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Introduction. The purpose of this note is to show a relation between the syzygies of
a curve completely embedded by its canonical bundle and the Ext-cohomology of Picard
bundles on its Jacobian. The spirit of the result is to try to interpret geometrically Green’s
conditions Np on the jacobian rather than on the curve. In order to describe the result,
we need some preliminary material and notation:

(a) First order deformations of vector bundles on abelian varieties. Given a vector bundle
F on an abelian variety X there are two obvious ways to deform it: the first one (as
in any variety) is by tensoring it with a line bundle in Pic0X and the second one is
by translating it. So we have the two families of vector bundles {F ⊗ α}α∈Pic0X and
{T ∗

a F}a∈X . Correspondingly, we have the Kodaira-Spencer maps

Φ : H1(OX) → Ext1(F, F ) and Ψ : TX,0 → Ext1(F, F )

(where TX,0 is the tangent space of X at the identity point 0).

(b) Picard bundles. Let C be a curve and L a line bundle of degree d ≥ 2g(C) − 1 on C.
Let P be a Poincaré line bundle on C × Pic0C and let p and q the projections. For us a
Picard bundle will be a vector bundle on Pic0C of the form

EL = q∗(p∗(L)⊗ P).

By Riemann-Roch and Grauert’s theorem, if α ∈ Pic0C parametrizes a line bundle of
degree zero (which, by abuse of language, we will call α too), the fibre EL(α) is H0(L⊗α).
We refer to [Sc],[K1],[Mu],[EL] and references therein for basic results about these bundles.
In particular Kempf [K1] and Mukai [Mu] have shown that the curve C is non-hyperelliptic
if and only if the map

Φ⊕Ψ : H1(OPic0C)⊕ TPic0C,0 → Ext1(EL, EL)

is an isomorphism, i.e. at the first order level, the space of all deformations of EL is the
product of the two families above. The reader is referred to [K1] and [Mu] for more on the
geometric meaning of this result (compare also the end of Section 4 below).

(c) Higher Ext’s. Returning to (a), it turns out that Ext•(F, F ) is naturally a graded
module over the cohomology algebra H•(OX) and the two maps Φ and Ψ are the degree-
one pieces of maps of graded modules

Φ• : H•(OX) → Ext•(F, F ) and Ψ• : TX,0 ⊗H•−1(OX) → Ext•(F, F )
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This is shown in Section 1 below.

(d) Syzygies of canonical curves. Let R =
⊕

i≥0 H0(K⊗i) be the canonical ring of C. It
is naturally a graded module over the polynomial ring S =

⊕
i≥0 Symi(H0(K)). Let us

consider a minimal resolution of R as graded S-module

L• 0 → Eg−2 → Eg−1 → · · · → E1 → E0 → R → 0

where
Ej =

⊕
S(−k)⊕bjk .

The Betti numbers bjk are intrinsic invariants of C so they must be related to the intrinsic
geometry of C. A precise relation of this type has been conjectured by Green ([G]). To
state it let us recall some terminology: one says that C satisfies property N0 if E0 = S
(i.e. b0k = 0 for k 6= 0 and b00 = 1). If K is very ample, this means that the canonical
curve is projectively normal. Next, one says that C satiesfies property N1 if it satisfies N0

and b1k = 0 for k 6= 2. This means that the homogeneous ideal of the canonical curve is
generated by quadrics. Inductively, C is said to satisfy Np if it satisfies Np−1 and moreover
bpk = 0 for k 6= p + 1. In a word, C satisfies Np if the resolution L• is linear up to the
p-th step. In this language Noether’s theorem states that C satisfies N0 if and only if it
is not hyperelliptic, while Petri’s theorem states that if C satisfies N0, then it satisfies N1

if and only if it is not trigonal or isomorphic to a plane quintic. Green conjectures is that
C satisfies Np if and only if the Clifford index of C is stricly greater than p, a statement
recovering the cases p = 0, 1. We refer to [G],[L1],[S],[V1],[V2] for the definition of Clifford
index, discussions and results.

Our purpose here is not to add any evidence to the truth or not of Green’s conjecture, but
just to make a remark about the nature of conditions Np. The result is

Theorem A. Let E be any Picard bundle on Pic0C. Then C satisfies property Np if and
only if the map of graded H•(OPic0C)-modules

Φ• ⊕Ψ• : H•(OPic0C)⊕ (TPic0C,0 ⊗H•−1(OPic0C)) → Ext•(E , E)

is surjective in any degree k such that 1 ≤ k ≤ p + 1.

