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ABSTRACT
We study a Plurality Consensus process in which each of
n anonymous agents of a communication network supports
an initial opinion (a color chosen from a finite set [k]) and,
at every time step, he can revise his color according to a
random sample of neighbors. The goal (of the agents) is to
let the process converge to the stable configuration where
all nodes support the plurality color. It is assumed that
the initial color configuration has a sufficiently large bias s,
that is, the number of nodes supporting the plurality color
exceeds the number of nodes supporting any other color by
an additive value s.

We consider a basic model in which the network is a clique
and the update rule (called here the 3-majority dynamics) of
the process is that each agent looks at the colors of three ran-
dom neighbors and then applies the majority rule (breaking
ties uniformly at random).

We prove a tight bound on the convergence time which
grows as Θ(k logn) for a wide range of parameters k and
n. This linear-in-k dependence implies an exponential time-
gap between the plurality consensus process and the median
process studied in [7].

A natural question is whether looking at more (than three)
random neighbors can significantly speed up the process. We
provide a negative answer to this question: in particular, we
show that samples of polylogarithmic size can speed up the
process by a polylogarithmic factor only.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity
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1. INTRODUCTION
We consider a communication network in which each of n

anonymous nodes supports an initial opinion (a color chosen
from a finite set [k]). In the Plurality Consensus problem,
it is assumed that the initial color configuration has a suf-
ficiently large bias s towards a fixed color m ∈ [k] - that
is, the number cm of nodes supporting the plurality color
(in short, the initial plurality size) exceeds the number cj of
nodes supporting any other color j by an additive value s -
and the goal is to design an efficient fully-distributed proto-
col that lets the network converge to the plurality consensus,
i.e., to the monochromatic configuration in which all nodes
support the plurality color.

Reaching plurality consensus in a distributed system is a
fundamental problem arising from several areas such as Dis-
tributed Computing [7, 16], Communication Networks [17],
and Social Networks [6, 15, 14]. Inspired by some recent
works analyzing simple updating-rules (called dynamics) for
this problem [1, 7], we study a discrete-time, synchronous
process in which, at every time step, each of the n anony-
mous nodes revises his color according to a (small) random
sample of neighbors. We consider one of the simplest mod-
els, in which the network is a clique, and the updating rule,
called here 3-majority dynamics, is that each node samples
at random three neighbors, and picks the majority color
among them (breaking ties uniformly at random). Let us
remark that looking at less than three random neighbors
would yield a coloring process that may converge to a mi-
nority color with constant probability even for k = 2 and
large initial bias (i.e. s = Θ(n)).

In [7], a tight analysis of a 3-neighbor dynamics for the
median problem on the clique has been presented: the goal
here is to converge to a stable configuration where all nodes
support a value which is a “good” approximation of the me-
dian of the initial color configuration. It turns out that, in
the binary case (i.e k = 2), the median problem is equivalent
to the majority consensus one and the 3-input dynamics for
the median is equivalent to the 3-majority dynamics: as a
result, they obtain, for any bias s > c

√
n logn for some con-

stant c > 0, an optimal bound Θ(logn) on the convergence
time of the 3-majority dynamics for the binary case of the
problem considered in this paper.
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However, for any k > 3, it is easy to see that the two
problems above are different from each other (the median
may be very different from the plurality) and, thus, the two
dynamics are different from each other as well. Moreover,
the analysis in [7] - strongly based on the properties of the
median function - cannot be adapted to bound the conver-
gence time of the 3-majority dynamics. The role of param-
eter k = k(n) in the convergence time of this dynamics is
currently unknown and, more generally, the existence of effi-
cient dynamics reaching plurality consensus for k > 3 is left
as an important open issue in [2, 7, 1].

Our contribution. We present a new analysis of the 3-
majority dynamics in the general case (i.e. for any k ∈ [n]).
Our analysis shows that, with high probability (in short,
w.h.p.1), the process converges to plurality consensus within

time O
(

min{k, (n/ logn)1/3} logn
)

, provided that the ini-

tial bias is s > c
√

min{2k, (n/ logn)1/3}n logn, for some
constant c > 0.

Our proof technique is accurate enough to get another
interesting form of the above upper bound that does not de-
pend on k. Indeed, when the initial plurality size cm is larger
than n/λ(n) for any function λ(n) such that 3 6 λ(n) <

√
n

and s >
√
λ(n)n logn, then the process converges in time

O (λ(n) logn) w.h.p., no matter how large k is. Hence, when

cm > n/polylog(n) and s >
√
npolylog(n), the convergence

time is polylogaritmic.
We then show that our upper bound is tight for a wide

range of the input parameters. When k 6 (n/ logn)1/4,
we in fact prove a lower bound Ω(k logn) on the conver-
gence time of the 3-majority dynamics starting from some
configurations with bias s 6 (n/k)1−ε, for an arbitrarily
small constant ε > 0. Observe that this range largely in-
cludes the initial bias required by our upper bound when
k 6 (n/ logn)1/4. So, the linear-in-k dependence of the
convergence time cannot be removed for a wide range of the
parameter k.

Our analysis also provides a clear picture of the 3-majority
dynamic process. Informally speaking, the larger the initial
value of cm is (w.r.t. n), the smaller the required initial bias
s and the faster the convergence time are. On the other
hand, our lower-bound argument shows, as a by-product,
that the initial plurality size cm needs Ω(k logn) rounds just
to increase from n/k + o(n/k) to 2n/k.

We then prove a general negative result: in the consid-
ered distributed model, there is no dynamics with at most
3 inputs (but the majority one) that w.h.p. converges to
plurality consensus starting from any initial bias s such that
s = o(n). In other words, not only there is no hope to find
a 3-input dynamics faster than k logn but the 3-majority
dynamics is the only one getting the plurality consensus, no
matter in how much time. Rather interestingly, by com-
paring the O(logn) bound for the median [7] to our nega-
tive results for the plurality on the same distributed model,
we get an exponential time-gap between the the task of
computing the median and that of computing the plurality
(this happens for instance when k = na, for any constant
0 < a < 1/4).

