ROME-MOSCOW SCHOOL 2016

COURSE: SELF-SIMILAR ENERGIES ON FRACTALS Roberto Peirone

Problems

1) Let A be the line-segment in \mathbb{R}^2 with end-points (1, -1) and (-1, 1), and let B_r be the circle with center at the origin and radius r > 0, in formula

$$B_r = \{(x, y) \in \mathbf{R}^2 : x^2 + y^2 = r^2\}.$$

Compute, for every r > 0, $d_H(A, B_r)$ where d_H denotes the Hausdorff distance and \mathbf{R}^2 is equipped with the usual euclidean distance.

2) Consider the Sierpinski Gasket (short S.G.), let P_1, P_2, P_3 be as usually the vertices of the triangle, i.e., the fixed points of the contractions. Find $u: V^{(0)} \to \mathbf{R}$ such that, if v denotes $H_{1,E}(u)$, we have $v(P_2) = 0$, $v(P_{12}) = 2$, $v(P_{23}) = 3$. Here, as usual, $P_{12} = \psi_1(P_2) = \psi_2(P_1), P_{23} = \psi_2(P_3) = \psi_3(P_2).$

3) Prove that in S.G. there exists a function $v: V^{(1)} \to \mathbf{R}$ such that $v(P_1) = 0, v(P_2) = 1, v(P_3) = 2$, and $S_1(\overline{E})(v) = 10^{30}$.

Here, $\overline{E}(u) = (u(P_2) - u(P_1))^2 + (u(P_3) - u(P_1))^2 + (u(P_3) - u(P_2))^2$. Recall that

$$S_1(E)(v) = \sum_{i=1}^k E(v \circ \psi_i)$$

where k = 3 in the case of the Gasket.

4) Let $V^{(0)}$ be a set with at least two elements,

$$V^{(0)} = \{P_1, P_2, ..., P_N\}, \quad N \ge 2.$$

Let $E \in \mathcal{D}$. Recall that this means that E is a form for functions from $V^{(0)}$ to **R** of the type

$$E(u) = \sum_{1 \le j_1 < j_2 \le N} c_{j_1, j_2}(E) \left(u(P_{j_2}) - u(P_{j_2}) \right)^2$$

where $c_{j_1,j_2}(E)$ are the *coefficients* of E, and they are required to be non-negative and we can assume $c_{j_1,j_2}(E) = c_{j_2,j_1}(E)$ for $j_1 \neq j_2$.

Determine for what $N \geq 3$ the form E only depends on the values $E(\chi_{\{P_j\}})$ at the functions of the form $\chi_{\{P_j\}}$, j = 1, ..., N, where χ denotes the characteristic function. The phrase only depends on the values $E(\chi_{\{P_j\}})$ of course means that, if $E_1, E_2 \in \mathcal{D}$ and $E_1(\chi_{\{P_i\}}) = E_2(\chi_{\{P_i\}})$ fo every j = 1, ..., N, then $E_1 = E_2$.

NOTE: I exclude the case N = 2 since it is trivial.

5) (Difficult) Suppose we are in the class of fractals considered in the course. Suppose E is an eigenform with positive coefficients and eigenvalue $\rho > 0$, that is, $E \in \mathcal{D}$, $c_{j_1,j_2}(E) > 0$ for all $j_1, j_2 = 1, ..., N$ with $j_1 \neq j_2$, and $\Lambda(E) = \rho E$. Let, as usual $T_{j,E}(u) = H_{1,E}(u) \circ \psi_j$ for j = 1, ..., N and

$$u \in \mathbf{R}_{j}^{V^{(0)}} =: \left\{ u \in \mathbf{R}^{V^{(0)}} : u(P_{j}) = 0 \right\}$$

Recall that $T_{j,E} : \mathbf{R}_{j}^{V^{(0)}} \to \mathbf{R}_{j}^{V^{(0)}}$ is a positive linear operator. Let l_{j} be its positive eigenvalue given by the Perron-Frobenius theorem.

Prove that $l_j = \rho$.