Actually, a variant of the statement will follow from the proof of Theorem A. More precisely
it will follow that condition Np holds if and only if Extk(E , E) have the expected dimension
for any k such that 1 ≤ k ≤ p + 1. We refer to the beginning of section 4 for details. Since
Ext•(E , E) is self-dual, this implies also that Extk(E , E) has the expected dimension also
for any k such that g−p−1 ≤ k ≤ g−1. In particular, for general curves of genus g, Green’s
conjecture translates to the statement that all the graded components of Ext•(E , E) have
the minimal dimension. It is worth to remark (see [K1] and [Mu], compare also Theorem
2.1 below) that in any case k ∼= H0(OPic0C) ∼= Hom(E , E) (i.e. E is simple) and the map
Φ• ⊕Ψ• is always injective in degree 1.
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To put the result into perspective, let us recall that in the papers [K1] and [K2] are
proved two results, somehow complementary, on the first-order deformations respectively
of of symmetric products C(d) and of Picard bundles E . The first one deals with the
derivative du : TC(d) → u∗TJ(C) of the Abel-Jacobi map u : C(d) → J(C) and states, in
particular, that H1(du) is injective if and only if C satisfies N0. This have been generalized
to higher syzygies by Lazarsfeld in [L2]. The second one is the result about first order
deformations of Picard bundles mentioned in (b) above (proved independentey also by
Mukai in [Mu]). Therefore Theorem A can be seen as the analogue for Picard bundles of
Lazarsfeld’s generalization. (It should also be mentioned that also a part of the statement
of Theorem A in degree two can be found in Kempf’s paper ([K1], Theorem 6.7).

We will work over an algebraically closed field k.

The debt of the present paper to Kempf’s article [1] does not need to be acknowledged.
This note is dedicated to Professor Mario Fiorentini with deep friendship and gratitude.

1. The maps Φ• and Ψ•. Let F be a locally free sheaf an abelian variety X.

(a) There is the canonical isomorphism

Hj(Hom(F, F )) ∼= Extj(F, F ). (1.1)

Thus Extj(F, F ) is naturally a graded H•(OX)-module via cup product. Explicitely, the
map

Φ• : H•(OX) → Ext•(F, F ) (1.2)

is defined considering the omothety map OX → Hom(F, F ) and taking cohomology. Of
course H•(OX) is the exterior algebra Λ•H1(OX). As we said, the degree-one map Φ1 is
the Kodaira-Spencer map of the family of {F ⊗ β}β∈Pic0X .

(b) We have a another map of graded-H•(OX)-modules

Ψ• : TX,0 ⊗H•−1(OX) → Ext•(F, F ) (1.3)

(TX,0 is the tangent space of X at 0) defined as follows. One has the bundle of principal
parts of F : P 1(F ) = p1∗(p∗2F )|∆(2)) (pi are the projections on X ×X and ∆(2) is the first
infinitesimal neighborhood of the diagonal in X ×X). It sits in the canonical extension

0 → E ⊗ Ω1
X → P 1(E) → E → 0 (1.4)

Applying Hom(F, ·) and using that Ω1
X is trivial and isomorphic to Ω1

X,0 ⊗OX , one gets

0 → Ω1
X,0 ⊗Hom(F, F ) → Hom(F, P 1(F )) → Hom(F, F ) → 0 (1.5)

The coboundaries of the short exact sequence (1.5) give a map H•−1(Hom(F, F )) →
T∨

0,X ⊗H•(Hom(F, F )). Composing with (1.2) and contracting one gets Ψ•. As shown in
Sect.8 of [K1], the degree-one map Ψ1 is the Kodaira-Spencer map of the family {T ∗

x F}x∈X ,
where Tx denotes the traslation y 7→ y + x.
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2. Computing Ext•(EL, EL). Let K be the canonical bundle of C and let us consider
the bundle MK , defined by the exact sequence

0 → MK → H0(K)⊗OC → K → 0 (2.1)

Here is the basic computation of the paper:

Theorem 2.1. For any i ≥ 0 there is a canonical exact sequence

0 → H1(
p−1

Λ M∨
K) → Extp(E , E) → H0(

p

Λ M∨
K) → 0 (2.2)

Proof. The method of proof is the one of Kempf’s work [K1]. Here we refine Kempf’s
computations using the general construction of the article [P], where these ideas are applied
to a totally different context.