1We say that a family of events {En}n holds w.h.p. if a
positive constant c exists such that P (En) > 1 − n−c for
sufficiently large n

A natural question arising from our results is whether a
(slightly) larger random sample of neighbors might lead to
a significant speed-up of the convergence time to plurality
consensus. We provide a negative answer to this question.
We consider the generalization of the 3-majority dynamics,
the h-plurality one, where every node, at every time step,
updates his color according to the plurality of the colors
supported by h random neighbors. We prove a lower bound
Ω
(
k/h2

)
on the convergence time of the h-plurality dynam-

ics, for integers k and h such that k/h = O
(
n1/4−ε

)
, where

ε is an arbitrarily-small positive constant. We emphasize
that scalable and efficient protocols must yield low commu-
nication complexity and small node congestion at every time
step. These properties are guaranteed by the h-plurality dy-
namics only when h is small, say h = O(polylog(n)): in this
case, our lower bound says that the resulting speed up is only
polylogarithmic with respect to the 3-majority dynamics.

One motivation for adopting dynamics in reaching (sim-
ple) consensus2 (such as the median dynamics shown in [7])
lies in their provably-good self-stabilizing properties against
dynamic adversary corruptions: it turns out that the 3-
majority dynamics has good self-stabilizing properties for
the plurality consensus problem. More formally, a T -bounded
adversary knows the state of every node at the end of each
round and, based on this knowledge, he can corrupt the
color of up to T nodes in an arbitrary way, just before
the next round starts. In this case, the goal is to achieve
an almost-stable phase where all but at most O(T ) nodes
agree on the plurality value. This “almost-stability” phase
must have poly(n) length, with high probability. Our anal-
ysis implicitly shows that the 3-majority dynamics guaran-
tees the self-stabilization property for plurality consensus
for any k and for T = o(s/k) if the initial bias is s >
c
√

min{2k, (n/ logn)1/3}n logn, for some constant c > 0.

Related works. The plurality consensus problem arises in
several applications such as distributed database manage-
ment where data redundancy or replication and majority
rules are used to manage the presence of unknown faulty
processors [7, 16]. The objective here is to converge to the
version of the data supported by the majority of the ini-
tial distributed copies (it is reasonable that a sufficiently
large majority of the nodes are not faulty and thus have
the correct data). Another application comes from the task
of distributed item ranking where every node initially has
ranked some item and the goal is to agree on the rank of
the item based on the initial majority opinion [17]. Further
applications of majority updating rules in networks can be
found in [10, 16].

The results most related to our contribution are those
in [7] which have been already discussed above. Several vari-
ants of the binary majority consensus have been studied in
different distributed models [2, 15]. As for the population
model, where there is only one random node-pair interac-
tion per round (so the dynamics are strictly sequential), the
binary case on the clique has been analyzed in [2] and their
generalization to multivalued case (k > 3) does not con-
verge to plurality even starting from large bias s = Θ(n).
The polling rule (a somewhat sequential-interaction version
of the 1-majority dynamics) has been extensively studied on

2In the (simple) consensus problem the goal is to reach any
stable monochromatic configuration (any color is accepted)
starting from any initial configuration.
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several classes of graphs (see [16]). More expensive and com-
plex protocols have been considered in order to speed up the
process. For instance, in [11], a protocol for the sequential-
interaction model is presented that requires Θ(log n) mem-
ory per node and converges in time O(n7). Other proto-
cols for the sequential-interaction model have been analyzed
in [5, 12] (with no time bound). In [1, 3, 8, 17], the polling
rule (with 1 more auxiliary state) on the continuous-time
population model is proved to converge in O(n logn) ex-
pected time only for k = Θ(1) and s = Θ(n): even assuming
such strong restrictions, the bound does not hold in “high
probability” and, moreover, their analysis, based on real-
valued differential-equations, do not work for the discrete-
time parallel model considered in this paper. Protocols for
specific network topologies and some “social-based” commu-
nities have been studied in [1, 8, 14, 17].

Roadmap of the paper. Section 2 formalizes the basic
concepts and gives some preliminary results. Section 3 is de-
voted to the proofs of the upper bounds on the convergence
time of the 3-majority dynamics. In Section 4, the lower
bounds for the studied dynamics are described. Section 5
discusses some interesting open questions such as the tight-
ness of the initial bias. In the Appendix A, we recall some
standard results (such as Chernoff-Bernstein’s inequalities)
and provide a useful probabilistic result on Markov chains
(we have not found its explicit proof in the literature). Due
to lack of space, several proofs are omitted. They can be
found in the full-version of the paper [4].

2. PRELIMINARIES
A k-color distribution (for short k-cd) is any k-tuple c =

(c1, . . . , ck) such that cjs are non negative integers and∑
j=1,...,k cj = n. A color m is said to be a plurality color

of c if cm > cj for every other color j ∈ [k] \ {m}. We say
that c is s-biased if a color m exists such that cm > cj + s
for every other color j ∈ [k] \ {m}.
The 3-majority protocol works as follows:

At every time step, every node picks three nodes
uniformly at random (including itself and with
repetitions) and recolors itself according to the
majority of the colors it sees. If it sees three dif-
ferent colors, it chooses the first one.

Clearly, in the case of three different colors, choosing the
second or the third one would not make any difference. The
same holds even if the choice would be uniformly at random
among the three colors.

For any time step t and for any j ∈ [k], let Cj,t be the r.v.
counting the number of nodes colored j at time step t and let
Ct = (C1,t, . . . , Ck,t) denote the random variable indicating
the k-cd at time t of the execution of the 3-majority protocol.

For every j ∈ [k] let µj(c) be the expected number of
nodes with color j at the next step when the current k-cd
is c, i.e. µj(c) = E [Cj,t+1 |Ct = c]. The proof of the next
lemma is a straightforward computation.

Lemma 2.1 (Next expected coloring). For any k-
cd c and for every j ∈ [k], it holds that

µj(c) = cj

1 +
1

n2

ncj − ∑
h∈[k]

c2h



3. UPPER BOUNDS FOR 3-MAJORITY
In this section, we show an upper bound on the conver-

gence time of the 3-majority dynamics that holds with high
probability. To this aim, we need to consider the following
r.v.s For a k-cd c, we define

m(c) = max
h∈[k]

ch

M(c) = {j ∈ [k] | cj = m(c)}

s(c) =

{
m(c)−maxh∈[k]−M(c) ch if |M(c)| = 1

0 otherwise

α(c) =
(n−m(c))s(c)

n2

γ(c) =
n ·m(c)−

∑
h∈[k] c

2
h

n2
− α(c)

The next lemma gives some useful inequalities relating the
above quantities.

