 we find that the optimum value for T is given by 

~~~(x/X)~+M~+M 
8M * 

(201) 

(203) 

(204) 

TOMOGRAPHIC IMAGING WITH DIFFRACTING SOURCES 267 



If we make the substitution 

a=X 
AM (205) 

we find that the optimum sampling interval is given by 

T 2 M+l 0 h= 8 * (206) 

This formula is to be used with the constraint that the smallest positive 
value for the sampling interval is l/2 wavelength. 

The optimum sampling interval is confirmed by simulations. Again using 
the method described above for calculating the exact scattered fields, four 
simulations were made of an object of radius 10 wavelengths using a receiver 
line that was 100 wavelengths from the object. In each case the number of 
receiver positions was fixed at 64. The resulting reconstructions for sampling 
intervals of 0.05, 1, 1.5, and 2 wavelengths are shown in Fig. 6.28. Equation 
(206) predicts an optimum sampling interval of 1.3 wavelengths and this is 
confirmed by the simulations. The best reconstruction occurs with a sampling 
interval between 1 and 1.5 wavelengths. 

6.7.6 Limited Views 

In many applications it is not possible to generate or receive plane waves 
from all directions. The effect of this is to leave holes where there is no 
estimate of the Fourier transform of the object. 

Since the ideal reconstruction algorithm produces an estimate of the 
Fourier transform of the object for all frequencies within a disk, a limited 
number of views introduces a selective filter for areas where there are no 
data. As shown by Devaney [Dev84] for the VSP case, a limited number of 
views degrades the reconstruction by low pass filtering the image in certain 
directions. Devaney’s results are reproduced in Figs. 6.29 and 6.30. 

6.8 Bibliographic Notes 

The paper by Mueller et al. [Mue79] was responsible for focusing the 
interest of many researchers on the area of diffraction tomography, although 
from a purely scientific standpoint the technique can be traced back to the 
now classic paper by Wolf [Wo169] and a subsequent article by Iwata and 
Nagata [Iwa75]. 

The small perturbation approximations that are used for developing the 
diffraction tomography algorithms have been discussed by Ishimaru [Ish78] 
and Morse and Ingard [Mor68]. A discussion of the theory of the Born and 
the Rytov approximations was presented by Chernov in [Che60]. A 
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Fig. 6.29: These figures show 
the coverage in the frequency 
domain for six different angular 
receiver limitations. (From 
fDev84J.) 

comparison of Born and Rytov approximations is presented in [Ke169], 
[Sla84], [Sou83]. The effect of multiple scattering on first-order diffraction 
tomography is described in [Azi83], [Azi85]. Another review of diffraction 
tomography is presented in [Kav86]. 

Diffraction tomography falls under the general subject of inverse scatter- 
ing. The issues relating to the uniqueness and stability of inverse scattering 
solutions are addressed in [Bal78], [Dev78], [Nasgl], [Sargl]. The mathe- 
matics of solving integral equations for inverse scattering problems is 
described in [Co183]. 

The filtered backpropagation algorithm for diffraction tomography was 
first advanced by Devaney [Dev82]. More recently, Pan and Kak [Pan831 
showed that by using frequency domain interpolation followed by direct 
Fourier inversion, reconstructions of quality comparable to that produced by 
the filtered backpropagation algorithm can be obtained. Interpolation-based 
algorithms were first studied by Carter [Car701 and Mueller et al. [MuegO], 
[Sou84b]. An interpolation technique based on the known support of the 
object in the space domain is known as the unified frequency domain 
reconstruction (UFR) and is described in [Kav84]. Since the problems are 
related, the reader is referred to an excellent paper by Stark et al. [Stag11 that 
describes optimum interpolation techniques as applied to direct Fourier 
inversion of straight ray projections. The reader is also referred to [Fer79] to 
learn how in some cases it may be possible to avoid the interpolation, and still 
be able to reconstruct an object with direct 2-D Fourier inversion. 

A diffraction tomography approach that requires only two rotational 
positions of the object has been advanced by Nahamoo et al. [Nah84] and 
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Fig. 6.30: Images due to the Devaney [Dev83], and its computer implementation has been studied by Pan 
limited field of views as shown in 
Fig. 6.29. (From [Dev84J.) 

and Kak [Pan83]. Diffraction tomography based on the reflected data has 
been studied in great detail by Norton and Linzer [Norgl]. 

The first experimental diffraction tomography work was done by Carter 
and Ho using optical energy and is described in [Car70], [Car74], [HoP76]. 
More recently, Kaveh and Soumekh have reported experimental results in 
[Kav80], [Kav8 11, [Kav82], [Sou83]. 

Finally, more accurate techniques for imaging objects that don

’

t 

fall within 
the domain of the Born and Rytov approximations have been reported in 
[Joh83], [Tra83], [Sla85], [Bey84], [Bey85a], [Bey85b]. 
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7 Algebraic Reconstruction 
Algorithms 

An entirely different approach for tomographic imaging consists of 
assuming that the cross section consists of an array of unknowns, and then 
setting up algebraic equations for the unknowns in terms of the measured 
projection data. Although conceptually this approach is much simpler than 
the transform-based methods discussed in previous sections, for medical 
applications it lacks the accuracy and the speed of implementation. However, 
there are situations where it is not possible to measure a large number of 
projections, or the projections are not uniformly distributed over 180 or 
360”) both these conditions being necessary requirements for the transform- 
based techniques to produce results with the accuracy desired in medical 
imaging. An example of such a situation is earth resources imaging using 
cross-borehole measurements discussed in Chapter 4. Problems of this type 
are sometimes more amenable to solution by algebraic techniques. Algebraic 
techniques are also useful when the energy propagation paths between the 
source and receiver positions are subject to ray bending on account of 
refraction, or when the energy propagation undergoes attenuation along ray 
paths as in emission CT. [Unfortunately, many imaging problems where 
refraction is encountered also suffer from diffraction effects (see Chap. 4).] 
As will be obvious from the discussion to follow, in algebraic methods it is 
essential to know ray paths that connect the corresponding transmitter and 
receiver positions. When refraction and diffraction effects are substantial 
(medium inhomogeneities exceed 10% of the average background value and 
the correlation length of these inhomogeneities is comparable to a wave- 
length), it becomes impossible to predict these ray paths. If algebraic 
techniques are applied under these conditions, we often obtain meaningless 
results. 

If the refraction and diffraction effects are small (medium inhomogeneities 
are less than 2 to 3% of the average background value and the correlation 
width of these inhomogeneities is much greater than a wavelength), in some 
cases it is possible to combine algebraic techniques with digital ray tracing 
techniques [And82], [And84a], [And84b] and devise iterative procedures in 
which we first construct an image ignoring refraction, then trace rays 
connecting the corresponding transmitter and receiver locations through this 
distribution, and finally use these rays to construct a more accurate set of 
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algebraic equations. Experimental verification of this iterative procedure for 
weakly refracting objects has been obtained [And84b]. 

Space limitations prevent us from discussing here the combined ray tracing 
and algebraic reconstruction algorithms. Our aim in this section is to merely 
introduce the reader to the algebraic approach for image reconstruction. First 
we will show how we may construct a set of linear equations whose 
unknowns are elements of the object cross section. The Kaczmarz method for 
solving these equations will then be presented. This will be followed by the 
various approximations that are used in this method to speed up its computer 
implementation. 

7.1 Image and Projection Representation 

Fig. 7.1: In algebraic methods a 
square grid is superimposed over 
the unknown image. Image values 
are assumed to be constant within 
each cell of the grid. (From 
[Ros82].) 

In Fig. 7.1 we have superimposed a square grid on the image f(x, y); we 
will assume that in each cell the function& y) is constant. Let fj denote this 
constant value in the jth cell, and let N be the total number of cells. For 
algebraic techniques a ray is defined somewhat differently. A ray is now a 
“fat” line running through the (x, y)-plane. To illustrate this we have shaded 
the ith ray in Fig. 7.1, where each ray is of width r. In most cases the ray 
width is approximately equal to the image cell width. A line integral will now 
be called a ray-sum. 

Like the image, the projections will also be given a one-index representa- 

wji for this cell = erea or ABC 
a2 
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tion. Let pi be the ray-sum measured with the ith ray as shown in Fig. 7.1. 
The relationship between the 4’s and pi’s may be expressed as 

2 Wijfj=Pi, i=l, 2, “‘,M (1) 
j=l 

where M is the total number of rays (in all the projections) and Wij is the 
weighting factor that represents the contribution of the jth cell to the ith ray 
integral. The factor Wij is equal to the fractional area of the jth image cell 
intercepted by the ith ray as shown for one of the cells in Fig. 7.1. Note that 
most of the wij’s are zero since only a small number of cells contribute to any 
given ray-sum. 

If M and N were small, we could use conventional matrix theory methods 
to invert the system of equations in (1). However, in practice N may be as 
large as 65,000 (for 256 x 256 images), and, in most cases for images of this 
size, M will also have the same magnitude. For these values of M and N the 
size of the matrix [ Wij J in (1) is 65,000 X 65,000 which precludes any 
possibility of direct matrix inversion. Of course, when noise is present in the 
measurement data and when A4 < N, even for small Nit is not possible to use 
direct matrix inversion, and some least squares method may have to be used. 
When both M and N are large, such methods are also computationally 
impractical. 

