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2011.

1866. Proposed by Sadi Abu-Saymeh and Mowaffaq Hajja, Mathematics Department,
Yarmouk University, Irbid, Jordan.

Let ABC be a triangle, and L and M points on AB and AC, respectively, such that
AL = AM. Let P be the intersection of BM and CL. Prove that PB = PC if and only if
AB = AC.

1867. Proposed by Ángel Plaza and César Rodrı́guez, Department of Mathematics,
Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.

Let f : [0, 1] → R be a continuous function such that
∫ 1

0 f (t) dt = 1 and n a positive
integer. Show that

1. there are distinct c1, c2, . . . , cn in (0, 1) such that

f (c1)+ f (c2)+ · · · + f (cn) = n,

2. there are distinct c1, c2, . . . , cn in (0, 1) such that

1

f (c1)
+

1

f (c2)
+ · · · +

1

f (cn)
= n.

1868. Proposed by Donald E. Knuth, Stanford University, Stanford, CA.

Let n ≥ 2 be an integer. Remove the central (n − 2)2 squares from an (n + 2) ×
(n + 2) array of squares. In how many ways can the remaining squares be covered
with 4n dominoes?
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1869. Proposed by Marian Duncă, Bucharest, Romania.

Let f : R→ R be an increasing and concave-down function such that f (0) = 0. Prove
that if x , y, and z are real numbers, and a, b, and c are the lengths of the sides of a
triangle, then

(x − y)(x − z) f (a)+ (y − x)(y − z) f (b)+ (z − x)(z − y) f (c) ≥ 0.

1870. Proposed by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Calculate
∞∑

n=1

∞∑
m=1

m(ζ(n + m)− 1)

(n + m)2
,

where ζ denotes the Riemann Zeta function.

Quickies

Answers to the Quickies are on page 156.

Q1009. Proposed by Paolo Perfetti, Dipartimento di Matematica, Università degli
studi di Tor Vergata Roma, Roma, Italy.

Let Hn =
∑n

k=1 1/n. Using the fact that
∑
∞

k=1 1/k2
= π 2/6, calculate

∑
∞

k=1 Hk/k3.

Q1010. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA.

Let f : [0, 1] → R be a continuous real valued function with a continuous nonzero
derivative on (0, 1]. Prove that if f (0) = 0, then lim infx→0+ f (x)/ f ′(x) = 0.

Solutions

Every integer in the list divides the sum April 2010

1841. Proposed by H. A. ShahAli, Tehran, Iran.

Let n ≥ 3 be a natural number. Prove that there exist n pairwise distinct natural num-
bers such that each of them divides the sum of the remaining n − 1 numbers.

I. Solution by Northwestern University Math Problem Solving Group, Evanston, IL.
The list of numbers 1, 2, 3 · 20, 3 · 21, 3 · 22, . . . , 3 · 2n−3 has the required property.

The sum of all those numbers is

1+ 2+ 3 · 20
+ 3 · 21

+ 3 · 22
+ · · · + 3 · 2n−3

= 3+ 3 · (2n−2
− 1) = 3 · 2n−2.

Each number in the list divides the total sum, and that implies the desired condition.

II. Solution by Michael Goldenberg, The Ingenuity Project, Baltimore Polytechnic
Institute, Baltimore, MD; and Mark Kaplan, The Community College of Baltimore
County, Baltimore, MD.

We choose natural numbers mk given by

mk =

{
n!
(

1
k! −

1
(k+1)!

)
= n! · k

(k+1)! if 1 ≤ k ≤ n − 1,

n! · 1
n! = 1 if k = n.
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If n ≥ 3, then m1 > m2 > · · · > mn−1 > mn . In addition

S =
n∑

k=1

mk = n!

((
1−

1

2!

)
+

(
1

2!
−

1

3!

)
+ · · · +

(
1

(n − 1)!
−

1

n!

)
+

1

n!

)
= n!,

and S − mk is a multiple of mk for 1 ≤ k ≤ n.