Lemma 3.1. For any k-cd c, the followings hold

a) 0 6 s(c) 6 m(c)− n−m(c)
k−1

b) 0 6 α(c) 6 min{ s(c)
n
, 1

4
}

c) 0 6 γ(c) 6 1
8

The above lemma allows us to give a new expression for µj(c)
that will be useful in the proofs of Lemmas 3.3 and 3.4.

Lemma 3.2. Let c be any k-cd. Let m be any color in
M(c) and let ` ∈ [k]−{m} be such that c` = maxh∈[k]−{m} ch.

a) µm(c) = cm(1 + γ(c) + α(c))

b) ∀j ∈ [k]−M(c) µj(c) = cj
(

1 + γ(c) + α(c)− m(c)−cj
n

)
c) µ`(c) = c`

(
1 + γ(c) + α(c)− s(c)

n

)
We now evaluate the increasing rate of the bias of a k-cd
during a generic step of the 3-majority dynamics.

Lemma 3.3 (increasing rate of the bias). Let c be
any k-cd such that M(c) = {m} for some m ∈ [k]. Then it
holds that, for any j ∈ [k]−m,

P

(
Cm,t+1 − Cj,t+1 6 s(c)

(
1 + γ(c) +

cmα(c)

2s(c)

) ∣∣∣∣Ct = c

)
6 exp

(
−
cmα(c)2

25

)
(1)

This is the key-lemma to get our upper bound on the con-
vergence time so, before giving its proof, let us provide a
rough but useful evaluation of Eq. 1 for a fixed setting of

parameters k and s, i.e., k = n1/4 and s = c
√
n3/4 logn,

for some constant c > 0. Consider the “initial phase” of
the coloring process where cm is still Θ(n/k) = Θ(n3/4)
and s is still o(cm). Then, by replacing the values of α(c)
and γ(c) in Eq. 1 (and doing some simple calculations),
we get that the bias s increases by a factor 1 + Θ(1/k)
w.h.p. This is exactly what we need to get the upper bound
O(k logn) on the convergence time. The bound in Eq. 1
has a more complex, general shape since it must work for
the whole process and it must lead to our stronger bound

O
(

min{k, (n/ logn)1/3} logn
)

.
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Proof. (of Lemma 3.3)
In the sequel we tacitly assume that all probabilities, ex-
pected values and random variables are conditioned to“Ct =
c”. For any fixed color j ∈ [k] − {m}, we consider the the
random variable

Z = Cm,t+1 − Cj,t+1

It holds that

E [Z] = µm(c)− µj(c)

= cm(1 + γ(c) + α(c))− cj
(

1 + γ(c) + α(c)−
m(c)− cj

n

)
(from Lemma 3.2)

= (cm − cj)(1 + γ(c)) + cmα(c) + cj

(
m(c)− cj

n
− α(c)

)
= (cm − cj)(1 + γ(c)) + cmα(c) + cj

(
m(c)− cj

n
− α(c)

)
> (cm − cj)(1 + γ(c)) + cmα(c) + cj

(
s(c)

n
− α(c)

)
(since m(c)− cj > s(c))

> (cm − cj)(1 + γ(c)) + cmα(c)

(since
s(c)
n

> α(c) by Lemma 3.1)

> s(c)

(
1 + γ(c) +

cmα(c)

s(c)

)
(2)

(since cm − cj > s(c))

We now introduce, for any i ∈ [n], the random variable

Zi =

 1 if node i gets color m at time t+ 1
−1 if node i gets color j at time t+ 1

0 otherwise

Clearly, the Zi’s are independent and it holds that

Z =
∑
i∈[n]

Zi

In order to apply the Bernstein’s Inequality (Lemma A.3)
to −Z, we firstly observe that

−Zi − E [−Zi] 6 2 ,

so we can choose b = 2. As for the variance σ2 of −Z, we
have that

σ2 = Var [−Z] =
∑
i∈[n]

Var [−Zi]

=
∑
i∈[n]

(E
[
(−Zi)2]− E [−Zi]2) =

∑
i∈[n]

(E
[
Z2
i

]
− E [Zi]

2)

6
∑
i∈[n]

E
[
Z2
i

]
=
∑
i∈[n]

(P (Zi = 1) + P (Zi = −1))

= µm(c) + µj(c)

6 2µm(c) (since µj(c) 6 µm(c) by Lemma 3.2)

= 2cm(1 + γ(c) + α(c))

6 2cm(1 +
1

8
+

1

4
) (from Lemma 3.1)

6 3cm (3)

For the sake of convenience, let us define

P = P

(
Z < s(c)

(
1 + γ(c) +

cmα(c)

2s(c)

))

Now we conclude the proof by applying the Bernstein’s In-
equality

P = P

(
−Z > −s(c)

(
1 + γ(c) +

cmα(c)

s(c)

)
+
cmα(c)

2

)
6 P

(
−Z > E [−Z] +

cmα(c)

2

)
(since E [−Z] 6 −s(c)

(
1 + γ(c) + cmα(c)

s(c)

)
by Ineq. 2)

6 exp

−
(
cmα(c)

2

)2

2σ2 + (4/3) cmα(c)
2


(from Lemma A.3 with b = 2 and λ = cmα(c)

2
)

6 exp

(
− c2mα(c)2

24cm + (8/3)cmα(c)

)
(from Ineq. 3)

6 exp

(
−cmα(c)2

25

)
(since α(c) 6 1/4 by Lemma 3.1)

The next lemma derives from Lemmas 3.1 and 3.2.

Lemma 3.4. Let c be any k-cd such that M(c) = {m} for
some m ∈ [k]. It holds that

P

(
Cm,t+1 6 cm

(
1 + γ(c) +

α(c)

2

) ∣∣∣∣Ct = c

)
6 exp

(
−
cmα(c)2

11

)
Proof. Let

Pm = P

(
Cm,t+1 6 cm

(
1 + γ(c) +

α(c)

2

) ∣∣∣∣Ct = c

)
and let

δm =
α(c)

2(1 + γ(c) + α(c))

From Lemma 3.1, γ, α > 0, and thus 0 < δm < 1. Thanks
to the Chernoff bound we have that

Pm = P (Cm,t+1 6 (1− δm)µm |Ct = c) (from Lemma 3.2)

6 exp

(
−δ

2
mµm

2

)
(by the Chernoff bound)

= exp

(
−1

2

(
α(c)

2(1 + γ(c) + α(c))

)2

cm(1 + γ(c) + α(c))

)

= exp

(
− cmα(c)2

8(1 + γ(c) + α(c))

)
6 exp

(
−cmα(c)2

11

)
(since γ(c) + α(c) 6 3/8 by Lemma 3.1)

We now use Lemmas 3.3 and 3.4 in order to get some bounds
on the increasing rate of the bias: they will lead to a bound
on convergence time that does not depend on k.