For large values of M and N there exist very attractive iterative methods 
for solving (1). These are based on the “method of projections” as first 
proposed by Kaczmarz [Kac37], and later elucidated further by Tanabe 
[Tan71]. To explain the computational steps involved in these methods, we 
first write (1) in an expanded form: 

wllfl + w12f2+ w13f3+ ’ ” + wINfN=Pl 

w21f1+ w22f2 + + * ’ ’ + w2NfN=tt)2 

wMlfl+wM2f2+ +“‘+wMNfN=PM. (2) 

A grid representation with N cells gives an image N degrees of freedom. 
Therefore, an image, represented by (f,, f2, + * * , fN), may be considered to 
be a single point in an N-dimensional space. In this space each of the above 
equations represents a hyperplane. When a unique solution to these equations 
exists, the intersection of all these hyperplanes is a single point giving that 
solution. This concept is further illustrated in Fig. 7.2 where, for the purpose 
of display, we have considered the case of only two variables f, and f2 

satisfying the following equations: 

wf1+ W12f2=P1 

W2lfi + w22f2 ‘P2. (3) 
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initial 
guess 

Fig. 7.2: The Kaczmarz method 
of solving algebraic equations is 
illustrated for the case of two 
unknowns. One starts with some 
arbitrary initial guess and then 
projects onto the line 
corresponding to the first 
equation. The resulting point is 
now projected onto the line 
representing the second equation. 
If there are only two equations, 
this process is continued back and 
forth, as illustrated by the dots in 
the figure, until convergence is 
achieved. (From [Ros82].) 

The computational procedure for locating the solution in Fig. 7.2 consists of 
first starting with an initial guess, projecting this initial guess on the first line, 
reprojecting the resulting point on the second line, and then projecting back 
onto the first line, and so forth. If a unique solution exists, the iterations will 
always converge to that point. 

For the computer implementation of this method, we first make an initial 
guess at the solution. This guess, denoted by f \O), f i”), * * * , f$, is represented 
vectorially by 7”) in the N-dimensional space. In most cases, we simply 
assign a value of zero to all the fi’S. This initial guess is projected on the 
hyperplane represented by the first equation in (2) givingpl), as illustrated in 
Fig. 7.2 for the two-dimensional case. p’) is projected on the hyperplane 
represented by the second equation in (2) to yieldp2) and so on. When?‘- *) 
is projected on the hyperplane represented by the ith equation to yield?‘), the 
process can be mathematically described by 

(4) 

where 4 = (Wii, Wi2, **a, WiN), and $i* i?i is the dot product of $i with 
itself. To see how (4) comes about we first write the first equation of (2) as 
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Fig. 7.3: The hyperplane w’, .p follows: 
= PI (represented by a Iine in this 
two-dimensional figure) is w’, * T=p,. (5) 
perpendicular to the vector w’,. 
(From fRos82J.) The hyperplane represented by this equation is perp+icular to the vector 

w’, . This is illustrated in Fig. 7.3, where the vector OD_ represents i& . This 
equation simply says that the projection of a vector OC (for any point C on 
the hyperplane) on the vector w’t is of constant length. The unit vector or/’ 
along w’, is given by 

(‘5) 

and the perpendicular distance of the hyperplane from the origin, which is 
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-. equal to the length of OA m Fig. 7.3, is given by z & 

(7) 

Now to get To) we have to subtract from p”) the vector a 

jw +o) -HZ (8) 

where the length of the vector s is given by 

pzI=Io~-lal 

=3(O) * z- 1 Z(. (9) 
Substituting (6) and (7) in this equation, we get 

(10) 

Since the direction of zis the same as that of the unit vector z, we can 
write 

z= IsI ou’= 3 (0) . - _ wlTpl w’,. 
WI * WI 

(11) 

Substituting (11) in (8), we get (4). 
As mentioned before, the computational procedure for algebraic recon- 

struction consists of starting with an initial guess for the solution, taking 
successive projections on the hyperplanes represented by the equations in (2), 
eventually yielding PM). In the next iteration, PM) is projected on the 
hyperplane represented by the first equation in (2), and then successively onto 
the rest of the hyperplanes in (2), to yieldr2M), and so on. Tanabe [Tan711 
has shown that if there exists a unique solutionx to the system of equations 
GY, then 

lim 3ckM) =x . (12) 
k-m 

A few comments about the convergence of the algorithm are in order here. 
If in Fig. 7.2 the two hyperplanes are perpendicular to each other, the reader 
may easily show that given for an initial guess any point in the (fi, fz)-plane, 
it is possible to arrive at the correct solution in only two steps like (4). On the 
other hand, if the two hyperplanes have only a very small angle between 
them, k in (12) may acquire a large value (depending upon the initial guess) 
before the correct solution is reached. Clearly the angles between the 
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hyperplanes considerably influence the rate of convergence to the solution. If 
the M hyperplanes in (2) could be made orthogonal with respect to one 
another, the correct solution would be arrived at with only one pass through 
the A4 equations (assuming a unique solution does exist). Although 
theoretically such orthogonalization is possible using, for example, the 
Gram-Schmidt procedure, in practice it is computationally not feasible. Full 
orthogonalization will also tend to enhance the effects of the ever present 
measurement noise in the final solution. Ramakrishnan et al. [Ram791 have 
suggested a pairwise orthogonalization scheme which is computationally 
easier to implement and at the same time considerably increases the speed of 
convergence. A simpler technique, first proposed in [Hou72] and studied in 
[Sla85], is to carefully choose the order in which the hyperplanes are 
considered. Since each hyperplane represents a distinct ray integral, it is quite 
likely that adjacent ray integrals (and thus hyperplanes) will be nearly 
parallel. By choosing hyperplanes representing widely separated ray inte- 
grals, it is possible to improve the rate of convergence of the Kaczmarz 
approach. 

A not uncommon situation in image reconstruction is that of an 
overdetermined system in the presence of measurement noise. That is, we 
may have M > N in (2) and pl, p2, . . . , pm corrupted by noise. No unique 
solution exists in this case. In Fig. 7.4 we have shown a two-variable system 
represented by three “noisy” hyperplanes. The broken line represents the 
course of the solution as we successively implement (4). Now the “solution” 
doesn’t converge to a unique point, but will oscillate in the neighborhood of 
the intersections of the hyperplanes. 

When M < N a unique solution of the set of linear equations in (2) doesn’t 
exist, and, in fact, an infinite number of solutions are possible. For example, 
suppose we have only the first of the two equations in (3) to use for 
calculating the two unknowns f, and f2; then the solution can be anywhere on 
the line corresponding to this equation. Given the initial guess PO) (see Fig. 
7.3), the best one could probably do under the circumstances would be to 
draw a projection from p”) on this line, and call the resulting 3c1) a solution. 
Note that the solution obtained in this manner corresponds to that point on the 
line which is closest to the initial guess. This result has been rigorously 
proved by Tanabe [Tan711 who has shown that when M < N, the iterative 
approach described above converges to a solution, call it 3;) such that IPO’ - 3;l is minimized. 

Besides its computational efficiency, another attractive feature of the 
iterative approach presented here is that it is now possible to incorporate into 
the solution some types of a priori information about the image one is 
reconstructing. For example, if it is known a priori that the image f (x, y) is 
nonnegative, then in each of the solutionsJt(k), successively obtained by using 
(4), one may set the negative components equal to zero. One may similarly 
incorporate the information that f (x, v) is zero outside a certain area, if this is 
known. 
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Fig. 7.4: Illustrated here is the 
case when the number of 
equations is greater than the 
number of unknowns. The lines 
don’t intersect at a single unique 
point, because the observations 
p,. p2, p, have been assumed to 
be corrupted by noise. No unique 
solution exists in this case, and 
the final solution will oscillate in 
the neighborhood of intersections 
of the three lines. (From 
[Ros82].) 

In applications requiring a large number of views and where large-sized 
reconstructions are made, the difficulty with using (4) can be in the 
calculation, storage, and fast retrieval of the weight coefficients w,. Consider 
the case where we wish to reconstruct an image on a 100 x 100 grid from 
100 projections with 150 rays in each projection. The total number of 
weights, w,, needed in this case is 108, which is an enormous number and 
can pose problems in fast storage and retrieval in applications where 
reconstruction speed is important. This problem is somewhat eased by 
making approximations, such as considering WV, to be only a function of the 
perpendicular distance between the center of the ith ray and the center of the 
jth cell. This perpendicular distance can then be computed at run time. 

To get around the implementation difficulties caused by the weight 
coefficients, a myriad of other algebraic approaches have also been 
suggested, many of which are approximations to (4). To discuss some of the 
more implementable approximations, we first recast (4) in a slightly different 
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form: 

f(i) =f(i- 1) + pi wij 
J J 

i wt 
k=L 

where 

qi=T(i- 1) . q 

(13) 

k=l 

(15) 

These equations say that when we project the (i - 1)th solution onto the ith 
hyperplane [ ith equation in (2)] the gray level of the jth element, whose 
current value is f!‘- l) 

J ’ 
is obtained by correcting its current value by AJJ’), 

where 

Note that while pi is the measured ray-sum along the ith ray, qi may be 
considered to be the computed ray-sum for the same ray based on the (i - 
1)th solution for the image gray levels. The correction Af, to the jth cell is 
obtained by first calculating the difference between the measured ray-sum and 
the computed ray-sum, normalizing this difference by CF==, w&, and then 
assigning this value to all the image cells in the ith ray, each assignment being 
weighted by the corresponding w,. 

With the preliminaries presented above, we will now discuss three 
different computer implementations of algebraic algorithms. These are 
represented by the acronyms ART, SIRT, and SART. 