Editor’s Note. Harris Kwong and Nicholas Singer (independently) proved that the only
solution for n = 3 is (a, 2a, 3a). Erwin Just observes that this problem is a direct
Corollary of a problem proposed by him. [Problem 1504, this MAGAZINE 70 (1997),
300.] Reiner Martin and Dmitry Fleischman (independently) provide an insight into a
way of classifying all possible solutions which can be completed as follows: If m1 <

m2 < · · · < mn satisfy that the sum S = m1 + m2 + · · · + mn is divisible by all mk ,
say S = mk · dk , then d1 > d2 > · · · > dn and

n∑
i=1

mk

S
=

n∑
i=1

1

dk
= 1.

Reciprocally, if the positive integers d1 > d2 > · · · > dn satisfy that
∑n

i=1(1/dk) = 1,
then by letting S be the least common multiple of the dk and S = mk · dk , it follows
that mk divides S and

n∑
i=1

S

dk
=

n∑
i=1

mk = S.

Thus the classification problem is equivalent to finding all possible partitions of 1 into
n different fractions with numerator 1 (called Egyptian Fractions). The first solution
is obtained from the partition 1 = 1/2+ 1/3+ 1/6 by recursively dividing by 2 and
adding 1/2 on both sides. In fact the greedy algorithm can complete any partial sum
1/m1 + 1/m2 + · · · + 1/mk < 1 to a partition 1 = 1/m1 + 1/m2 + · · · + 1/ml for
some l > m. However the complete classification is still an open problem. Some ref-
erences and related open problems can be found in R. K. Guy, Unsolved Problems in
Number Theory, Springer-Verlag, 1981, pp. 87–93; and in V. Klee and S. Wagon, Old
and New Unsolved Problems in Plane Geometry and Number Theory, Mathematical
Association of America, 1991, pp. 175–177 and 206–208.

Also solved by Con Amore Problem Group (Denmark); Michel Bataille (France); Brian D. Beasley; D. Bed-
narchak; Gareth Bendall; Jany C. Binz (Switzerland); Lataianu Bogdan (Canada); Paul Budney; Robert Cal-
caterra; Michael J. Caulfield; Hyeong Min Choe (Korea) and Jong Jin Park (Korea); John Christopher; CMC
328; Tim Cross (United Kingdom); Chip Curtis; Robert L. Doucette; Toni Ernvall (Finland); Dmitry Fleischman;
Fullerton College Math Association; Stefania Garasto (Italy); David Getling (Germany); Eugene A. Herman;
Chris Hill; Dan Jurca; Peter Hohler (Switzerland); Bianca–Teodora Iordache (Romania); Omran Kouba (Syria);
Victor Y. Kutsenok; Harris Kwong; Elias Lampakis (Greece); Kathleen E. Lewis (Republic of the Gambia); Daniel
Lucas, Rachel White, and Meghan Loid; Reiner Martin (Germany); Shoeleh Mutameni; Pedro Perez; Ángel Plaza
(Spain); Henry Ricardo; R. Keith Roop-Eckart; Daniel M. Rosenblum; Joel Schlosberg; Harry Sedinger; Seton
Hall Problem Solving Group; Achilleas Sinefakopoulos (Greece); Nicholas C. Singer; David Stone and John
Hawkins; Taylor University Problem Solving Group; Marian Tetiva (Romania); Texas State Problem Solvers
Group; Bob Tomper; Michael Vowe (Switzerland); Stanley Xiao (Canada); and the proposer.

Perpendicular hexagon skewers April 2010

1842. Proposed by Bianca-Teodora Iordache, student, National College “Carol I,”
Craiova, Romania.

In the interior of a square of side-length 3 there are several regular hexagons whose
sum of perimeters is equal to 42 (the hexagons may overlap). Prove that there are two
perpendicular lines such that each one of them intersects at least five of the hexagons.
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Solution by CMC 328, Carleton College, Northfield, MN.
We first claim that when we project a regular hexagon of side length a onto a line its

shortest possible projection is a
√

3. To see this, observe that we can inscribe a circle
of radius a

√
3/2 within the hexagon, and the projection of the hexagon is greater than

or equal to the inscribed circle’s projection.
Now let us project all the hexagons onto an edge of the square. Since the sum of

all the hexagons’ perimeters is 42, the sum of all of their side-lengths is 7. Hence,
their projection length on one edge of the square is at least 7

√
3 ≈ 12.124. Since all

of these projections are onto a segment of length 3, and 3(4) < 7
√

3, there must be
some region in the segment covered by at least five of the projections. Pick a point in
this region and draw a line through this point perpendicular to the edge; this line must
intersect at least five hexagons. By carrying out this construction for two perpendicular
edges of the square, we get the desired two perpendicular lines.