Lemma 3.5 (large plurality and large bias). Let
c be any k-cd such that M(c) = {m} for some m ∈ [k]. For
any value λ with 0 < λ 6 2/3, if λn 6 cm 6 (2/3)n and

s(c) > 22
√

(1/λ)n logn, then, for every j ∈ [k]− {m},

P

(
Cm,t+1 − Cj,t+1 6 s(c)

(
1 +

λ

6

) ∣∣∣∣Ct = c

)
6

1

n2
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and

P (Cm,t+1 6 cm |Ct = c) 6
1

n2

Proof. From Lemma 3.3 we have that

P

(
Cm,t+1 − Cj,t+1 6 s(c)

(
1 + γ(c) +

cmα(c)

2s(c)

) ∣∣∣∣Ct = c

)
6 exp

(
−
cmα(c)2

25

)
(4)

It holds that

cmα(c)

2s(c)
=
cm(n− cm)

2n2
>
λn(n/3)

2n2
>
λ

6
(5)

As regards the exponent of the probability bound of Ineq. 4
we get

cmα(c)2

25
=
cm(n− cm)2s(c)2

25n4

>
cms(c)

2

225n2
(since cm 6 (2/3)n)

>
λn484(1/λ)n logn

225n2

(by the hypothesis bounds on cm and s(c))

> 2 logn (6)

By combining Ineq.s 4, 5, and 6 we obtain the first proba-
bility bound. As for the second bound, from Lemma 3.4 it
holds that

P (Cm,t+1 6 cm |Ct = c)

6 P

(
Cm,t+1 6 cm

(
1 + γ(c) +

α(c)

2

) ∣∣∣∣Ct = c

)
6 exp

(
−cmα(c)2

11

)
and, from Ineq. 6,

cmα(c)2

11
>
cmα(c)2

25
> 2 logn

For anym ∈ [k], let Cm,t = n−Cm,t denote the random vari-
able counting the number of nodes with colors different from
m at time t. For any k-cd c and for any m ∈ [k], we also con-
sider its expected value µm(c) = E

[
Cm,t+1

∣∣Ct = c
]
, and

provide the following bounds

Lemma 3.6. For any k-cd c and for any m ∈ M(c), it
holds that

(n− cm)

(
1− c2m

n2

)
6 µm(c) 6 (n− cm)

(
1− s(c)cm

n2

)
We now use the above bounds to show that, when the bias
of a k-cd is at least n/3, then the number of nodes that do
not have the plurality color decreases at an exponential rate.

Lemma 3.7 (very-large plurality). Let c be any k-
cd such that s(c) > n/3 for some m ∈ [k]. If n − cm >
4
√
n logn, then

P

(
Cm,t+1 >

17

18
(n− cm)

∣∣∣∣Ct = c

)
6

1

n2

If n− cm < 4
√
n logn, then

P
(
Cm,t+1 > 0

∣∣Ct = c
)
6

1
5
√
n

P
(
Cm,t+1 > 4

√
n logn

∣∣Ct = c
)
6

1

n2

We now exploit Lemmas 3.5 and 3.7 in order to prove the
main result of this section.

Theorem 3.8 (the general upper bound). Let λ be
any value such that 3 6 λ <

√
n. If c is a k-cd such

that, for some m ∈ [k], M(c) = {m}, cm > n/λ, and
s(c) > 22

√
λn logn, then the 3-majority protocol converges

to color m in O (λ logn) time w.h.p.

Proof. For the sake of convenience, let

Λ = 22
√
λn logn

Notice that Λ 6 22n3/4√logn. In order to make use of
Lemma A.4 (see the appendix), we consider the Markov
chain determined by the 3-majority protocol. The states
of the Markov chain are all the possible assignments of the
k colors to the n nodes. For any assignment a, let c(a) de-
note the k-cd determined by a and let cj(a) denote any its
component. Let Xt be the random variable that is the state
at time t given that X0 is a state whose k-cd is c. Define

T1 =

⌊
1 +

log n
3Λ

log
(
1 + 1

6λ

)⌋

T2 =

⌊
1 +

3

2 log(18/17)
log

n3/4

logn

⌋
For any i = 1, . . . , T1, let

Ai ={
a

∣∣∣∣ cm(a) >
2

3
n ∨(

M(c(a)) = {m} ∧ cm(a) >
n

λ
∧ s(c(a)) > Λ

(
1 +

1

6λ

)i−1
)}

Observe that X0 ∈ A1 and A1 ⊇ A2 ⊇ · · · ⊇ AT1 . For any
i = 1, . . . , T2, let

AT1+i ={
a

∣∣∣∣∣M(c(a)) = {m} ∧ s(c(a)) >
n

3
∧ n− cm(a) 6

2n

3

(
17

18

)i−1
}

and let

AT1+T2+1 ={
a
∣∣∣M(c(a)) = {m} ∧ s(c(a)) >

n

3
∧ n− cm(a) < 4

√
n logn

}
AT1+T2+2 = {a | cm(a) = n}

It is easy to verify that AT1 ⊇ AT1+1 ⊇ AT1+2 ⊇ · · · ⊇
AT1+T2 ⊇ AT1+T2+1 ⊇ AT1+T2+2. Thus it holds that A1 ⊇
· · · ⊇ AT1+T2+2. Taking into account that cm(a) > (2/3)n
implies s(c(a)) > n/3, from Lemma 3.5 we have that, for
any i = 1, . . . , T1,

P (Xt ∈ Ai |Xt−1 ∈ Ai) > 1− 1

n2
and

P (Xt ∈ Ai+1 |Xt−1 ∈ Ai) > 1− 1

n2
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From Lemma 3.7 we get, for any i = T1 + 1, . . . , T1 + T2