7.2 ART (Algebraic Reconstruction Techniques) 

In many ART implementations the wik’s in (16) are simply replaced by l’s 
and O’s, depending upon whether the center of the kth image cell is within the 
ith ray. This makes the implementation easier because such a decision can 
easily be made at computer run time. In this case the denominator in (16) is 
given by CF==, wi = Ni which is the number of image cells whose centers 
are within the ith ray. The correction to the jth image cell from the ith 
equation in (2) may now be written as 

Af(‘) mpi- qi 
J 

Ni 
(17) 
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for all the cells whose centers are within the ith ray. We are essentially 
smearing back the difference (pi - qi)/Ni over these image cells. In (17), 
qi’s are calculated using the expression in (15), except that one now uses the 
binary approximation for wik’s. 

The approximation in (17), although easy to implement, often leads to 
artifacts in the reconstructed images, especially if Ni isn’t a good approxima- 
tion to the denominator. Superior reconstructions may be obtained if (17) is 
replaced by 

Afji)=pi-?% 
Li Ni 

where Li is the length (normalized by 6, see Fig. 7.1) of the ith ray through 
the reconstruction region. 

ART reconstructions usually suffer from salt and pepper noise, which is 
caused by the inconsistencies introduced in the set of equations by the 
approximations commonly used for Wik’s. The result is that the computed ray- 
sums in (15) are usually poor approximations to the corresponding measured 
ray-sums. The effect of such inconsistencies is exacerbated by the fact that as 
each equation corresponding to a ray in a projection is taken up, it changes 
some of the pixels just altered by the preceding equation in the same 
projection. The SIRT algorithm described briefly below also suffers from 
these inconsistencies in the forward process [appearing in the computation of 
qi’s in (16)], but by eliminating the continual and competing pixel update as 
each new equation is taken up, it results in smoother reconstructions. 

It is possible to reduce the effects of this noise in ART reconstructions by 
relaxation, in which we update a pixel by o * AJ;‘), where (Y is less than 1. In 
some cases, the relaxation parameter (Y is made a function of the iteration 
number; that is, it becomes progressively smaller with increase in the number 
of iterations. The resulting improvements in the quality of reconstruction are 
usually at the expense of convergence. 

7.3 SIRT (Simultaneous Iterative Reconstructive Technique) 

In this approach, which at the expense of slower convergence usually leads 
to better looking images than those produced by ART, we again use (17) or 
(18) to compute the change Afji) in the jth pixel caused by the ith equation in 
(2). However, the value of the jth cell isn’t changed at this time. Before 
making any changes, we go through all the equations, and then only at the end 
of each iteration are the cell values changed, the change for each cell being 
the average value of all the computed changes for that cell. This constitutes 
one iteration of the algorithm. In the second iteration, we go back to the first 
equation in (2) and the process is repeated. 
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7.4 SART (Simultaneous Algebraic Reconstruction Technique) 

We will now discuss a variation on the algebraic approaches discussed 
above that seems to combine the best of ART and SIRT. This technique, first 
reported in [And84a], yields reconstructions of good quality and numerical 
accuracy in only one iteration. Here are the main features of SART: First, to 
reduce errors in the approximation of ray integrals of a smooth image by 
finite sums, the traditional pixel basis is abandoned in favor of bilinear 
elements. Also, for a circular reconstruction region, only partial weights are 
assigned to the first and last picture elements on the individual rays. To 
further reduce the noise resulting from the unavoidable but now presumably 
considerably smaller inconsistencies with real projection data, the correction 
terms are simultaneously applied for all the rays in one projection; this is in 
contrast with the ray-by-ray updates in ART. In addition, a heuristic 
procedure is used to improve the quality of reconstructions: a longitudinal 
Hamming window is used to emphasize the corrections applied near the 
middle of a ray relative to those applied near its ends. 

In what follows we will describe in more detail the individual steps outlined 
above. The contribution that each step makes in improving the overall 
accuracy of me proposed procedure will be illustrated with reconstructions of 

Fig. 7.5: (a) The Shepp and the test image of Fig. 7.5. Note that this image differs slightly from a similar 
Logan head phantom with a 
subdural hematoma. (b) The gray 

image in Chapter 3 by the presence of a “

subdural 

hematoma,

” 

which is a 

level distribution of the Shepp small ellipse right next to the “

skull

” 

in the lower right-hand part. All these 
and Logan phantom. (From reconstructions were carried out on a 128 x 128 sampling lattice with 100 
[Kak84J.) projections of 127 rays each. 

b -1.0-0.8 -0.a -0.4 -0.2 0.0 0.2 0.4 0.0 0.8 1.0 
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7.4.1 Modeling the Forward Projection Process 

In (l), projection data were modeled by 

Pi=5 wijfi9 i=l, 2, -**, M. 
j=l 

(19) 

This is a good model for the projection process if for Wij’s we use the 
theoretically dictated values-which, as mentioned before, is hard to do for 
various reasons. 

To seek alternative methods for modeling the projection process, the 
relationship between a continuous image and the discrete projection data can 
be expressed by the following general form 

Pi=Rif(X, I’)= Sy, lr, f(X, y)G(ri(X, y)) dx dy (20) 

where 

ri(X, Y)=O (21) 

is the equation of the ith ray and Ri is the projection operator along the ray. 
The integral on the right-hand side serves as the definition of the projection 
operator. 

Now suppose we assume that in an expansion for the imagef(x, y), we use 
basis functions bj(x, y) and that a good approximation tof(x, y) is obtained 
by using N of them. This assumption can be represented mathematically by 

f(X, Y)=ftXs Y) E 5 gjbjCx, Y) (22) 
j=l 

where gj’s are the coefficients of expansion; they form a finite set of numbers 
which describe the image f(x, y) relative to the chosen basis set bj(X, y). 

Substituting (22) in (20), we can write for the forward process 

Pi=Rif(x, Y)F”RJ(X, Y)=g gjRibj(x, Y)=i &au 
j=l j=l 

(23) 

where a, represents the line integral of bj(X, y) along the ith ray. This 
equation has the same basic form as (l), yet it is more general in the sense that 
gi’s aren’t constrained to be image gray level values over an array of points. 
Of course, the form here reduces to (1) if for bj’s we use the following pixel 
basis that is obtained by dividing the image frame into N identical subsquares; 
these are referred to as pixels and identified by the index j for 1 5 j 5 N: 

bj(x, Y)= 
I 

1 inside the jth pixel 
o everywhere else. (24) 
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In keeping with the nature of J’s in (l), gj’s with these basis functions 
represent the average off (x, y) over the jth pixel and Ribj(X, y) represents 
the length of the intersection of tbe ith ray with the jth pixel. Although (20) 
implies rays of zero width, if we now associate a finite width with each ray, 
the elements of the projection matrix will represent the areas of intersection of 
these ray strips with the pixels. 

In SART, superior reconstructions are obtained by using a model of the 
forward projection process that is more accurate than what can be obtained by 
the choice of pixel basis functions-this is done by using bilinear elements 
which are the simplest higher order basis functions. The basis functions 
obtained from bilinear elements are pyramid shaped, each with a support 
extending over a square region the size of four pixels. It can be shown that the 
gj’s appearing in (22) for the case of bilinear elements are the sample values 
of the image functionf(x, y) on a square lattice. It can further be shown that 
whereas the pixel basis leads to a discontinuous image representation, the 
bilinear elements allow a continuous form of p(x, y) to be regenerated for 
computation. However, finding the exact ray integrals across such bilinear 
elements [as called for by Ribj(x, y) in (23)] for a large number of rays is a 
time-consuming task and we will use an approximation. 

Rather than try to find separately the individual coefficients aij for a 
particular ray, we approximate the overall ray integral RJ(X, y) by a finite 
sum involving a set of Mi equidistant points {f^(sim)}, for 1 5 m I Mi 

Fig. 7.6: The ray-sum equations 
for a set of equidistant points 

[Lytl(O] (see Fig. 7.6): 
along a straight line cut by the Mi 
circular reconstruction region. Pi” x J(Sim)AS* (25) 
(From [Kak84J.) m=l 
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The value f(Sim) is determined from the values gj of f(x, y) on the four 
neighboring points of the sampling lattice, i.e., by bilinear interpolation. We 
write 

%(Sim) = i dijrngj for m= 1, 2, .a*, Mi. (26) 
j=1 

The coefficient dti,,, is therefore the contribution that is made by the jth image 
sample to the mth point on the ith ray. Combining (25) and (26), we obtain an 
approximation to the ray integral pi as a linear function of the image samples 
gj: 

m=l j=I 

Mi 

= 2 C dij,gjAS for 1lisJ 
j=l m=l 

=i aijgj 
j=l 

(27) 

(28) 

where the coefficients au represent the net effect of the linear transforma- 
tions. They are determined as the sum of the contributions from different 
points along the ray: 

Mi 
aij= C dijmAS. (30) 

m=l 
Therefore, au is proportional to the sum of contributions made by the jth 
image sample to all the points on the ith ray. It is important to the overall 
accuracy of the model that for m = 1 and for m = Mi, i.e., for the first and 
last points of the ray within the reconstruction circle, the weights are adjusted 
so that X7= i ab equals the actual physical length Li. 

One certainly has latitude about selecting the step size As; setting it equal 
to half the spacing of the sampling lattice provides a good trade-off between 
the accuracy of representation and computational cost. 

7.4.2 Implementation of the Reconstruction Algorithm 

As mentioned before, the results of SART implementation will be shown 
on 128 x 128 matrices using 100 projections, each with 127 rays. In the 
model of (29), this corresponds to N = 16,384 picture elements and an 
overall number of rays I = 12,700. Note that the system of equations is 
underdetermined by about 25 % , but then the reconstruction circle covers only 
about 75% of the area of the square sampling lattice. 