STEP 1. We will work on C × C × Pic0C. Let us denote pi the three projections and pij

the intermediate projections. Moreover let P be a Poincaré line bundle on C ×Pic0C and
∆ the diagonal in C × C. For any integer k let us consider on C × C × Pic0C the line
bundles

Mk
L+,K⊗L∨− = p∗13(p

∗
1(L)⊗ P)⊗ p∗23(p

∗
2(K ⊗ L)⊗ P∨))⊗ p∗12(OC×C(−k∆)) (2.3)

where P is a Poincaré bundle on C ×X. We have that

H1(M0
L+,K⊗L∨− |C×C×{α}

) = H0(L⊗ α)⊗H1(K ⊗ L∨ ⊗ α∨)

which is, by Serre duality, isomorphic to Hom(H0(L⊗α),H0(L⊗α)). On the other hand,
for any α ∈ Pic0C and i = 0, 2, we have that Hi(M0

L+,K⊗L∨− |C×C×{α}
) = 0 (recall that

deg(L) ≥ 2g(C)− 1). Therefore, by relative duality and Grauert’s theorem, we have that
Rip3∗M

0
L+,K⊗L∨−

∼= Hom(E , E) if i = 1 and zero otherwise. Thus the Leray spectral
sequence of p3 degenerates giving isomorphisms

Hj(Hom(E , E)) ∼= Hj+1(M0
L+,K⊗L∨−) (2.4)

Hence we are reduced to compute the cohomology of M0
L+,K⊗L∨−

. To do that we will
apply the projection p12 onto C × C and study the Leray spectral sequence.

STEP 2. For future reference, let us first record the following key results about duality
between abelian varieties

Theorem 2.2. ([M], p.127 ) Let A be an abelian variety of dimension q, Pic0A the dual
variety and Q a Poincaré line bundle. Then

RkpA∗Q =

{
Hq(OPic0A)⊗O0 for k = q

0 otherwise
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(where O0 is the one-dimensional skyscraper sheaf on the point 0 of A).

Corollary 2.3. ([K1] Cor.2.2) Let T be a variety and π : T → A a morphism. Then we
have functorial isomorphisms

RipT ∗((π × idPic0A)∗(Q)) ∼= T orOA
q−i(OT ,Hq(OPic0A)⊗O0)

(where OT is seen as OA-module via π.)

Corollary 2.3 can be applied to our line bundle Mk
L+,K⊗L∨−

on C ×C ×Pic0C as follows:
let us take A = AlbC, T = C × C and π = d ◦ (a × a), where d : A × A → A is the
difference map (x, y) → x− y and a : C → A is a fixed Albanese (Abel-Jacobi) map. Since
Pic0C = Pic0A and the Poincaré bundle P on C×Pic0C is the pullback via a of a Poincaré
bundle Q on A × Pic0A, i.e. P = (a, idPic0A)∗(Q), it is easily seen that, by the Theorem
of the cube ([M] p.91 ),

p∗13P ⊗ p∗23P∨ ∼= (π × idA∨)∗Q (2.5)

Therefore

Mk
L+,K⊗L∨− = p∗1(L)⊗ p∗2(K ⊗ L∨)⊗ p12

∗(OC×C(−k∆))⊗ (π × idPic0A)∗(Q) (2.6)

Applying Cor.2.2 and projection formula we get

Rip12∗M
k
L+,K⊗L∨−

∼= T orOA
q−i(OC×C ,O0)⊗p∗1(L)⊗p∗2(K⊗L∨)⊗p∗12(OC×C(−k∆)) (2.7)

where OC×C is seen as an OA-module via π and we have made, in order to make the
notation less heavy, the identification Hq(OPic0C) ∼= k. So (2.7) yields that the sheaves
Rhp12∗M

k
L+,K⊗L∨−

are supported on the diagonal ∆ = π−1(0) and in fact

Rip12∗M
k
L+,K⊗L∨−

∼= T orOA
q−i(OC×C ,O0)⊗K⊗k+1 (2.8)