P (Xt ∈ Ai |Xt−1 ∈ Ai) > 1− 1

n2
and

P (Xt ∈ Ai+1 |Xt−1 ∈ Ai) > 1− 1

n2

moreover

P (Xt ∈ AT1+T2+1 |Xt−1 ∈ AT1+T2+1) > 1− 1

n2
and

P (Xt ∈ AT1+T2+2 |Xt−1 ∈ AT1+T2+1) > 1− 1
5
√
n

Hence, by applying Lemma A.4 with ε = 1/n2 and ν =
1/ 5
√
n with ` = 10, we obtain

P (X10T ∈ AT |X0 ∈ A1) > 1− T

(
10

n2
+

(
1
5
√
n

)10
)

= 1− 11T

n2

It easy to see that T < n/11. Thus in time 10T the 3-
majority protocol converges to color m w.h.p. Now we
bound T in a more precise way. It holds that

T = T1 + T2 + 2

6 4 +
log n

3Λ

log
(
1 + 1

6λ

) +
3

2 log(18/17)
log

n3/4

logn

6 4 + 27 logn+
log n

66
√
λn logn

log
(
1 + 1

6λ

)
6 28 logn+

log
(

1
66

√
n

λ logn

)
1/(6λ)

1+1/(6λ)

(since log(1 + x) > x
1+x

)

6 26 logn+ 7λ log(n/λ)

6 10λ logn

Observation 3.9. Let us consider a dynamic adversary
(see the Introduction) that can change the color of up to T
nodes at the beginning of each time step and assume T =
o(λ · s). Then, Theorem 3.8 still holds since the impact of
such a T -bounded adversary is negligible in the growth of the
bias s (this can be easily seen in the proof of Lemma 3.5).

For instance, when k 6 2 3

√
n

logn
, then the tolerance of the

3-majority dynamics is T = o(s/k).

The next three corollaries of Theorem 3.8 address three rel-
evant special cases. Corollary 3.10 is obtained by setting

λ = min
{

2k, 3

√
n

logn

}
and it provides a bound which does

not assume any condition on cm.

Corollary 3.10. If c is a k-cd such that, for some m ∈
[k], M(c) = {m} and

s(c) > 22

√
min

{
2k, 3

√
n

logn

}
n logn

then, the 3-majority protocol converges to color m in

O
(

min
{

2k, 3

√
n

logn

}
logn

)
time w.h.p.

Corollaries 3.11 and 3.12 are obtained by setting λ = poly log(n)
and λ = Θ(1), respectively. They require some lower bounds
on cm.

Corollary 3.11. If c is a k-cd such that, for some m ∈
[k], M(c) = {m}, cm > n/ log` n, and s(c) > 22

√
n log`+1 n,

then the 3-majority protocol converges to color m in
O(log`+1 n) time w.h.p.

Corollary 3.12. If c is a k-cd such that, for some m ∈
[k], M(c) = {m}, cm > n/β, and s(c) > 22

√
βn logn, for

some constant β > 3, then the 3-majority protocol converges
to color m in O(logn) time w.h.p.

4. LOWER BOUNDS
This section is organized in 3 subsections: in the first one,

we prove a lower bound on the convergence time of the 3-
majority dynamics; in the second subsection, we show that
3-majority is essentially the only 3-input dynamics that con-
verges to plurality consensus; finally, in the third subsection,
we provide a lower bound on the convergence time of the h-
plurality dynamics for h > 3.

4.1 Lower bound for 3-majority
In this section we show that if the 3-majority dynamics

starts from a sufficiently balanced configuration (i.e., at the
beginning there are n/k±o(n/k) nodes of every color) then it
will take Ω(k logn) steps w.h.p. to reach one of the absorb-
ing configurations where all nodes have the same color. In
what follows, all events and random variables thus concern
the Markovian process yielded by the 3-majority dynamics.

In the next lemma we show that if there are at most n/k+b
nodes of a specific color, where b is smaller than n/k, then
at the next time step there are at most n/k + (1 + 3/k)b
nodes of that color w.h.p.

Lemma 4.1. Let the number of colors k be such that k 6
(n/ logn)1/4, let b be any number with k

√
n logn 6 b 6 n/k,

and let {Xt} be the sequence of random variables where Xt
is the number of a specific color at time t. If Xt = n/k + a
for some a 6 b then Xt+1 6 n/k + (1 + 3/k)b w.h.p.; more
precisely, for any a 6 b it holds that

P

(
Xt+1 >

n

k
+

(
1 +

3

k

)
b

∣∣∣∣ Xt =
n

k
+ a

)
6

1

n2

Proof. For a color h and time step t, let Ch,t be the
random variable indicating the number of nodes with color
h, let Ct = (C1,t, . . . , Ck,t) be the random variable indicating
the coloring at time t. For any coloring c = (c1, . . . , ck) with∑k
h=1 ch = n and any color h ∈ [k], the expected value of

the number of nodes colored h at time t+ 1 given Ct = c is
(see Lemma 2.1)

E [Ch,t+1 | Ct = c] = ch,t

(
1 +

ch,t
n
− 1

n2

k∑
j=1

c2j

)

Observe that, since
∑k
j=1 cj = n, from Jensen inequality

(see Lemma A.2) it follows that (1/n2)
∑k
j=1 c

2
j > 1/k. Hence,

if Xt is the random variable counting the number of nodes
of one specific color, then we can give an upper bound on
the expectation of Xt+1 that depends only on Xt and not
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on the whole coloring at time t, namely

E [Xt+1 |Xt] 6 Xt

(
1 +

Xt
n
− 1

k

)
If we condition on the number of nodes of that specific color
being of the form n/k + a for some a 6 b we get

E [Xt+1 |Xt = n/k + a] 6
(n
k

+ a
)(

1 +
n/k + a

n
− 1

k

)
=

n

k
+

(
1 +

1

k

)
a+

a2

n

6
n

k
+

(
1 +

1

k

)
b+

b2

n

6
n

k
+

(
1 +

2

k

)
b

where in the last two inequalities we used that a 6 b and
b 6 n/k.3 Since Xt can be written as a sum of n indepen-
dent Bernoulli random variables, from Chernoff bound (see
Lemma A.1) we thus get that for every a 6 b it holds that

P

(
Xt+1 >

n

k
+

(
1 +

3

k

)
b |Xt = n/k + a

)
6 e−2(b/k)2/n

6
1

n2

where in the last inequality we used that b > k
√
n logn.