With the au’s determined by the method just described, the reader will now 
be taken through a series of steps that are part of the SART implementation. 

288 COMPUTERIZED TOMOGRAPHIC IMAGING 



First, it will be shown that even with the superior forward projection 
modeling by the use of bilinear elements, one doesn

’

t 

want to carry out a 
sequential implementation of the reconstruction algorithm. 

A sequential implementation can be carried out by using the update 
formula of (4), reexpressed here in terms of SART symbols: 

(31) 

Fig. 7.1: Reconstruction from 
one iteration of sequential ART. 
(a) Image. (b) Line plot through 
the three small tumors (for y = 
- 0.605). (From [And84a].) 

where ZJ denotes the ith row vector of the array aij. As described before, the 
estimate g(k) of the image vector is updated after each ray has been 
considered. We set the initial estimate g

’

(O) 

to zero, and we say that one 
iteration of the algebraic reconstruction technique is completed when all I 
rays, i.e., all I ray-sum equations, have been used exactly once. Owing to 
reasons discussed in Section 7.1, for sequential processing the projection data 
are ordered in such a manner that the angle between the projections 
considered successively is kept large; for the reconstructions shown here that 
were obtained with sequential updating, this angle was 73.8

”

. 

Fig. 7.7(a) illustrates the reconstruction of the test image for one iteration 
of the sequential implementation. In order to avoid streak artifacts in the final 
image, the correction terms for the first few projections are de-emphasized 
relative to those for projections considered later on. The image has been 
thresholded to the gray level range 0.95-1.05 to illustrate the finer detail. 
Note that even the larger structures are buried in the salt and pepper noise 
present when no form of relaxation or smoothing is used. Fig. 7.7(b) shows a 
line plot through the three small tumors of the phantom (the profile shown is 
along the line y = - 0.605). We observe that the amplitude variations of the 
noise largely exceed the density differences characterizing these structures. 
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It will now be shown that superior results are obtained if instead of 
sequentially updating pixels on a ray-by-ray basis we simultaneously apply to 
a pixel the average of the corrections generated by all the rays in a projection. 
Stated in a bit more detail, this is what we want to do: For the first ray in a 
projection we compute as before the corrections to be made at every pixel. 
Instead of actually applying these corrections, we store them in a separate 
array to be called the correction array (the size of which is the same as that of 
the image array). Then we take up the next ray and add the pixel updates 
generated by this ray to the correction array. And then the next ray, and so 
on. After we are through all the rays in a projection, we add the correction 
array (or some fraction thereof) to the image array. This entire process is 
repeated with every projection. Fig. 7.8(a) illustrates the reconstruction 
obtained with this method. The precise formula that was used in the 
reconstruction in Fig. 7.8 for updating the pixel values can be stated as 
follows: 

& 
I 

g@+Lg~)+- 
J 

1 
p

i 

- ,

‘

iTg

’

w 

aij 

i aij 
L ‘

=I 

C aij 
(32) 

Fig. 1.8: Reconstruction from 
one iteration of SART. (a) 
Image. (b) Line plot through the 
three small tumors (for y = 
- 0.605). (From [And84a].) 

where the summation with respect to i is over the rays intersecting the jth 
image element for a given scan direction. 

Compared to the reconstruction of Fig. 7.7 for the sequential scheme, the 
simultaneous method offers a reduction in the amplitude of the noise. In 
addition, the noise in the reconstructed image has become more slowly 
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Fig. 7.9: The longitudinal 
Hamming window for a set of 
straight rays. (From [And84a].) 

undulating compared to the previous salt and pepper appearance. This 
technique maintains the rapid convergence of ART-type algorithms while at 
the same time it has the noise suppressing features of SIRT. AS with SIRT, 
the simultaneous implementation does require the storage of an additional 
array for the correction terms. 

The last step, heuristic in nature, in SART consists of modifying the back- 
distribution of correction terms by a longitudinal Hamming window. The idea 
of the window is illustrated in Fig. 7.9. The uniform back-distribution 
according to the coefficients au is replaced by a weighted version. This 
corresponds to replacing the correction term 

pi _ a’,T-g’(k) 
aij 

fj aij 
(33) 

j=l 

in (32) by a weighted correction term 

*, pi - ZTzck) 

” 5 Qij 

(34) 

j=l 

where the weighting coefficients tij are given by [compare with (30)] 

Mi 
tij= C hi,dij,AS* 

m=l 
(35) 

The sequence hi,, for 1 I m I A4i, is a Hamming window of length A4i. 
Note that the length of the window varies according to the number of points 
Mi describing the part of the ray inside the reconstruction circle. 

The weighted back-distribution of corrections emphasizes the central 
portions of rays in relation to portions closer to the periphery. Fig. 7.10 
illustrates a reconstruction of the test image after one iteration with the 
longitudinal window in conjunction with the simultaneous scheme previously 
described. We see an improvement over the reconstructions of Figs. 7.7 and 
7.8: the noise is practically gone and all the structures can be fairly well 
distinguished. If we hadn’t applied the corrections in a simultaneous scheme 
but incorporated the longitudinal Hamming window only for the sequential 
implementation, we would have arrived at the noisy reconstruction illustrated 
in Fig. 7.11. 

An important question that remains to be answered is: What happens when 
we go through iterations with, say, the simultaneous implementation; 
meaning that after we have made a reconstruction by going through all the 
projections once, we go through them all once again using the reconstruction 
of Fig. 7.10 as our initial solution; and then continue iterating in like fashion? 
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Fig. 7.10: Reconstruction from 
one iteration of SART with a 
longitudinal Hamming window. 
(a) Image. (b) Line plot through 
the three small tumors (fbr y = 
- 0.605). (From [And84a].) 

In Figs. 7.12 and 7.13, we have shown the reconstructions obtained with two 
and three iterations, respectively. As is evident from the reconstructions, we 
do gain more contrast, although at the cost of increased salt and pepper noise. 
All reconstructions shown represent the raw output from the algorithms with 
no postprocessing applied to suppress noise. 

For the purpose of comparison, we have included in Fig. 7.14 the 
reconstruction obtained by using a convolution-backprojection algorithm. 
Comparing this with Fig. 7.10, we see that the SART reconstruction with one 
iteration is quite similar, although with further iterations, as displayed in 
Figs. 7.12 and 7.13, we see an increased amplitude of the salt and pepper 
noise, which is probably an indication of remaining inconsistencies in the 
model used for the forward projection process. 

7.5 Bibliographic Notes 

The earliest expositions on algebraic reconstruction were by Gordon et al. 
[Gor70], [Gor71], [Gor74], Herman et al. [Her71], [Her73], [Her77], and 
Budinger and Gullberg [Bud74]. The reader is also referred to the book by 
Herman [Her801 for an exhaustive treatment of the subject. 

When binary values are chosen for the weights wU in (16) in ART, i.e., wg 
is set equal to 1 if the center of thejth pixel falls within the strip of the ith ray 
and 0 if not, it becomes necessary to adjust the width of each ray according to 
the orientation of the projection [Gor74], [Her73], [Opp75]. 

Attempts have been made to reduce the salt and pepper noise associated 
with ART-type reconstructions by increasing the number of rays per view 
[Smi77]. When the number of rays per view is increased, many pixels are 
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Fig. 7.11: Reconstruction from 
one iteration of sequential ART 
with a longitudinal Hamming 
window. (a) Image. (b) Line plot 
through the three small tumors 
(for y = -0.605). (From 
[AndBla].) 

Fig. 7.12: Reconstruction from 
two iterations of SART with a 
longitudinal Hamming window. 
(a) Image. (b) Line plot through 
the three small tumors (for y = 
- 0.605). (From [And84a].) 
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intersected by several rays in each projection. This results in the averaging of 
possible errors committed in the correction procedure such as the one given 
by (4). Common practice is to have a system with about four times as many 
equations as unknown pixel values [Her80], [Her78], [She74]. The computa- 
tional cost, however, is increased directly with the number of rays processed. 
An additional method has been to use a relaxation factor h < 1 [Gor74], 
[Her80], [Her76], [Her78], [Hou72], [Swe73] which, although reducing the 
salt and pepper noise, increases the number of iterations required for 
convergence. 

The SART algorithm was first reported in [And84a]. In contrast with the 
bilinear elements used for SART, the pixel basis is common to much 
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Fig. 7.13: Reconstruction from 
three iterations of SART with a 
longitudinal Hamming window. 
(a) Image. (b) Line plot through 
the three small tumors (for y = 
- 0.605). (From /And84a].) 

Fig. 7.14: Convolution-back- 
projection reconstruction of the 
test image. (a) Image. (b) Line 
plot through the three small 
tumors (for y = - 0.605). (From 
[And84a].) 
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literature published on algebraic techniques [Din79], [Gi172], [Gor74], 
[Gor70], [HergO], [Her76], [Her78], [Her73], [Hou72], [Opp75], [She74]. 

The error-correcting procedure of the basic ART algorithm as given by (4) 
is discussed in [Gor74], [GonO], [HergO], [Her76], [Her78], [Her73], 
[Hou72]. 

As first shown by Hounsfield [Hou72], in order to improve the 
convergence of a sequential algebraic algorithm one should order the 
projections in such a manner that successive projections are well separated. 
This he justified on the basis of high correlation between the information in 
neighboring projections. Later the scheme was demonstrated to have a deeper 
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mathematical foundation as a tool for speeding up the convergence of ART- 
type algorithms. (The proof relies on a continuous formulation of ART, as 
shown by Hamaker and Solmon [Ham78].) Ramakrishnan et al. [Ram791 
have shown how by orthogonalization of the algebraic equations we can 
increase the speed of convergence of a reconstruction algorithm. 