In particular, their cohomology vanishes for j ≥ 2. Therefore we have achieved a first
result: the spectral sequence Hj(Rhp12∗M

k
L+,K⊗L∨−

) ⇒ Hj+h(Mk
L+,K⊗L∨−

) degenerates
as follows

· · ·
δk

j−1→ H1(Rj−1p12∗M
k
L+,K⊗L∨−

) → Hj(Mk
L+,K⊗L∨−

) → H0(Rjp12∗M
k
L+,K⊗L∨−

)
δk

j→
δj→ H1(Rjp12∗M

k
L+,K⊗L∨−

) → Hj+1(Mk
L+,K⊗L∨−

) → H0(Rj+1p12∗M
k
L+,K⊗L∨−

)
δj+1→

(2.9)
Then Theorem 2.1 will follow from the following

Claim. (i) Rjp12∗M
0
L+,K⊗L∨−

= Λj−1M∨
K ; (ii) the connecting maps δk

j in (2.9) are
zero.

STEP 3. Here we will prove (i) of the Claim. Let ∆̃ = ∆ × Pic0C. Since p∗13P ⊗ p∗23P∨|∆̃
is trivial and (p∗13L⊗ pK

23 ⊗ L∨)(−k∆))∆ = K⊗k+1 we have the basic sequences

0 → Mk+1
L+,K⊗L∨−

·∆̃→ Mk
L+,K⊗L∨−

ρk

→ p∗12(∆∗(K⊗k+1)) → 0 (2.10)
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where ∆ means here the diagonal embedding of C into C × C. Applying p12∗ one gets a
long cohomology sequence

· · ·
θi

k→ Ri−1p12∗M
k
L+,K⊗L∨−

→ ΛiH0(K)∨ ⊗∆∗(K⊗k+1) → Rip12∗M
k+1
L+,K⊗L∨−

θi+1
k→ · · ·
(2.11)i,k

(recall that – by duality of abelian varieties – we have that H1(OPic0X) ∼= TPic0(Pic0X),0
∼=

TAlbX,0
∼= H0(K)∨). Applying the (functorial) isomorphism (2.7) to sequences (2.11) we

get the long homology sequence of T or’s

· · · → T orOA
q−i(OC×C ,O0)⊗K⊗k+1 → T orOA

q−i(O∆,O0)⊗K⊗k+1 →

→ T orOA
q−i−1(OC×C ,O0)⊗K⊗k+2 → · · ·

(2.12)

associated to the sequence 0 → OC×C(−(k + 1)∆) ·∆→ OC×C(−k∆) → K⊗k → 0, tensored
with K. Now, since all sheaves are supported on ∆ and since the maps T orOA

h (·∆,O0)
are zero when restricted to ∆, the long sequences (2.11) are in fact chopped into short
sequences

0 → Ri−1p12∗M
k
L+,K⊗L∨− →

q−i+1

Λ H0(K)⊗K⊗k+1 → Rip12∗M
k+1
L+,K⊗L∨−

→ 0. (2.13)

Therefore for i = q we get

Rip12∗M
k
L+,K⊗L∨−

∼= K⊗k+1

proving (i) of the Claim for i = q (since the determinant Λg−1M∨
K is equal to K). Next,

considering i = q − 1, we have the exact sequence

0 → Rq−1p12∗M
k
L+,K⊗L∨− → H0(K)⊗K⊗k+1 → K⊗k+2 → 0 (2.14)

and, via the isomorphism (2.7), the third arrow in (2.14) is the evaluation map H0(K) → K
tensored with K⊗k. Thus

Rq−1p12∗M
k
L+,K⊗L∨−

∼= MK ⊗K⊗k+1 ∼=
q−2

Λ M∨
K ⊗K⊗k (2.15)

where the last isomorphism follows from duality in the exterior algebra and (2.14) is
identified to the exact sequence

0 → MK ⊗K⊗k+1 → H0(K)⊗K⊗k+1 → K⊗k+2 → 0

i.e. our basic sequence (2.1) twisted by K⊗k+1. Arguing inductively one gets in a similar
fashion (compare [K1] Section 6) that

Rip12∗M
k
L+,K⊗L∨−

∼=
q−i

Λ MK ⊗K⊗k+1 ∼= Λi−1M∨
K ⊗K⊗k (2.16)
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and the exact sequences (2.13) are identified with the exact sequences:

0 →
q−i

Λ MK ⊗K⊗k+1 →
q−i

Λ H0(K)⊗K⊗k+2 →
q−i+1

Λ K⊗k+2 → 0 (2.17)

obtained taking exterior products in (2.1) and tensoring with K⊗k. Thus we have proved
(i) of the Claim.

