LINEAR ALGEBRA AND GEOMETRY SUPPLEMENTARY EXERCISES, 2 (Straight lines)

1. (a) Let us consider the lines of \mathcal{V}_2 : L: 2x - y + 1 = 0 and $R = \{(3, 1) + t(4, 3)\}$. Describe and find cartesian equations for the following subset of \mathcal{V}_2 :

$$\{X \in \mathcal{V}_2 \mid d(X, L) = d(X, R)\}.$$

(b) Let $L = \{(1,2) + t(1,3)\}$ and $R = \{(-2,5) + t(2,6)\}$. Describe and find cartesian equations for the following subset of \mathcal{V}_2 :

$$\{X \in \mathcal{V}_2 \mid d(X, L) = d(X, R)\}.$$

(c) Let L and R be two non-parallel lines in \mathcal{V}_2 . Describe the subset of \mathcal{V}_2 whose elements are points $X \in \mathcal{V}_2$ such that d(X, L) = d(X, R). What happens if L and R are parallel? (d) For L and R as in (a), describe and find cartesian equations for the following subset of \mathcal{V}_2 :

$$\{X \in \mathcal{V}_2 \mid d(X, L) = 2d(X, R)\}.$$

2. (a) Find the intersection of the lines $\{(1,1) + t(1,2)\}$ and $\{(1,1) + t(2,1)\}$. (b) Same question with the two lines $\{(2,-1,2) + t(1,1,-1)\}$ and $\{(2,0,0) + t(1,0,1)\}$.

3. Let us consider the lines of \mathcal{V}_2 : L = (1, -1) + t(1, 1) and R : x + 2y = 1. How many are the points $X \in \mathcal{V}_2$ such that $\begin{cases} d(X, L) = \sqrt{2} \\ d(X, R) = \sqrt{3} \end{cases}$ Find one of them.

4. Let A = (3, 4). Describe and find parametric equations of the locus of all vectors $X \in \mathcal{V}_2$ such that the angle between A and X is $\pi/4$. (Suggestion: use a orthonormal basis of \mathcal{V}_2 such that one of its vectors is parallel to A.)

5. Let A = (1, -2) and P = (1, -1). Find both parametric and cartesian equations of the lines passing through P which are parallel to a vector B whose angle with A is $\theta = \pi/4$.

6. Let $L = \{(1, -1, 1) + t(1, 1, 1)\}$ and Q = (1, 1, -1). Compute d(Q, L) and the point of L which is nearest to Q.