The SIRT algorithm was first proposed by Gilbert [Gi172]. A simplified 
form of the simultaneous technique was used by Oppenheim in [Opp75]. 
However, the scope of the implementation as described by (32) is much 
wider. The method can be used advantageously in the general image 
reconstruction problem for curved rays with overlapping and nonoverlapping 
ray strips as well as in conjunction with any image representation, provided 
the forward process can be expressed in the form of (23). 

A combination of algebraic reconstruction and digital ray tracing appears 
ideal for imaging lightly refracting objects [Cha79], [Chagl]. A survey of 
digital ray tracing and ray linking for this purpose is presented in [And82]. If 
a refracting object has special symmetries, then as shown by Vest [Ves75] it 
may be possible to reconstruct the object without ray tracing. The reader is 
referred to [And84b] for experimental demonstrations of how algebraic 
reconstruction can be combined with digital ray tracing for the cross-sectional 
imaging of lightly refracting objects. 
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8 

Reflection Tomography 

8.1 Introduction 

The tomographic images up to this point have generally been formed by 
illuminating an object with some form of energy (x-rays, microwaves, or 
ultrasound) and measuring the energy that passes through the object to the 
other side. In the case of straight ray propagation, the measurement can be of 
either the amplitude or the time of arrival of the received signal; an estimate is 
then formed of a line integral of the object’s attenuation coefficient or 
refractive index. Even when the energy doesn’t travel in a straight line it is 
often possible to use either algebraic techniques or diffraction tomography to 
form an image. 

Transmission tomography is sometimes not possible because of physical 
constraints. For example, when ultrasound is used for cardiovascular 
imaging, the transmitted signal is almost immeasurable because of large 
impedance discontinuities at tissue-bone and air-tissue interfaces and other 
attenuation losses. For this reason most medical ultrasonic imaging is done 
using reflected signals. In the most straightforward approach to reflection 
imaging with ultrasound, the echoes are recorded as in radar; in medical areas 
this approach goes by the name of B-scan imaging. 

The basic aim of reflection tomography is to construct a quantitative cross- 
sectional image from reflection data. One nice aspect of this form of imaging, 
especially in comparison with transmission tomography, is that it is not 
necessary to encircle the object with transmitters and receivers for gathering 
the “projection” data; transmission and reception are now done from the 
same side. The same is of course true of B-scan imaging where a small beam 
of ultrasonic energy illuminates the object and an image is formed by 
displaying the reflected signal as a function of time and direction of the beam. 

While in transmission tomography it is possible to use both narrow band 
and broadband signals, in reflection tomography only the latter type is 
acceptable. As will become evident by the discussion in this chapter, with 
short pulses (broadband signals) it is possible to form line integrals of some 
object parameter over lines of constant propagation delays. 

Since researchers in reflection tomography are frequently asked to 
compare B-scan imaging with reflection tomography, in this chapter we will 
first give a very brief introduction to B-scan imaging, taking great liberties 
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with conceptual detail; for a rigorous treatment of the subject, the reader is 
referred to [Fat80]. We will then illustrate how reflection tomography can be 
carried out with plane wave transducers and some of the fundamental 
limitations of this type of imaging. Our discussion of reflection tomography 
with plane wave transducers will include a demonstration of the relationship 
that exists between reflection tomography and the diffraction tomography 
formalism presented in Chapter 6. Finally, we will describe how reflection 
tomographic imaging can be carried out with point transducers producing 
spherical waves. 

8.2 B-Scan Imaging 

To explain B-scan imaging, assume that the object inhomogeneities can be 
modeled by an isotropic scattering functionf(x, y), a function of position. In 
the rest of this chapter, f(x, y) will be referred to as the object reflectivity 
function. Within certain restrictions, it is a measure of the portion of the local 
transmitted field that is reflected back toward the receiver. Note that we are 
taking liberties with rigorous theory, since the scattering process is also a 
function of the direction of the illumination and the direction in which the 
reflection is measured. For a more precise analysis the reader is referred to 
[Fat80]. 

As shown in Fig. 8.1, a B-scan is a simple example of radar imaging. For 
illustration, we will assume that within the object the beam is confined to a 
narrow region along a line as shown in Fig. 8.1(a) and that the amplitude of 
the field along this line isn’t decaying so that it can be written as a function of 
only one variable, the distance along the line. If the illuminating wave has a 
very short time duration, there will be a direct mapping between the time at 
which a portion of the reflected wave is received and the distance into the 
object. 

Mathematically, the received waveform is a convolution of the input 
waveform, p,(t), and the object’s reflectivity. The incident field can be 
written as 

4$(x, Y)=Pt t-z ( > for y=O 

and 

rc’i(X, Y I= O elsewhere 

where c is the propagation speed of the wave. This function models a pulse, 
p,(t), propagating down the x-axis, assumed perpendicular to the face of the 
transducer, with speed c. This is pictorially illustrated in Fig. 8.1(b). At a 
point (x, y) in the object a portion of the incident field, $i(X, y), will be 
scattered back toward the transducer. Therefore the amplitude of the scattered 
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Fig. 8.1: In B-scan imaging an 
object is illuminated by a narrow 
beam of energy. A short 
(temporal) pulse is transmitted 
and will propagate through the 
object. (a) shows a portion of the 
object illuminated by a ‘pencil” 
beam of energy, (b) shows the 
pulse at different times within the 
object, and (c) shows the 
spherically expanding wave 
caused by a single scatterer within 
the object. 
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field at the scatterer is given approximately by 

$(x, y=O) = f(x, y=O)p, t-E . 
( > 

In traveling back to the receiver, the reflected pulse will be delayed by x/c 
due to the propagation distance involved and attenuated because the reflected 
field is diverging as depicted in Fig. 8.1(c). To maintain conservation of 
energy (in two dimensions here) the amplitude attenuation due to spreading is 
proportional to l/h. That means the energy density will decay as l/x and, 
when integrated over the boundary of a circle enclosing the scattering site, the 
total energy outflow will always be the same regardless of the radius of the 
circle. Thus the field received due to reflection at x is given by 

!h I scattered at x = pt t-t-: f(x,y=O) i. 
( > 6 

Integrating this with respect to all the reflecting sites along the transmitter 
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line, the total field at the receiver is given by 

t+&(t)= s p,(t-2 z) f(x;/:=o) dx. (5) 

With the above expression for the scattered field due to a narrow incident 
beam it is relatively straightforward to find a reconstruction process for the 
object’s reflectivity. Certainly the simplest approach is to illuminate the 
object with a pulse, p,(t), that looks like an impulse. The scattered field can 
then be approximated by 

&(t) = s (t-2 :) f(x;_:=“) dx=$,( 5, y=O) . (6) 

This expression shows that there is a direct relation between the scattered 
field at t and the object’s reflectivity at x = tc/2. This is shown in Fig. 8.2. 
With this expression it is easy to see that a reconstruction can be formed using 

(7) 

where f is the estimate of the reflectivity function f. The term 4x/c2 that 
multiplies the scattered field is known as time gain compensation and it 
compensates for the spreading of the fields after they are scattered by the 
object. 

In B-scan imaging, a cross-sectional image of the object’s reflectivity 
variation is mapped out by a combination of scanning the incident beam and 
measuring the reflected field over a period of time. Recall that in B-scan 
imaging the object is illuminated by a very narrow beam of energy. Equation 
(7) then gives an estimate of the object’s reflectivity along the line of the 
object illuminated by the field. To reconstruct the entire object it is then 
necessary to move the transducer in such a manner that all parts of the object 
are scanned. There are many ways this can be accomplished, the simplest 

Fig. 8.2: When an object is 
illuminated by a pulse there is a 
direct relationship between the 
backscattered field and the 
object’s reflectivity along a line. 

A Reflected 
field measured 
at transducer 
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being to spin the transducer and let each position of the transducer illuminate 
one line of a fan. This is the type of scan shown in Fig. 8.3. 

Clearly, the resolution in a B-scan image is a function of two parameters: 
the duration of the incident pulse and the width of the beam. Resolution as 
determined by the duration of the pulse is often called the range resolution 
and the resolution controlled by the width of the beam is referred to as the 
lateral resolution. The range resolution can be found by considering the 
system response for a single point scatterer. From (5) the field measured at 
the point (0, 0) due to a single scatterer of “unit strength” at x = x0 will be 
equal to 

pt t-$ 
( > 

4uo= r * (8) 
x0 

Substituting this in (7), our expression for estimating the reflectivity, we 
obtain the following form for the image of the object’s reflectivity: 

~(x,y=o)=~~~(r,=~pt~-~’ . (9) 

From this it is easy to see that an incident pulse of width tp seconds will lead 
to an estimate that is tpc units wide. 