Also solved by Robert Calcaterra, David Getling (Germany), Victor Y. Kutsenok, Charles Martin, and the
proposer.

Permutations with specified left-to-right maxima April 2010

1843. Proposed by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.

For every positive integer n, let Sn denote the set of permutations of the set Nn =

{1, 2, . . . , n}. For every 1 ≤ j ≤ n, the permutation σ ∈ Sn has a left to right maximum
(LRM) at position j , if σ(i) < σ( j)whenever i < j . Note that all σ ∈ Sn have a LRM
at position 1. Let M be a subset of Nn . Prove that the number of permutations in Sn

with LRMs at exactly the positions in M is equal to∏
k∈Nn\M

(k − 1),

where an empty product is equal to 1.

Solution by Robert Calcaterra, University of Wisconsin-Platteville, Platteville, WI.
If 1 /∈ M , the assertion is clearly true so we may assume that 1 ∈ M . Let α be

the permutation in Sn having its LRMs at exactly the positions in M . We determine
the number of ways to choose α. Let P(x, y) be the number of permutations of y
elements selected from a set of x elements, which is known to be x !/(x − y)!; and
let m1,m2, . . . ,mk = 1 be the elements of M in descending order. Observe that n
must occupy position m1 in α. Then there are P(n − 1, n − m1) ways to choose the
elements of Nn that occupy positions m1 + 1 to n in α. Of the elements of Nn that have
not yet been assigned a position in α, the largest one must be assigned to position m2.
Consequently, we may now choose the elements of Nn that occupy positions m2 + 1 to
m1 − 1 in P(m1 − 2,m1 −m2 − 1) different ways. Repeating this argument, there are

k∏
j=1

P(m j−1 − 2,m j−1 − m j − 1)

ways to choose α, where m0 = n + 1. Since (m j − 2)!/(m j − 1)! = 1/(m j − 1) for
0 < j < k, this product may be reduced to

(n − 1)!
/ k−1∏

j=1

(m j − 1).

This expression is equivalent to the product stated in the problem.
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Also solved by Con Amore Problem Group (Denmark), Chip Curtis, Robert L. Doucette, Joe McKenna
(Ghana), Joel Schlosberg, John H. Smith, Marian Tetiva, Stanley Xiao (Canada), and the proposer. There was
one incorrect submission.

A geometric inequality for the secants of a triangle April 2010

1844. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania.

Let ABC be a triangle with a = BC, b = AC, and c = AB. Prove that

a2
+ b2
+ c2

2 · Area(ABC)
≥ sec

A

2
+ sec

B

2
+ sec

C

2
.

Solution by Felipe Pérez (student), Facultad de Fı́sica, P. Universidad Católica de
Chile, Santiago, Chile.

Let s = (a + b + c)/2 be the semiperimeter of the triangle ABC. Using the Half-
angle Formula and the Law of Cosines gives

cos2

(
A

2

)
=

1

2
(cos A + 1) =

1

2

(
b2
+ c2
− a2
+ 2bc

2bc

)
=

s(s − a)

bc
.

Thus

sec
A

2
=

√
bc

s(s − a)
, sec

B

2
=

√
ac

s(s − b)
, and sec

C

2
=

√
ab

s(s − c)
.

Then by Heron’s Formula for the area of 4ABC,

sec
A

2
+ sec

B

2
+ sec

C

2

=

√
bc

s(s − a)
+

√
ac

s(s − b)
+

√
ab

s(s − c)

=

√
b(s − c) · c(s − b)+

√
a(s − c) · c(s − a)+

√
a(s − b) · b(s − a)

√
s(s − a)(s − b)(s − c)

=

√
b(s − c) · c(s − b)+

√
a(s − c) · c(s − a)+

√
a(s − b) · b(s − a)

Area(ABC)
.

