
Linear Algebra and Geometry. Exam feb. 18, 2015.

1. Let u = (1, 1, 1,−1), v = (1, 1, 1, 1), w = (1, 0, 0, 0).
(a) Find v′ and w′ ∈ V4 such that: v′ is a linear combination of u and v, w′ is a linear
combination of u, v and w, and {u,v′,w′} is an orthogonal set.
(b) Write (0, 1, 0, 0) as the sum of a linear combination of u , v, w and of a vector orthogonal
to u, v, w.

Hint

(a) The request can be summarized as: find v′ ∈ L(u,v) and w′ ∈ L(u,v,w) such that
{u,v′,w′} is an orthogonal set. Therefore what is required is just the usual Gram=Schmidt
orthogonalization of the vectors u,v,w.

(b) By the Orthogonal Decomposition Theorem there is a unique solution to this problem:

(0, 1, 0, 0) = prL(u,v,w)((0, 1, 0, 0)) + prL(u,v,w)⊥((0, 1, 0, 0))

To find the two projections, one first observes that it fact it is enough to compute one one
of them: again by the Orthogonal Decomposition Theorem one projection determines the
other one (for example: prL(u,v,w)((0, 1, 0, 0)) = (0, 1, 0, 0)− prL(u,v,w)⊥((0, 1, 0, 0)) ).

To compute one projection one can proceed in two different ways:

(i) Compute prL(u,v,w)((0, 1, 0, 0)). For this one uses point (a): since {u,v′,w′} is an
orthogonal basis of L(u,v,w) then

prL(u,v,w)((0, 1, 0, 0)) = prL(u)((0, 1, 0, 0)) + prL(v′)((0, 1, 0, 0)) + prL(w)′((0, 1, 0, 0)) =

=
(0, 1, 0, 0) · u

(u,u)
u +

(0, 1, 0, 0) · v′

(v′,v′)
v′ +

(0, 1, 0, 0) ·w′

(w′,w′)
w′

(ii) Compute prL(u,v,w)⊥((0, 1, 0, 0)). For this one first computes a basis of L(u,v,w)⊥

(which is one-dimensional). For this one just needs to solve the system (a very easy one!) (x, y, z, t) · u =0
(x, y, z, t) · v =0
(x, y, z, t) ·w =0

. The space of solutions is L(u,v,w)⊥ and it will be of the form L(h). Then

prL(u,v,w)⊥((0, 1, 0, 0)) =
(0, 1, 0, 0) · h

(h,h)
h
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2. Let us consider the planes M = {(1, 0, 2) + t(1, 2, 1) + s(0, 1,−2)} and
N = {(1, 3, 0) + t(1, 1, 1) + s(1, 0,−1)}. Describe and find equations for the set of points
P ∈ V3 such that d(P,M) = d(P,N).

Solution

Letting P = (x, y, z), we are interested in the set defined by the equation

(1) d((x, y, z),M) = d((x, y, z), N)

To find an explicit expression for the left and right hand side, we compute the cartesian
equations of the two planes. They turn out to be

M : 5x− 2y − z = 4 and N : x− 2y + z = 1

Therefore

d((x, y, z),M) =
|5x− 2y − z − 4|√

6
and

d((x, y, z), N) = |x− 2y + z − 1|√
30

Therefore (1) becomes

|5x− 2y − z − 4|√
6

=
|x− 2y + z − 1|√

30

which is equivalent to

5x− 2y − z − 4√
6

=
x− 2y + z − 1√

30
or

5x− 2y − z − 4√
6

= −x− 2y + z − 1√
30

which is the equation of the union of two planes.

3. Let V be the linear space of all real polynomials of degree ≤ 2. Find which of the
following functions T : V → V are linear transformations. If the answer is affirmative find
N(T ) and T (V )
(a) T (P (x)) = xP ′(x)− P (x)− 1;
(b) T (P (x)) = xP ′(x)− P (x+ 1);
(c) T (P (x)) = (x+ 1)P ′(x)− P (x).

Solution

(a) T is not linear. For example, letting O(x) the polynomial which is identically zero
(namely O(x) ≡ 0) we find T (O(x)) ≡ −1. Therefore T is non-linear, because we know
that in general, T (O) = O if T is linear (because T (O) = T (u− u) = T (u)− T (u) = O).
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(b) T is linear. Indeed:

T (P1(x) + P2(x)) = T ((P1 + P2)(x)) = x(P ′1 + P ′2)(x))−)P1 + P2)(x+ 1) =

= xP ′1(x)− P1(x+ 1) + xP ′2(x)− P2(x+ 1) =

= T (P1(x)) + T (P2(x))

and
T (λP (x)) = x(λP ′(x))− λP (x+ 1) = λ(xP ′(x)− P (x+ 1)) =

= λT (P (x))

Calculation of N(T ). N(T ) is the space of polynomials P (x) = a + bx + cx2 such that
xP ′(x) = P (x+ 1), that is

bx+ 2cx2 = a+ b+ c+ (b+ 2c)x+ cx2

that is c = 0 and a = −b. Therefore

N(T ) = {a(x− 1) | a ∈ R} = L(x− 1)

Moreover, by the nullity plus rank Theorem T (V ) is two-dimensional, spanned by {T (1), T (x), T )x2)}.
Since (for example) T (1) and T (x2) are independent, it follows that

T (V ) = L(T (1), T (x2)) = L(1, x2 − 2x− 1).

(c) Similarly: - T is linear (DO THAT!);
- N(T ) = L(x+ 1) (DO THAT!)
- T (V ) = L(1, x2 + 2x+ 1) (DO THAT!)

4. Let u = (1, 0, 1), v = (−1, 1, 1), and, for t varying in R, wt = (2, 1, t).
Let also a = (2, 3, 1), b = (1,−3, 1), and, for s varying in R, cs = (1, s, 0).
Find all t, s ∈ R such that there is a unique linear transformation Tt,s : V3 → V3 such that
T (u) = a, T (v) = b and T (wt) = cs.

Solution

By the Theorem on linear transformations with prescribed values , the transformation
exists and it is unique if and only if both {u,v,wt} and {bfa,b, cs} are bases of V3, that
is are independent sets. An easy computation (for example with determinants) shows that
this happens if and only if t 6= 4 and s 6= 6.
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5. Find all values of t ∈ R such that the matrix At =

 1 1 t
0 3 1
0 0 1

 is diagonalizable. For

such values of t find a basis B of V3 whose elements are eigenvectors of At.

Solution

It is clear that the eigenvalues are 1 (double) and 3 (simple). Therefore the eigenvalues
are known. Let us compute the eigenspaces:

E(3) = N(3I3 −At) = N(

 2 −1 −t
0 0 −1
0 0 2

) = L((1, 2, 0))

(easy computation).

E(1) = N(1I3 −At) = N(

 0 −1 −t
0 2 −1
0 0 0

)

If the two non-zero rows are independent, that is t 6= −1/2, then the space of solutions of
the homogeneous system (the eigenspace) has dimension one. Therefore, together with an
eigenvector of 3, we can find at most two independent eigenvectors, hence the matrix At

is not diagonalizable.
Instead, if t = −1/2, E(1) = L((1.0.0), (0, 1, 2)) . Therefore for t = −1/2 we have that
At is diagonalizable and {(1, 2, 0), (1, 0, 0), (0, 1, 2)} is a basis of eigenvectors.

4