STEP 4. Here we will prove (ii) of the Claim, which will conclude the proof of Theorem
2.1. The proof of (ii) of the Claim will be by descending induction on k. If k is high
enough , so that H1(Λq−iMK ⊗ K⊗k+1) = 0 for any j, (actually it can be shown that
k = 1 suffices) the claim is obvious. To prove the induction step, note that, since the long
cohomology sequences (2.11)i,k are chopped into the short exact sequences (2.13) (i.e.,
written in a different way, (2.17)), the corresponding hypercohomologies degenerate fitting
in a commutative exact diagram

↓0
δk

i−1→ H1(Ri−1
p12 ∗M

k
L+,K⊗L∨−

) → Hi(Mk
L+,K⊗L∨−

) → H0((Ri
p12∗M

k
L+,K⊗L∨−

))
δk

i→

↓ ↓ ↓

0 → H1(Ri−1
p12 ∗(M

k
L+,K⊗L∨− |∆̃

)) →Hi(Mk
L+,K⊗L∨− |∆̃

)→ H0(Ri
p12∗(M

k
L+,K⊗L∨− |∆̃

)) → 0

↓ ↓ ↓

0
δk+1

i→ H1(Ri
p12∗M

k+1
L+,K⊗L∨−

) → Hi+1(Mk+1
L+,K⊗L∨−

)→ H0(Ri+1
p12 ∗M

k+1
L+,K⊗L∨−

)
δk+1

i+1→ 0

↓0
where:
(a) the middle horizontal short exact sequence is given by Künneth formula (recall that
Mk

L+,K⊗L∨∨ = p∗12(∆∗(K⊗k+1)) );
(b) the third horizontal sequence is exact by induction;
(c) the middle vertical exact sequence is the long cohomology sequence of (2.10),
(d) the left and right vertical exact sequence are the cohomology sequences of (2.13) (or,
equivalently, of (2.17)).

Then, by the snake lemma δk
i = 0. Therefore δk

i = 0 for any i and k.

3. Syzygies of canonical curves. Here we will recall some more basic facts – largely due
to Green – about syzygies of canonical curves (again we refer to [G] and [L1] for details).
We keep the notation of (d) in the Introduction:

(a) it is easy to see that in any case bpk = 0 for k 6= p + 1, p + 2, i.e. at each step condition
Np can fail af most by one. This follows e.g. from Castelnuovo-Mumford regularity.

(b) (see e.g. [L1] p.511). We have that bp,p+2 = 0 (i.e. Np holds) if and only if the
following complex K•p is exact in the middle

K•p :
p+1

Λ H0(K)⊗H0(K) →
p

Λ H0(K)⊗H0(K⊗2) →
p−1

Λ H0(K)⊗H0(K⊗3)
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(c) Taking wedge products of sequence (2.1) we get

0 →
p+1

Λ MK ⊗K →
p+1

Λ H0(K)⊗K →
p

Λ MK ⊗K⊗2 → 0. (3.1)

It is easy to see that the fact that the complex K•p is exact means that the map

p+1

Λ H0(K)⊗H0(K) → H0(
p

Λ MK ⊗K⊗2) (3.2)

is surjective, and this is in turn equivalent to h1(Λp+1MK⊗K) =
(

g
p+1

)
(since, as it is easy

to see, (a) yields that H1(ΛpMK ⊗K⊗2) = 0 for any j). Actually, it will more convenient
for us the dual version. Applying Hom(·,K) to (3.1) one gets

0 →
p

Λ M∨
K ⊗K∨ →

p+1

Λ H0(K)∨ ⊗OC →
p+1

Λ M∨
K → 0 (3.3)

Then Np holds if and only if the map H1(ΛpM∨
K⊗K∨) → Λp+1H0(K)∨⊗H1(OC) is injec-

tive. This is equivalent to the fact that the injective map Λp+1H0(K)∨ → H0(Λp+1M∨
K)

is an isomorphism i.e. h0(Λp+1M∨
K) =

(
g

p+1

)
. So Np means that H0(Λp+1M∨

K) has the
minimal possible dimension.

4. Proof of Theorem A. Proposition 2.1 shows already that Hom(E , E) = k and that
Extp(E , E) has the expected dimension if and only if H1(Λp−1M∨

K) and H0(ΛpM∨
K) do,

that is, by Section 3, if and only if C satisfies Np−1 and Np. Moreover, since Np ⇒ Np−1,
we can summarize the above remarks as follows: in any case

dim(Extp(E , E) ≥
(

g

p−1

)
− χ(

p−1

Λ M∨
K) +

(
g

p

)
and we have equality if and only if C satisfies condition Np.