Let us say that a coloring c = (c1, . . . , ck) ∈ {0, 1, . . . , n}k

with
∑k
h=1 ch = n is monochromatic if there is an h ∈ [k]

such that ch = n. In the next theorem we show that if
we start from a sufficiently balanced coloring, then the 3-
majority protocol takes Ω(k logn) time steps w.h.p. to reach
a monochromatic coloring.

Theorem 4.2. Let Ct be the random variable indicating
the coloring at time t according to the 3-majority proto-
col and let τ = inf{t ∈ N : Ct is monochromatic} be the
random variable indicating the first time step such that Ct
is monochromatic. If the initial number of colors is k 6
(n/ logn)1/4 and the initial coloring is C0 = (c1, . . . , ck) with

max{ch : h = 1, . . . , k} 6 n
k

+
(
n
k

)1−ε
then τ = Ω(k logn)

w.h.p.

A full-detailed proof is given in the full-version [4], we here
provide its main argument.

Idea of the proof. For a color h ∈ [k] let us denote the
difference Ch,t−n/k as the positive unbalance. In Lemma 4.1
we proved that, as long as the positive unbalance of a color
is smaller than n/k, this will increase by a factor smaller
than (1 + 3/k) at every time step (w.h.p.). Hence, if a color
starts with a positive unbalance smaller than (n/k)1−ε, then
it will take Ω(k logn) time steps to reach an unbalance of
n/k w.h.p. By union bounding on all the colors, we can get
the stated lower bound.

It may be worth noticing that what we actually prove in
Theorem 4.2 is that Ω(k logn) time steps are required in
order to go from a configuration where the majority color
has at most n/k + (n/k)1−ε nodes to a configuration where
it has 2n/k colors.

3Notice that the inequality holds in particular for negative
a as well

4.2 A negative result for 3-input dynamics
In order to prove that dynamics that differ from the ma-

jority ones do not solve plurality consensus, we first give
some formal definitions of the dynamics we are considering.

Definition 4.3 (Dh(k) protocols). An h-dynamics
is a synchronous protocol where at each time step every node
picks h random neighbors (including itself and with repeti-
tion) and recolors itself according to some deterministic rule
that depends only on the colors it sees. Let Dh(k) be the
class of h-dynamics and observe that a dynamics P ∈ Dh
can be specified by a function

f : [k]h → [k]

such that f(x1, . . . , xh) ∈ {x1, . . . , xh}. Where f(x1, . . . , xh)
is the color chosen by a node that sees the (ordered) sequence
(x1, . . . , xh) of colors.

In the class D3(k), there is a subset M3 of equivalent pro-
tocols called 3-majority dynamics having two key-properties
described below: the clear-majority and the uniform one.

Definition 4.4 (clear-majority property). Let
(x1, x2, x3) ∈ [k]3 be a triple of colors. We say that (x1, x2, x3)
has a clear majority if at least two of the three entries have
the same value. A dynamics P ∈ D3(k) has the clear-
majority property if whenever its f sees a clear majority
it returns the majority color.

Given any 3-input dynamics function f(x1, x2, x3), for any
triple of distinct colors r, g, b ∈ [k], let Π(r, g, b) be the subset
of permutations of the colors r, g, b and define the following
“counters”:

δr = |{(z1, z2, z3) ∈ Π(r, g, b), s.t. f(z1, z2, z3) = r}|
δg = |{(z1, z2, z3) ∈ Π(r, g, b), s.t. f(z1, z2, z3) = g}|
δb = |{(z1, z2, z3) ∈ Π(r, g, b), s.t. f(z1, z2, z3) = b}|

Observe that for any 3-inputs dynamics it must hold δg +
δr + δb = 6.

Definition 4.5 (uniform property). A dynamics P ∈
D3(k) has the uniform property if, for any triple of distinct
colors r, g, b ∈ [k], it holds that δr = δg = δb (= 2).

Informally speaking, the clear-majority and the uniform prop-
erties provide a clean characterization of those dynamics
that are good solvers for plurality consensus. This fact is
formalized in the next definitions and in the final theorem.

Definition 4.6 (3-majority dynamics). A protocol
P ∈ D3(k) belongs to the class M3 ⊂ D3(k) of 3-majority
dynamics if its function f(x1, x2, x3) has the clear-majority
and the uniform properties.

Definition 4.7 ((s, ε)-plurality consensus solver).
We say that a protocol P is an (s, ε)-solver (for the plurality
consensus problem) if for every initial s-biased coloring c,
when running P, with probability at least 1 − ε there is a
time step t by which all nodes gets the plurality color of c.

Let us observe that, by definition of h-dynamics, any monochro-
matic configuration is an absorbing state of the relative
Markovian process. Moreover, the smaller s and ε the better
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an (s, ε)-solver is; in other words, if a dynamics is an (s, ε)-
solver then it is also an (s′, ε′)-solver for every s′ > s and
ε′ > ε. In Section 3, we showed that any dynamics in M3

is a
(

Θ(
√

min{2k, (n/ logn)1/3}n logn),Θ(1/n)
)

-solver in

D3. We can now state the main result of this section.

Theorem 4.8 (properties for good solvers). (a) If
a protocol P is an (n/4, 1/4)-solver in D3 then its f must
have the clear-majority property.

(b) A constant η > 0 exists such that, if P is an (η·n, 1/4)-
solver, then its f must have the uniform property.

The above theorem also provides the clear reason why some
dynamics can solve consensus but cannot solve plurality con-
sensus in the non-binary case. A relevant example is the
median dynamics studied in [7]: it has the clear-majority
property but not the uniform one.

For readability sake, we split the proof of the above theo-
rem in two technical lemmas: in the first one, we show the
first claim about clear majority while in the second lemma
we show the second claim about the uniform property.

Lemma 4.9 (clear majority). If a protocol P ∈ D3

is an (n/4, 1/4)-solver, then it chooses the majority color
every time there is a triple with a clear majority.

Proof. For every triple of colors (x1, x2, x3) ∈ [k]3 that
has a clear majority, let us define δ(x1, x2, x3) to be 1 if
protocol P behaves like the majority protocol over triple
(x1, x2, x3) and 0 otherwise. Consider an initial configura-
tion with only two colors, say red (r) and blue (b), with cr
red nodes and cb = n− cr blue nodes. Let us define ∆r and
∆b as follows

∆r = δ(r, r, b) + δ(r, b, r) + δ(b, r, r)

∆b = δ(b, b, r) + δ(b, r, b) + δ(r, b, b)

We can write the probability that a node chooses color red
as

p(r) =
(cr
n

)3

+
(cr
n

)2 cb
n
·∆r +

(cb
n

)2 cr
n

(3−∆b)

=
cr
n3

(
c2r + cb (cr∆r − cb∆b) + 3c2b

)
(7)

Observe that for a majority protocol we have that ∆r =
∆b = 3. In what follows we show that if this is not the case
then there are configurations where the majority color does
not increase in expectation. We distinguish two cases, case
∆r 6= ∆b and case ∆r = ∆b.