It is interesting to examine in the frequency domain the process by which 
the object reflectivity function may be recovered from the measured data. In 
the simple model described here, the frequency domain techniques can be 
used by merging the l/A factor with the reflectivity function; this can be 
done by defining a modified reflectivity function 

f’(x, y)=fy. (10) 
X 

Now the scattered field at the point (0, 0) can be written as the convolution 

#s(t)= i .t(t-2 :) f’k y=O) dx 

and can be expressed in the Fourier domain as 

$&.4 = P-t(4F+~, y=o) . (12) 

Given the scattered field in this form it is easy to derive a procedure to 
estimate the reflectivity of the object. Ideally it is only necessary to divide the 
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(a) 

Fig. 8.3: Often, in commercial 
B-scan imaging a focused beam 
of energy is moved past the 
object. An image is formed by 
plotting the received field as a 
function of time and transducer 
position, (a) shows this process 
schematically. (b) is a transverse 
7.5~MHz sonogram of a 
carcinoma in the upper half of 
the right breast. (This image is 
courtesy of Valerie P. Jackson, 
M.D., Associate Professor of 
Radiology, Indiana University 
School of Medicine.) (c) is a 
drawing of the tissue shown in 
(b). The mass near the center of 
the sonogram is lobulated, has 
some irregular borders and 
low-level internal echoes, and 
there is an area of posterior 
shadowing at the medial aspect of 
the tumor. These findings are 
compatible with malignancy. 
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Fourier transform of the received field by P&J) to find 

F(2;,y=O) = @& (13) 

Unfortunately, in most cases this simple implementation doesn’t work 
because there can be frequencies where P,(w) is equal to zero, which can 
cause instabilities in the division, especially if there is noise present at those 
frequencies in the measured data. A more noise insensitive implementation 
can be obtained via Wiener filtering [Fat80]. 

8.3 Reflection Tomography 

Reflection tomography is based on the measurement of line integrals of the 
object reflectivity function. Consider a single point transducer illuminating an 
object with a very wide fan-shaped beam. If the incident field is just an 
impulse in the time domain, then the received signal at time t represents the 
total of all reflections at a distance of tc from the transducer. The locus of all 
points at the same distance from the transmitter/receiver is a circle; thus this 
mode of reflection tomography measures line integrals over circular arcs. 
(See Fig. 8.4.) Then by moving the transducer over a plane, or alternatively 
on a sphere wrapped around the object, it is possible to collect enough line 
integrals to reconstruct the entire object. This approach to tomographic 
imaging was described first by Norton and Linzer [Nor79a], [Nor79b]. 

In principle, reconstruction from such data is similar to the following case 
that is easier to describe: Instead of using a point transducer, we will use a 
plane wave transducer. As we will show below, for the two-dimensional case 
the lines of equal propagation delay now become straight lines through the 
object and thus the reconstruction algorithms are exactly like those for 
conventional parallel beam tomography. First, though, we will describe the 
field generated and received by a plane transducer. 

8.3.1 Plane Wave Reflection Transducers 

Before deriving a reconstruction procedure using plane waves we first must 
define what a plane wave transducer measures. In the transmit mode, the field 
produced by an ideal plane wave transducer when excited by the waveform 
p,(t) is equal to 

$i(Xv Y9 t) = Pt tMX 
( > c ’ 

x>o 

where we have assumed that the transducer is flush with the plane x = 0. 
Note that the field is only defined in the positive x half space and is a function 
of one spatial variable. 

In the receive mode the situation is slightly more complicated. If $,(x, y, t) 
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Fig. 8.4: If a transducer with a is the scattered field, the signal generated at the electrical terminals of the 
wide beam illuminates the object, 
then it will measure line integrals 

transducer is proportional to the integral of this field. We will ignore the 
over circular arcs of the object’s constant of proportionality and write the electrical received signal, p,(t), as 
reflectivity. 

p,(t)= s $40, Y, 0 du. (15) 

In order to derive an expression for the received waveform given the field 
at points distant from the transducer it is necessary to consider how the waves 
propagate back to the transducer. First assume that there is a line of reflectors 
at x = x0 that reflect a portion, f(x = x0, y), of the field. As described above 
we can write the scattered field at the line x = x0 as the product of the 
incident field and the reflectivity parameter or 

$,Y(X=XO, y, t) = $i(X=XOy Y, t)f(X=XO, y) 

= pt t-z f(x=xo, y). 
( > 

To find the field at the transducer face it is necessary to find the Fourier 
transform of the field and then propagate each plane wave to the transducer 
face. This is done by first finding the spatial and temporal Fourier transform 
of the field at the line of reflectors 

&(k,, w) = iy, I”, $z(x=xo, y, t)e-jkyJ’ejwt dy dt. (17) 

The function $#,, w) therefore represents the amplitude of the plane wave 
propagating with direction vectors ( - d(l(~/c)~ - k;, k,). It is important to 
realize that the above equation represents the field along the line as a function 
of two variables. For any temporal frequency, o, there is an entire spectrum 
of plane waves, each with a unique propagation direction. 

Recall that we are using the convention for the Fourier transform defined in 
Chapter 6. Thus the forward transform has a phase factor of e -jkyY in the 
spatial domain, as is conventional, while the temporal Fourier transform uses 
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e+jwt for the forward transform. The signs are reversed for the inverse 
transform. 

With this plane wave expansion for the field it is now easy to propagate 
each plane wave to the transducer face. Consider an arbitrary plane wave 

$(x, y)=ej(Q+kyy) (18) 

where k, will be negative indicating a wave traveling back toward the 
transducer. Using (15), the electrical signal produced is quickly seen to be 
equal to zero for all plane waves when k,, # 0. This is due to the fact that 

s m ejkyy dy=b(k,). (1% --m 

Those plane waves traveling perpendicular to the face of the transducer (k, 
= 0) will experience a delay due to the propagation distance x0. In the 
frequency domain this represents a factor of e ja(Xo’c). The electrical response 
due to a unit amplitude plane wave is then seen to be 

P,(w, k,) = G(ky)ej~Wc). (20) 

By summing each of the plane waves at frequency w in (17), the total 
electrical response due to the scattered fields from the plane x = x0 is given 
by 

PJw)= IJ~(/c,=O, 0)ej~WC) (21) 

or back in the time domain it is simply equal to 

m(t) =& Srn &(k, = 0, o)ej”Wc)e-juf du. -cc (22) 

Now substituting (14), (17), and (16) into this expression, the received signal 
can be written 

. eb(+/c)e-ikyy&t’ dy dt’ IkyEO (23) 

which is the same as 

LG(f)=& ST, e-jot du i”, [y, &(x=x0, y, t’) 

- f(x=xo, y)ejw(xo/c)ejwr’ dy dt’ (24) 
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which reduces to 

- f(x=xo, y)ej”(xo/c)ejut’ dy dt’. (25) 

Interchanging the order of integrations yields 

s;,f(x=xo, y) dy. (26) 

The above equation represents the measured signal due to a single line of 
scatterers at x = x0. Let the total (integrated) reflectivity of the object along 
the line x = x0 be denoted byfi(xo). The received signal for all parts of the 
object can be written as the sum of each individual line (since we are 
assuming that the backscattered fields satisfy the Born approximation and 
thus the system is linear) and the total measured signal can be written 

At) = ~;/+2~)fi(xl dx. (27) 

This signal is similar to that of B-scan imaging. Like B-scan the transmitted 
pulse is convolved with the reflectivity of the object but in each case the 
reflectivity is summed over the portion of the object illuminated by the 
incident field. In B-scan the object is illuminated by a narrow beam so each 
portion of the received signal represents a small area of the object. With 
reflection tomography the beam is very wide and thus each measurement 
corresponds to a line integral through the object. 

Like B-scan imaging the reflectivity of the object can be found by first 
deconvolving the effects of the incident pulse. If the incident pulse can be 
approximated by an impulse, then the object’s reflectivity over line integrals 
is equal to 

X 
fl(X)=Pr 2- ; ( > c (28) 

otherwise a deconvolution must be done and the line integrals recovered using 

(29) 

where F,(w), P,(w), and Pt(w) represent the Fourier transform of the 
corresponding time or space domain signal. (In practice, of course, one may 
have to resort to techniques such as Wiener filtering for implementing the 
frequency domain inversion.) 
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Fig. 8.5: By using a common 
signal source and combining all 
the electrical signals, an array of 
transducers can be used to 
generate a plane wave for 
reflection tomography. However, 
by recording the information 
separately for each transducer, 
they can also be used for the 
more general form of reflection 
tomography. 

The line integral data in the equation above are precisely the information 
needed to perform a reconstruction using the Fourier Slice Theorem. As 
described in Chapter 3, the object’s reflectivity can be found using the 
relationship 

f(x, y)= 1: jm Se(u)lwlej~t du de (30) --P) 

where SO represents the Fourier transform of the projection data measured 
with the transducer face at an angle of 0 to the horizontal and 

t=x cos B+y sin 8. (31) 

8.3.2 Reflection Tomography vs. Diffraction Tomography 

It is interesting to compare reflection tomography as just described using 
plane wave transducers to the methods of diffraction tomography presented in 
Chapter 6. To see the similarities, consider the following imaging experi- 
ment. Instead of using a plane wave transducer, let’s use a line array to 
illuminate the object, as shown in Fig. 8.5. 

To perform a reflection tomography experiment of the type described in 
the preceding subsection, we need to be able to generate a plane wave with 
the array; this can be done easily by applying the same broadband signal p(t) 
to every transducer in the array. For reception, if we simply add the electrical 
signals generated by the transducer elements in the array, we will obtain a 
close approximation to the receiving characteristics of a plane wave 
transducer. 

Now imagine that instead of summing all the received electrical signals, we 
record each one separately-call each such signal s(t, y). If we take the 
Fourier transform of each received waveform s(t, y) with respect to time, we 
obtain 

S(W, y)= ST, s(t, y)ejut dt. (32) 

Array of Transducers 
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If the original signal has a spectrum given by 

Fig. 8.6: The Fourier transform 
of the field received by a plane 
wave transducer gives samples of 
the two-dimensional Fourier 
transform of the object along the 
line indicated by the cross marks. 