Using the Arithmetic Mean–Geometric Mean Inequality (the positiveness of each fac-
tor is justified by triangle inequality) gives√

b(s − c) · c(s − b) ≤
b(s − c)+ c(s − b)

2
,

and equivalent inequalities for the other two summands. Finally,

sec
A

2
+ sec

B

2
+ sec

C

2
≤

1

2 · Area(ABC)

(
s(2a + 2b + 2c)− (2ab + 2ac + 2bc)

)
≤

1

2 · Area(ABC)
(a2
+ b2
+ c2).

The equality holds if and only if a = b = c.
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Also solved by George Apostolopoulos (Greece); Dionne Bailey, Elsie Campbell, and Charles Diminnie;
Michel Bataille (France); Scott H. Brown; Minh Can; Tim Cross (United Kingdom); Chip Curtis; Marian Dincă;
Robert L. Doucette; John N. Fitch; A. Bathi Kasturiarachi; Omran Kouba (Syria); Elias Lampakis (Greece); Kee-
Wai Lau (China); Shoeleh Mutameni; Pedro Perez; Henry Ricardo; Achilleas Sinefakopoulos (Greece); Michael
Vowe (Switzerland); Haohao Wang and Jerzy Woydylo; John Zerger; and the proposer.

Integrating a square-fractional-reciprocal function April 2010

1845. Proposed by Albert F. S. Wong, Temasek Polytechnic, Singapore.

Evaluate ∫ 1

0

{
1

x

}2

dx,

where {α} = α − bαc denotes the fractional part of α.

Solution by Allen Stenger, Alamogordo, NM.
Make the change of variable x = 1/t to get∫ 1

0

{
1

x

}2

dx =
∫
∞

1

{t}2

t2
=

∞∑
k=1

∫ k+1

k

(t − k)2

t2
dt .

Then expand the integrands to get∫ k+1

k

(t − k)2

t2
dt =

∫ k+1

k

(
1−

2k

t
+

k2

t2

)
dt

= 1− 2k ln(k + 1)+ 2k ln k +
k2

k(k + 1)

= 2+ 2 ln(k + 1)−
(
2(k + 1) ln(k + 1)− 2k ln k

)
−

1

k + 1
.

Adding these terms from k = 1 to n − 1, noting the telescoping sum, and rearranging
gives

n−1∑
k=1

∫ k+1

k

(t − k)2

t2
dt = 2n − 2+ 2 ln(n!)− 2n ln n −

n−1∑
k=1

1

k + 1

= 2

(
ln(n!)−

(
n +

1

2

)
ln n + n

)
−

(
n∑

k=1

1

k
− ln n

)
− 1

= 2 ln

(
n!

nn+1/2e−n

)
−

(
n∑

k=1

1

k
− ln n

)
− 1.

Stirling’s formula implies that the first term goes to ln(2π) as n→∞. From the defi-
nition of Euler’s constant γ the second term goes to −γ , so the final result is∫ 1

0

{
1

x

}2

dx = ln(2π)− γ − 1 ≈ 0.260661.

Editor’s Note. Some readers pointed out that the problem of calculating the Rie-
mann sums of this integral appeared as Problem 11206, Amer. Math. Monthly 114
(2007), 928–929. Ovidiu Furdui mentions that evaluating

∫ 1
0 {k/x}2 dx for a posi-

tive integer k was published as Problem U27, Mathematical Reflections 6 (2006).
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Paolo Perfetti, Dmitry Fleischman, and Joel Schlosberg (independently) obtained
1 + 2

∑
∞

r=2(−1)r+1ζ(r)/(r + 1) as the answer for this problem. Ovidiu Furdui con-
sidered the more general problem of finding

∫ 1
0 {1/x}k dx for integer k ≥ 1. He showed

that the answer in this case is
∑
∞

r=1(ζ(r + 1)− 1)/
(k+r

r

)
.

