Silvers and smokes

- The one-gene theory:
- A dominant Inhibitor gene I
 - inhibits pigment production at the hair base(erasing)
 - cancels rufousing everywhere (bleaching)
- It may have different alleles, producing different length of depigmentation (shaded and chinchilla alleles), but perhaps this variation is more gradual, due to polygenes

How the silver gene acts

•Action of the silver gene on non-agouti hair

•Action of the silver gene on agouti hair

Smoke and tipped silver colors

- Superimposing the silver gene we have the following results:
 - Solid ---> smoke
 - Classic, mackerel or spotted tabby ---> silver tabby in the same pattern
 - Ticked or agouti tabby ---> shaded silver or chinchilla

Smoke, silver tabby and shaded colors

smoke

silver classic tabby

chinchilla

The two genes theory

- One dominant gene to inhibit pigmentation (eraser, E), perhaps with shaded and chinchilla alleles
- Another dominant gene to cancel rufousing (bleaching, Bl)

Genotypes of silvers in the two genes theory

- Unrufoused solid (for instance, ink-jet black): aa ee BI-
- Smoke: aa E- BI -
- Shaded silver and chinchilla: A- T^aT^a E- BI-
- Silver tabby: A- TT E- BI- or A- t^bt^b E- BI- or A- Tt^b E- BI-

Golden tabbies in the two genes theory

- Which phenotype corresponds to A- T^aT^a Ebl bl? Golden (shaded or shell)
- Which phenotypes correspond to A- TT E- Blor A- t^bt^b E- Bl- or A- Tt^b E- Bl- ? Golden tabbies

Failure of the two genes theory: predicted colors which do not exist

- A- T^a- ee Bl- : unrufoused tabbies which are not depigmented at the base, they exist, but not with the offspring probabilities dictated by a principal gene
- aa E- bl bl : golden smoke. Never seen!

Can we save the two genes theory?

- To save this theory we must assume that
 E is disactivated by aa and BI is
 disactivated by ee: a bit too implausible
- If we do so, then the theory is equivalent to assume a silver gene I and an epistatic "golden" modifier g (similarly to the maltese dilution), which transforms silver into golden, while its dominat allele G does nothing

Other theories for goldens

- Golden = brown ticked tabby!
 - But the best goldens are depigmented at the base for a length greater than the ticked tabby first agouti band
- Wide-band theory: assume that there is a bleaching gene, Bl, and a dominant wideband gene Wb which makes the first agouti band much longer. Then: silvers: Bl- Wb-, goldens: bl bl Wb-

– this explains why there are no golden smokes, but does not explain the smokes!

A satisfactory theory for silvers and goldens

- Goldens = brown ticked tabbies + wideband polygenes
- Shaded silvers/chinchillas: brown ticked tabbies + wide-band modifiers + Eraser gene + Bleaching gene
- Silver tabbies: brown tabbies (not ticked/agouti) + wide-band modifiers + Eraser gene + Bleaching gene
- Smokes: non-agouti + Eraser gene + Bleaching gene