Case ∆r 6= ∆b: Suppose w.l.o.g. that ∆r < ∆b, and observe
that since they have integer values it means ∆r 6 ∆b − 1.
Now we show that, if we start from a coloring where the red
color has the majority of nodes, the number of red nodes
decreases in expectation. By using ∆r 6 ∆b − 1 in (7) we
get

p(r) 6
cr
n3

(
c2r + cb(cr − cb)∆b − crcb + 3c2b

)
(8)

If the majority of nodes is red then cr − cb is positive, and
since ∆b can be at most 3 from (8) we get

p(r) 6
cr
n3

(
c2r + 2crcb

)
(9)

Finally, if we put cr = n/2 + s and cb = n/2 − s, for some
positive s, in (9), we get that

p(r) 6
cr
n3

(
3

4
n2 + (n− s)s

)
6
cr
n

(10)

Case ∆r = ∆b: When ∆r = ∆b, observe that if the protocol
is not a majority protocol then it must be ∆r = ∆b 6 2.
Hence, if we start again from a configuration where cr > cb,
from (7) we get that

p(r) 6
cr
n3

(
c2r + 2cb(cr − cb) + 3c2b

)
=
cr
n

(11)

In both cases, for any protocol P that does not behave like a
majority protocol on triples with a clear majority, if we name
Xt the random variable indicating the number of red nodes
at time t, from (10) and (11) we get that E [Xt+1 |Xt] 6 Xt,
hence Xt is a supermartingale. Now let τ be the random
variable indicating the first time the chain hits one of the
two absorbing states, i.e.

τ = inf{t ∈ N : Xt ∈ {0, n}}

Since P (τ <∞) = 1 and all Xt’s have values bounded be-
tween 0 and n, from the martingale stopping theorem4 we
get that E [Xτ ] 6 E [X0]. If we start from a configuration
that is n/4-unbalanced in favor of the red color, we have that
X0 = n/2 + n/8, and if we call ε is the probability that the
process ends up with all blue nodes we have that E [Xτ ] =
(1 − ε)n. Hence it must be (1 − ε)n 6 n/2 + n/8 and the
probability to end up with all blue nodes is ε > 5/8 > 1/4.
Thus the protocol is not a (n/4, 1/4)-solver.

Lemma 4.10 (uniform property). A constant η > 0
exists such that, if P is an (ηn, 1/4)-solver, then its f must
have the uniform property.

Proof. Thanks to the previous lemma, we can assume
that f has the clear-majority property but a triple (r, g, b)
exists such that δr < max{δg, δb}. Let us start the process
with the following initial configuration having only the above
3 colors and then show that the process w.h.p. will not
converge to the plurality color r.

c = (cr, cg, cb),

where cr =
n

3
+ s, cg = n/3, cb =

n

3
− s

with s = Θ(
√
n logn)

We consider the“hardest”case where δr = 1: the case δr = 0
is simpler since in this case, no matter how the other δ′s are
distributed, it is easy to see that the r.v. cr will decrease
exponentially to 0 starting from the above configuration.

- Case δr = 1, δg = 3, and δb = 2 (and color-symmetric
cases). Starting from the above initial configuration, we can
compute the probability p(r) = P (Xv = r |C = c) that a
node gets the color r.

p(r) =
( cr
n

)3
+ 3

( cr
n

)2 n− cr
n

+
crcgcb

n3

=
n+ 3s

3n3

((n
3

+ s
)2

+ 3
(n

3
+ s
)(2

3
n− s

)
+
(n

3

)(n
3
− s
))

After some easy calculations, we get

p(r) =
8

27

(
1 +O

( s
n

))
As for p(g), by similar calculations, we obtain the following
bound

4See e.g. Chapter 17 in [13] for a summary of martingales
and related results
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p(g) =
10

27

(
1−O

(
s2

n2

))
From the above two equations, we get the following bounds
on the expectation of the r.v.’s Xr and Xg counting the
nodes colored with r and g, respectively (at the next time
step).

E [Xr |C = c] 6
8

27
n+O(s) and

E [Xg |C = c] >
10

27
n−O

(
s2

n

)
By a standard application of Chernoff’s Bound, we can prove
that, if s 6 ηn for a sufficiently small η > 0, the initial value
cr will w.h.p. decreases by a constant factor, going much
below the new plurality cg. Then, by applying iteratively
the above reasoning we get that the process will not converge
to r, w.h.p.

- Case δr = 1, δg = 4, and δb = 1 (and color-symmetric
cases). In this case it is even simpler to show that w.h.p.,
starting from the same initial configuration considered in the
previous case, the process will not converge to color r.

4.3 A lower bound for h-plurality
In Subsection 4.1, we have shown that the 3-majority pro-

tocol takes Θ(k logn) time steps w.h.p. to converge in the
worst case. A natural question is whether by using the h-
plurality protocol, with h slightly larger than 3, it is possible
to significantly speed-up the process. We prove that this is
not the case.

Let us consider a set of n nodes, each node colored with
one out of k colors. The h-plurality protocol works as fol-
lows:

At every time step, every node picks h nodes uni-
formly at random (including itself and with rep-
etitions) and recolors itself according to the plu-
rality of the colors it sees (breaking ties u.a.r.)

Let j ∈ [k] be an arbitrary color, in the next lemma we
prove that, if the number of j-colored nodes is smaller than
2n/k and if k/h = O(n(1−ε)/4), then the probability that
the number of j-nodes increases by a factor (1 + Θ(h2/k))
is exponentially small.