For each spatial frequency, kO, 
the backscattered field gives 
information along an arc. A 
plane wave transducer only 
measures the dc component; thus 
the measured signal contains 
information about only one point 
of each arc. By rotating the 
transducer around the object a 
complete reconstruction can be 
formed. 

pt(o)= SW pt(t)ejot dt, -co (33) 

then the scattered fields can be normalized by dividing the received spectrum 
by the transmitted spectrum to find 

(34) 

Again, as described before, this represents an idealized approach and in 
practice a more robust filter must be used. 

Because of the normalization at the array element at location y, the data 
S’(w, y) represent a single plane wave component of the scattered field that is 
at a temporal frequency of w. If we take a Fourier transform of S’(o, y) with 
respect to the variable y, by using the techniques of Chapter 6 we can derive 
the following relationship: 

S’(w, ky)= sa S’(w, y)e- --co jkyYdy=F(-w-k,,, k,) (35) 

which shows that the Fourier transform* S’(w, k,) provides us with an 
estimate of the Fourier transform of the object reflectivity function along a 
circular arc, as illustrated in Fig. 8.6 for a number of different frequencies. 

This means that a cross-sectional image of the object could be recon- 
structed by rotating the object in front of the array, since via such a rotation 
we should be able to fill out a “disk with a hole in the center” shaped region 
in the frequency domain. The reconstruction can be carried out by taking an 
inverse Fourier transform of this region. Clearly, since the center part of the 
disk would be missing, the reconstructed image would be a “high pass” 
version of the actual reflectivity distribution. 

Reflection tomography using plane wave transducers, as described in the 
preceding subsection, is a special case of the more general form presented 
here. This can be shown as follows: If the signals s(t, y) received by the 
transducers are simply summed over y, the resulting signal as a function of 
time represents not only the output from an idealized plane wave receiver but 
also the Fourier transform of the received field at a spatial frequency of ky = 
0. We can, for example, show that the Fourier transform of the summed 
signal 

’ Note that the expression defined in (32) represents the received signal, S, as a function of 
temporal frequency, o, and spatial position, y, while (35) represents the normalized signal as a 
function of both spatial (k,) and temporal (w) frequency. 
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is given by 
02 m 

s s s(t, y) dy ejwt dt=P,(w)[F(-w-ko, ky)lky=O (37) -co --m 

=P,(w)F(-2kJ, 0) (38) 

=P,(o)F 
( > 

-2 ” ) 0 
c 

which shows that the Fourier transform of the summed signal gives the 
Fourier transform of the object along the straight lines as given by 

for O<o<m. 

These data points are shown as crosses in Fig. 8.6. 

8.3.3 Reflection Tomography Limits 

Limitations of reflection tomography are similar to those of transmission 
tomography described in Chapter 6. In both cases the interactions of the field 
and the object are modeled using first-order approximations. 

Barry Roberts.at Purdue University performed a number of simulations to 
study the limitations of plane wave reflection tomography. The simulations 
were done to model an ideal plane wave tomography experiment using a large 
bandwidth and a very large transducer. 

The data used to study the quality of the reflection tomographic algorithms 
were calculated by assuming that the incident field is the sum of a number of 
discrete frequencies between K oL and Ken. For each frequency, a unit 
amplitude plane wave was scattered off a cylinder with a constant refractive 
index. The backscattered field was then integrated over the receiver line to 
find S(w, ky = 0). 

Fig. 8.7 shows the reflection tomographic reconstructions using an ideal 
transducer with infinite frequency response. Even in this case it is not 
possible to measure the object’s response for a wave at ko = 0 (temporal 
frequency is zero). Thus the value for the k. = 0 term was interpolated and 
there was some shift in the dc value of the reconstruction. 

The reconstructions shown here are similar to the ones shown in Chapter 6 
for the Born approximation in the forward direction. For small objects and 
refractive indexes the reflection reconstructions are good, but for large 
objects the high frequency part of the reconstruction is distorted. This is 
because the high frequency components, or those with the shortest wave- 
lengths, are first to undergo a 180” phase change. Thus in the 10X, 
reconstructions the edges are distorted until finally, as the refractive index 
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approaches 1.20, there are some small high frequency ripples. (h, refers to 
the wavelength at the center frequency of the transducer bandwidth.) 

Using a more practical frequency range the reconstructions shown in Fig. 
8.8 are obtained. Here the data simulate what might be measured with a 
transducer with a center frequency of 1 MHz and a bandwidth of 1.2 MHz. 
As would be expected, the reconstructions aren’t as good as those shown in 
Fig. 8.7 because some of the low and high frequency information about the 
object is missing. Thus there is very little information in the reconstructions 
other than the location of the edges of the cylinders. The average refractive 
index of each cylinder isn’t reconstructed because that is contained in the low 
frequencies. 

A big problem with reflection tomography is that it doesn’t provide 
information about the object at low frequencies. To a certain extent this 
problem can be rectified by extrapolating the measured object spectrum into 
the low frequency band where the information is missing. A popular 
algorithm for such an extrapolation is the Gerchberg-Papoulis algorithm 
[Ger74], [Pap75]. 

The Gerchberg-Papoulis algorithm is an iterative procedure to combine 
information about the Fourier transform of a function (as might be produced 
by a reflection tomography experiment) with independent space domain 
constraints. Typically, the spatial constraint might be the known support of 
the object or the fact that it is always positive. 

Assume that a reflection tomography experiment has yielded Fo(u, u) as an 
estimate of the Fourier transform of an object’s cross section; its inverse 
Fourier transform fo(x, y) is then the image that would be the result of the 
experiment. From the preceding arguments Fo(u, u) is known in a doughnut- 
shaped region of the (u, u) space; we will denote this region by Dp In 
general, the experiment itself wouldn’t reveal anything about the object 
outside the doughnut-shaped region. If f(x, y) denotes the true cross section 
and F(u, u) the corresponding transform, we can write 

F(u, u)= (u, u) in Df 
elsewhere. (41) 

We will invoke the constraint that the object is known to be spatially limited: 

(KY) inDs 
elsewhere (42) 

where we have used D, to denote the maximum a priori known object size. 
Typically, the inverse Fourier transform of the known data Fo(u, u) will 

lead to a reconstruction that is not spatially limited. The goal of the 
Gerchberg-Papoulis algorithm is to find a reconstruction f *(x, y) that 
satisfies the space constraint and whose Fourier transform F*(u, u) is equal 
to that measured by reflection tomography in region DJ. We will now 
describe how this algorithm can be implemented. 
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Fig. 8.9: In the 
Gerchberg-Papoulis algorithm an 
estimate of a portion of the 
object’s Fourier transform is 
combined with knowledge of its 
spatial support. The method 
iterates until an estimate of the 
object is found that is consistent 
with the known frequency 
domain data and the spatial 
extant of the object. (From 
[Rob85J.) 

Given an initial estimate F,(u, u), a better estimate of the object is found by 
finding the inverse Fourier transform of Fo(u, u) and setting the first iteration 
to be 

flk Y)= IFT {Fo(u, u>> (x,Y) inD, 
0 elsewhere. (43) 

The next iteration is obtained by Fourier transforming f,(x, y) and then 
constructing a composite function in the frequency domain as follows: 

FI(u, u)= ;!‘;;l”:x, y>> (u, u) in D, 
elsewhere (44) 

(FT = Fourier transform). We now construct the next iterate fz(x, y), which 
is an improvement over f,(x, y), by first inverse Fourier transforming Fl(u, 
u) and setting to zero any values that are outside the region 0,. This iterative 
process may be continued to yield f3, f4, and so on, until the difference 
between two successive approximations is below a prespecified bound. This 
is shown schematically in Fig. 8.9. 

The result of applying 150 iterations of the Gerchberg-Papoulis algorithm 
to the reconstructions of Fig. 8.7 is shown in Fig. 8.10. The reader is referred 
to [Rob851 for further details on the application of this algorithm to reflection 
tomography. 

8.4 Reflection Tomography with Point Transmitter/Receivers 

As mentioned before, reflection tomography using point transducers leads 
to line integrals of the object reflectivity function over circular arcs. We will 
now show that it is possible to reconstruct the reflectivity function by carrying 
out a backprojection over circular arcs. The derivation here will follow that of 
Norton and Linzer [Nor79a], [Nor79b]. A more rigorous derivation can be 
found in [Nor8 11. 

8.4.1. Reconstruction Algorithms 

Assume that the object is illuminated by spherical waves produced by a 
point source at 7 = (0, 0). Such a field can be expressed as 

$P(t, F)=p I t 
( > 

t-l’l 
c * 

The field scattered by a single scattering site at position Fcan be expressed as 

I) (t F)=f(F)p s 7 t 
( > 

t-fl 
c * 

(For simplicity we will continue to assume that both the illuminating field and 
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the object are two dimensional.) Since we are operating in the reflection 
mode, we use the same point transducer to record whatever scattered fields 
arrive at that site. Since the illuminating field is omnidirectional, the scattered 
field measured at the point transducer will be given by the following 
integration over the half space in front of the transducer: 

&(t)= j f(qt-2 ;> lifl-1’2 dZ (47) 

The reason for the factor 17(- l/2 is the same as that for the factor l/& in our 
discussion on B-scan imaging and the extra factor of (7(/c represents the 
propagation delay from the point scatterer back to the transducer. Again, as 
was done for the B-scan case, the effect of the transmitted pulse can now be 
deconvolved, at least in principle, and the following estimate for the line 
integral of the reflection data, g(r), can be made: 

where FT{ } indicates a Fourier transform with respect to t and IFT{ } 
represents the corresponding inverse Fourier transform. The function g(r) is 
therefore a measure of line integrals through the object where the variable r 
indicates the distance from the transducer to the measurement arc. The 
variable r is related to t by r = ct/2, where c is the velocity of propagation in 
the medium. 