Also solved by Armstrong Problem Solvers, Michel Bataille (France), Dennis K. Beck, Lataianu Bogdan
(Canada), Paul Budney, Robert Calcaterra, Hongwei Chen, John Christopher, Chip Curtis, Richard Daquila,
Paul Deiermann, Robert L. Doucette, Dmitry Fleischman, Jet Foncannon, Ovidiu Furdui (Romania), Michael
Goldenberg and Mark Kaplan, G.R.A.20 Problem Solving Group (Italy), J. A. Grzesik, Timothy Hall, Gerald
A. Heuer, Dan Jurca, Kamil Karayilan (Turkey), Omran Kouba (Syria), Harris Kwong, Elias Lampakis (Greece),
David P. Lang, Longxiang Li (China) and Luyuan Yu (China), Masao Mabuchi (Japan), Charles Martin, Reiner
Martin (Germany), Kim McInturff, Matthew McMullen, Peter McPolin (Northern Ireland), Paolo Perfetti (Italy),
Ángel Plaza (Spain), R. Keith Roop-Eckart, Ossama A. Saleh and Terry J. Walters, Joel Schlosberg, Edward
Schmeichel, Seton Hall Problem Solving Group, Nicholas C. Singer, David Stone and John Hawkins, Marian
Tetiva (Romania), Bob Tomper, Jan Verster (Canada), Francisco Vial (Chile), Michael Vowe (Switzerland), Stan
Wagon, Haohao Wang and Jerzy Woydylo, Vernez Wilson and Farley Mawyer, John Zacharias, and the proposer.
There were two incorrect submissions.

Answers

Solutions to the Quickies from page 151.

A1009. The answer is π4/72. For n and k positive integers,

1

n(k + n)
=

1

k

(
1

n
−

1

(k + n)

)
.

Thus

1

n2(k + n)2
=

1

k2n2
+

1

k2(k + n)2
−

2

k3

(
1

n
−

1

k + n

)
.

It follows by symmetry that

π4

36
=

∞∑
k=1

1

k2

∞∑
n=1

1

n2
=

∞∑
k=1

∞∑
n=1

1

k2n2

=

∞∑
k=1

∞∑
n=1

(
1

n2(k + n)2
−

1

k2(k + n)2
+

2

k3

(
1

n
−

1

k + n

))

=

∞∑
k=1

2

k3

∞∑
n=1

(
1

n
−

1

k + n

)
=

∞∑
k=1

2

k3

k∑
n=1

1

n
=

∞∑
k=1

2

k3
Hk .

The result follows after dividing by 2 both sides of the equality.

A1010. Because f ′ satisfies the Intermediate Value Property, f ′ is either always pos-
itive or always negative on (0, 1]. Replacing if necessary f by − f , we can assume f ′

is positive on (0, 1]. Then f is also positive on (0, 1] and thus

lim inf
x→0+

f (x)

f ′(x)
≥ 0.

Suppose lim infx→0+ f (x)/ f ′(x) > 0 and let A be a positive number such that A <
lim infx→0+ f (x)/ f ′(x). Then there exists δ, 0 < δ < 1, such that f (x)/ f ′(x) > A for
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0 < x < δ. Therefore f ′(x)/ f (x) < 1/A for 0 < x < δ and thus

ln

(
f (δ)

f (x)

)
=

∫ δ

x

f ′(t)

f (t)
dt ≤

∫ δ

x

1

A
dt =

1

A
(δ − x).

It follows that f (x) ≥ f (δ)e(x−δ)/A for 0 < x < δ. Taking limits we get

f (0) = lim
x→0+

f (x) ≥ f (δ)e−δ/A > 0.

This is a contradiction, therefore lim infx→0+ f (x)/ f ′(x) = 0.

To appear in College Mathematics Journal, May 2011

Articles

How Your Philosophy of Mathematics Impacts Your Teaching!
by Bonnie Gold

Newton’s Radii, Maupertuis’ ArcLengths, and Voltaire’s Giant,
by Andrew J. Simoson

Guards, Galleries, Fortresses, and the Octoplex, by T. S. Michael
Random Breakage of a Rod into Unit Lengths, by Joe Gani and Randall Swift
An Arithmetic Metric, by Diego Dominici
Counting Subgroups in a Direct Product of Finite Cyclic Groups,

by Joseph Petrillo
An Application of Group Theory to Change Ringing,

by Michele Intermont and Aileen Murphy
The Easiest Lights Out Game, by Bruce Torrence

Classroom Capsules

Using Continuity Induction, by Dan Hathaway

Book Reviews

Crossing the Equal Sign, by Marion Deutsche Cohen,
reviewed by Annalisa Crannell