Lemma 4.11. Let j ∈ [k] be a color and let Xt be the
random variable counting the number of j-colored nodes at
time t. If k/h = O(n(1−ε)/4), then for every (n/k) 6 a 6
2(n/k) it holds that

P

(
Xt+1 >

(
1 +

h2

k

)
a |Xt = a

)
6 e−Θ(nε)

Proof. Consider a specific node, say u ∈ [n], let Nj be
the number of j-colored nodes picked by u during the sam-
pling stage of the t-th time step and let Y be the indicator
random variable of the event that node u chooses color j at
time step t+ 1. We give an upper bound on the probability
of the event Y = 1 by conditioning it on Nj = 1 and Nj > 2
(observe that if Nj = 0 node u cannot choose j as its color
at the next time step)

P (Yu = 1) 6 P (Yu = 1 |Nj = 1)P (Nj = 1) + P (Nj > 2)
(12)

Now observe that

• P (Yu = 1 |Nj(u) = 1) 6 1/h since it is exactly 1/h if
all other sampled nodes have distinct colors and it is
0 otherwise;

• P (Nj = 1) 6 h a
n

since it can be bounded by the prob-
ability that at least one of the h samples gives color
j;

• P (Nj > 2) 6
(
h
2

)
a2

n2 since it is the probability that a
pair of sampled nodes exist with the same color j.

Hence, in (12) we have that

P (Y = 1) 6
a

n
+
h2

2
· a

2

n2

Thus, for the expected number of j-colored nodes at the
next time step we get

E [Xt+1 |Xt = a] 6 a+
h2

2n
a2 = a

(
1 +

h2

2n
a

)
6 a

(
1 +

h2

k

)
where in the last inequality we used the hypothesis a 6
2(n/k). Since Xt+1 is a sum of n independent Bernoulli
random variables, from Chernoff bound (Lemma A.1 with
λ = ah2/k), we finally get

P

(
Xt+1 > a

(
1 + 2

h2

k

)
|Xt = a

)
6 exp

(
−2(ah2/k)2

n

)
6 exp (−Ω(nε))

where in the last inequality we used a > n/k and k/h =

O(n(1−ε)/4).

By adopting a similar argument to that used for proving
Theorem 4.2, we can get a lower bound Ω(k/h2) on the
completion time of the h-plurality.

Theorem 4.12. Let Ct be the random variable indicating
the coloring at time t according to the h-plurality protocol
and let τ = inf{t ∈ N : Ct is monochromatic}. If the initial
coloring is C0 = (c1, . . . , ck) with max{cj : j = 1, . . . , k} 6
3
2
· n
k

then τ = Ω(k/h2) w.h.p.

Proof. Since in the initial coloring the plurality color has
a 6 (3/2)(n/k) nodes, from Lemma 4.11 it follows that the
number of nodes supporting the plurality color increases at a
rate smaller than (1+2h2/k) with probability exponentially
close to 1. This easily implies a recursive relation of the
form Xt+1 6

(
1 + 2h2/k

)
Xt which, in turn, gives

Xt 6
(
1 + 2h2/k

)t
X0 6

(
1 + 2h2/k

)t 3

2
· n
k

We thus have that

(3/2)

(
1 +

2h2

k

)t
6 2 for t 6

k

h2
log(4/3)

5. OPEN QUESTIONS
A general open question on the plurality consensus prob-

lem is whether an efficient dynamics exists that achieves
plurality consensus in polylogarithmic time for any function
k = k(n). By efficient dynamics for our adopted model,
we mean any dynamics that requires small (i.e. O(logn))
memory, small random samples, and small message size.
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A more specific question about our simple distributed
model is to explore the case in which the initial bias s is
smaller than the lower bound assumed in our analysis (i.e.

s > c
√

min{2k, (n/ logn)1/3}n logn). Notice that when k is
polylogarithmic, we required a bias which is only a polylog-
arithmic factor larger than the standard deviation Ω(

√
n):

the latter is a lower bound for the initial bias to converge
(w.h.p.) to the plurality color. As for larger k, we cannot
derive any stronger bound on the required bias, however, in
the full-version of the paper [4], we show that there are initial

configurations with bias s = O(
√
kn) for which the initial

bias decreases in a single round with constant probability.
This result implies that, when the initial bias s is “slightly”
smaller than“ours”, the process may be non-monotone w.r.t.
the bias function s(t). On the contrary, the fact that s(t) is
an increasing function played a key-role in the proof of our
upper bound. So, under such a weaker assumption, if any
upper bound similar to ours might be proved then a much
more complex argument (departing from ours) seems to be
necessary.

In this work, we were mainly interested in deriving suffi-
cient conditions under which the h-plurality dynamics con-
verges in polylogarithmic time. A further interesting open
question is to derive conditions on the parameters k, s, and
h under which this dynamics converges very fast, i.e., in
sublogarithmic time.
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APPENDIX
A. USEFUL BOUNDS

Lemma A.1 (Chernoff bounds). Let X =
∑n
i=1 Xi

where Xi’s are independent Bernoulli random variables and
let µ = E [X]. Then,

1. For any 0 < δ 6 4, P (X > (1 + δ)µ) < e−
δ2µ
4 ;

2. For any δ > 4, P (X > (1 + δ)µ) < e−δµ;

3. For any λ > 0, P (X > µ+ λ) 6 e−2λ2/n.

Lemma A.2 (Jensen inequality). Let φ : R → R be
a convex function and x1, . . . xk ∈ R be k real numbers, then

φ

(
1

k

k∑
i=1

xi

)
6

1

k

k∑
i=1

φ(xi)

Lemma A.3 (Bernstein inequality [9]). Let the ran-
dom variables X1, ..., Xn be independent with Xi−E [Xi] 6 b
for each i ∈ [n]. Let X =

∑
iXi and let σ2 =

∑
i σ

2
i be the

variance of X. Then, for any λ > 0,

P (X > E [X] + λ) 6 exp

(
− λ2

2σ2(1 + bλ/3σ2)

)
We now provide a useful result on finite Markov chains.

The proof is given in the full-version [4].

Lemma A.4. Let {Xt}t be a finite-state Markov chain
with state space S. If A1, . . . , AT are such that S ⊇ A1 ⊇
A2 ⊇ · · · ⊇ AT and, for any i = 1, . . . , T ,
P (Xt ∈ Ai |Xt−1 ∈ Ai) > 1 − ε and for i < T ,
P (Xt ∈ Ai+1 |Xt−1 ∈ Ai) > 1 − ν where 0 6 ε 6 ν < 1,
then, for any integer ` > 1 it holds that

P (X` T ∈ AT |X0 ∈ A1) > 1− T (` ε+ ν`)

256