This type of reflection imaging makes a number of assumptions. Most 
importantly, for (47) to be valid it is necessary for the Born approximation to 
hold. This means that not only must the scattered fields be small compared to 
the incident fields, but the absorption and velocity change of the field must 
also be small. Second, the scatterers in the object must be isotropic scatterers 
so that the field scattered by any point is identical no matter from what 
direction the incident field arrives. 

These line integrals of reflectivity can be measured from different 
directions by surrounding the object with a ring of point transducers. The line 
integrals measured by different transducers can be labeled as g+(r), 4 
indicating the “direction” (and location) of the point transducer in the ring, 
as shown in Fig. 8.11. 

By analogy with the straight ray case it seems appropriate to form an image 
of the object by first filtering each line integral and then backprojecting the 
data over the same lines on which they were measured. Because the 
backprojection operation is linear we can ignore the filter function for now 
and derive a point spread function for the backprojection operator over 
circular arcs. With this information an optimum filter function h(r) will then 
be derived that looks surprisingly like that used in straight ray tomography. 

For now assume that the line integral data, g,Jr), are filtered by the 
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Fig. 8.11: In reflection 
tomography with a point source 
the transducer rotates around the 
object at a radius of R and its 
position is indicated by (R, 4). 
The measured signal, g+(r), 
represents line integrals over 
circular arcs centered at the 
transducer. 

function h(r) to find 

g;(r) =gdr)*h(r). 

The backprojection operation over circular arcs can now be written 

(49) 

f^(r, +I=& 1: gi [PC+; r, 011 & (50) 

where the distance from the transducer at (R, 4) to the reconstruction point at 
(r, 6) is given by 

p(qb; r, t9)=JR2+r2-2Rr cos (O-4) . (51) 

In order to determine h(r) we will now use (50) to reconstruct the image of 
a single scatterer; this image is called the point spread function of the 
backprojection process. For a single scatterer at (r, 6,) the filtered projection 
is 

pr,g(r-p(4; r, e))=P,(r-P(+; r, mw) (52) 

since pr,+, pI, and h are all functions of distance. The function pr,+ represents 
a filtered version of the transmitted pulse; in an actual system the filter could 
be applied before the pulse is transmitted so that simple backprojection would 
produce an ideal reconstruction. 

The reconstruction image is then given by 

p,,&($; r, WA+; ro, e,)l d+. (53) 
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We want h(r) to be such thatfis as close to a Dirac delta function as possible. 
In order to find an optimum h(r) in this manner, a number of approximations 
are necessary. First we expand the argument for g:(r) in the equation above 

~(4; r, e)++; ro, Bo)=[R2+r2-2Rr cos (e-+)11/2 

-[R2+rt--2Rro cos (eo--~)y2. (54) 

Each term on the right-hand side can be expanded by using 

We will now assume that the measurement circle is large enough so that (r/ 
R)2 and (ro/R)2 are both sufficiently small; as a consequence, the terms that 
contain powers of r/R and ro/Ro greater than 2 can be dropped. Therefore the 
difference in distances between the two points can be written as 

~(4; r, ehe; r0, e,)- 
r2 - rt 

-r cos (8-+)+ro cos (e,-+I+- 
4R 

--g cos 2(e-+)+g cos 2ceo-9). (56) 

This can be further simplified to 

~(4; r, wd4; r0, eo)=xcOs (9- Y)+Y,+Y~ cos w-4 (57) 

where 

X= Jr: + r2 - 2ror cos (e - e,) 

tan Y= 
r. sin co-r sin 8 

r. cos eO-r c0s e 

yI =-& (r”-r$ 

1 
y2 = 4~ [ri + r4 - 2r2ri cos 2(e - e,)] l/2 

tan (Y= 
rt sin 2e0-r2 sin 28 
ri cos 2eo- r2 cos 28 * 

(58) 

(59) 

(60) 

(61) 

(62) 

Now (53) can be written as 

P,+[xcos (9- Y)+y,+yz cos 2(4-a)] d4. (63) 
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Let Pr,g(w) denote the Fourier transform of the line integral p,,4(r), that is, 

Pr,m(r)=& jy, P,,+(w)ejwr dw. (64) 

In terms of the Fourier transform of the filtered line integral data, f can be 
written as 

f(r, e)= if d4 {I, dw P,,+(w)e’ /w[Y,+Y2cos2(~-ol)lejwxcos ($- Y). 

(65) 

This result can be further simplified if the measurement radius, R, is large 
compared to both the radii r and r. and the distance between the point 
scatterer and the point of interest in the reconstruction. With this assumption 
it can be shown that both yI and y2 are small and the point spread function can 
be written [Nor79a] 

When the scattering center is located at the origin, the point spread function is 
obtained by using 

~(4; r, e)-d+; 0, O)=r cos (4-e) (67) 

and is given by 

This result can be further simplified by using the Bessel1 identity 

(where q is an arbitrary constant) and rearranging the order of integration to 
find 

f<r, e)= Sm_ pdw)Jdwr) dw (70) 

where we have assumed that Pr,+ is independent of 4 for a scatterer located at 
the origin. 

With an expression for the point spread function it is possible to set it equal 
to a delta function and solve for the optimum filter function. The optimum 

318 COMPUTERIZED TOMOGRAPHIC IMAGING 



impulse response 6(x, y) can be written in polar form as 

(71) 

when the scattering center is located at the origin. The optimum filter 
function is then found by noting the identity 

s 
m Jo(rw)w do =i 6(r). (72) 
0 

Rewriting the point spread function to put it into this form and using the fact 
that Jo( *) is an even function, it is easy to show that the optimum form for the 
filtered line integral data is 

P,,Jw) =Iw( . 
2a 

Since P,,+(w) is equal to 

Pr.dw) =~(w)P,*,(w) (74) 

the optimum point spread response will occur when the product of the Fourier 
transform of the transmitted pulse and the reconstruction filter is equal to 

If the spectrum of the transmitted pulse is equal to 

Pt,,(,)=lwI 
2a ’ 

then backprojection, without any additional filtering, will produce the 
optimum reconstruction. 

This filter function is not practical since it emphasizes the high frequencies. 
Generally, a more realistic filter will be a low pass filtered version of the 
optimum filter or 

H(w)=w for IwI< 
2a WC 

N(w)=0 elsewhere. (78) 

Using this filter function the point spread function for the reconstruction 
procedure becomes 

WC51 ~2~c-v f<r, e)= x . (79) 
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Fig. 8.12: A broadband 
reflection tomogram of five 
needles is shown here. In this 
experiment a pixel size of 0.1 
mm, an image size of 300 x 300 
pixels, 120 projections, and 256 
samples per projection were used. 
This figure shows (a) the needle 
array, (b) a diagram of a needle 
array cross section showing sizes 
and spacing, (c) a reflection 
tomogram of an array cross 
section, and (d) a magnified 
(zoomed) view of(c). (These 
images are courtesy of Kris 
Dines, XDA TA Corp., 
Indianapolis, ZN, based on work 
sponsored by National Institute 
of Health Grant #I R43 
CA36673-01.) 

Thus the width of the main sidelobe is given by 

x0=0.30 2

”

=0.3ox, 

(80) 
WC 

where X, is the wavelength of the wave corresponding to the cutoff frequency 
WC. 

The reconstruction procedure can be summarized as follows. First use (48) 
to transform the measured data into measures of line integrals over circular 
arcs. The data should then be filtered with (49) and then backprojected using 
(50). 

8.4.2 Experimental Results 

We would now like to mention experimental results obtained by Kris Dines 
of XDATA Corporation, Indianapolis, IN. In these reconstructions the 
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distance between the point transducer and the object was large enough so that 
the line integrals over circular arcs could be approximated as straight lines; 
the transducer was 200 mm from the center of a lo-mm object. By assuming 
the integration path can be approximated by a straight line the maximum error 
in the integration path is 0.25 mm. 

The reconstruction of Fig. 8.12(c) shows the resolution that is possible 
with this method. The five needles suspended in water represent nearly the 
ideal case since there is no phase shift caused by the object. More 
experimental work is needed to show the viability of this method in human 
patients. 

8.5 Bibliographic Notes 

There is a large body of work that describes the theory of B-scan imaging; 
for a sampler the reader is referred to [Fat80], [Fla81], [Fla83]. This 
technique is in wide use by the medical community and the reader’s attention 
is drawn to the well-known book by Wells [We1771 for an exhaustive 
treatment of the subject. 

One of the first approaches to reflection tomography was by Johnson et al. 
[Joh78] who employed a ray tracing approach to synthetic aperture imaging. 
This approach attempts to correct for refraction and attenuation but ignores 
diffraction. In 1979, Norton and Linzer [Nor79a], [Nor79b] published a 
backprojection-based method for reconstructing ultrasonic reflectivity. A 
more rigorous treatment and a further generalization of this approach were 
then presented in [Nor811 where different possible scanning configurations 
were also discussed. 

More recently, Dines [Din851 has shown experimental results that establish 
the feasibility of this imaging modality, although much work remains to be 
done for improving the quality of the reconstructed image. Also, recently, 
computer simulation results that show the usefulness of spectral extrapolation 
techniques to reflection tomography were presented in [Rob85]. 
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