To recover the statement of Theorem A, a few remarks are in order. First of all, by
Theorem 2.1 we have the exact sequence

0 → H1(
•−1

Λ M∨
K) → Ext•(E , E) → H0(

•
Λ M∨

K) → 0 (4.1)

Let us recall that we have a canonical identification

H1(OC) ∼= T0,Pic0C (4.2)

and a canonical identification of algebras

•
Λ H0(K)∨ ∼= H•(OPic0C) (4.3)

(given by duality: Pic0(Pic0C) = AlbC). Then considering the H0 of the third arrow in
sequences (3.3) and using (4.3) one gets a map

H•(OPic0C) → H0(
•
Λ M∨

K), (4.4)
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while considering the H1 one gets a map

TPic0C,0 ⊗H•−1(OPic0C) → H1(
•−1

Λ M∨
K) (4.5)

(it can be seen that they are in fact maps of graded H•(OPic0C)-modules). To conclude
the proof of Theorem A we need only to show the folloing claim: via sequence (4.1), the
map (4.4) lifts to Φ• and the map (4.5) is Ψ•. In fact, assuming the claim true, since
(4.5) is always surjective, Np holds if and only if Φ• is surjective (i.e. an isomorphism)
in degree ≤ p + 1 i.e. if and only if Φ• ⊕ Ψ• is surjective in degree ≤ p + 1. (Note that
in this case Φ• gives a splitting of (4.1) up to degree p + 1.) To prove that (4.4) lifts to
the map Φ• is easy: this amounts to say that the third arrow of (4.1) is a map of graded
H•(OPic0C)-modules, where Ext•(E , E) has the module structure given by the map Φ•

and H0(Λ•M∨
K) is equipped by the module structure given by (4.4) itself, and this follows

immediately from the way Theorem 2.1 was proved.
It remains to verify that (4.5) is – via the injection of (4.1) – really the map Ψ•. First

of all let us note that it is enough to prove that the two maps coincide in degree 1: indeed,
by construction, both (4.5) and Ψ• are obtained from the respective maps in degree 1 by
composition with cup product:

T0,Pic0C ⊗Hj−1(OPic0C) → Ext1(E , E)⊗Hj−1(OPic0C)

↓

Extj(E , E)

The fact that Ψ• and (4.5) are the same map in degree 1 is proved in [K1] (Prop.8.3). A
perhaps geometrically more natural proof, although less homogeneous with the methods
and notation of this paper, follows from Mukai’s work [Mu]. Let us quickly outline it: the
point is to show that via the canonical isomorphism H1(OC) ∼= T0,Pic0C , the degree-one
map in (4.5) is the Kodaira-Spencer map of the family {EL⊗α}α∈Pic0C . This is what we
want, since by construction EL⊗α = T ∗

{α}EL and Ψ• is the Kodaira-Spencer map of the
family of translations {T ∗

{α}E}α∈Pic0C . To prove what claimed, one uses the Mukai-Fourier
transform: choosing an Abel-Jacobi embedding a of C in AlbC one can see L as a sheaf
on AlbC via a. Then the ”Fourier functor” induces a natural map

Extp
OAlbC

(L,L) → Extp
OPic0C

(EL, EL) (4.6)

which turns out to be an isomorphism ([Mu] Cor.2.5) for any p. Plugging such an iso-
morphism for p = 1 into the beginning of the spectral sequence of local-to-global Ext one
has

0 → H1(OC) → Ext1(EL, EL) → H0(NC|AlbC) → 0 (4.7)

where N means normal bundle (compare [Mu], Proof of Lemma 4.9). (Note that this is
another way of finding the degenerate spectral sequence (2.9)). The deformation theoretic
meaning of (4.7) is well known: the injection is the Kodaira-Spencer map of our claim, and
corresponds to deforming the line bundle L on the curve C, while the term H0(NC|AlbC)

9



is the tangent space to the Hilbert scheme of C in AlbC and corresponds to moving the
curve inside AlbC. Going trough the ways (4.5) for j = 1 and (4.7) are obtained, it is easy
to show that they are the same exact sequence (note that M∨

K = NC|AlbC) and this proves
what claimed.
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