
Linear Algebra and Geometry. Written test of october 30, 2013.

1. Let B = {u,v,w} be an orthogonal basis of V3 such that ‖ u ‖= 1, ‖ v ‖= 2 and
‖ w ‖= 3. (a) Compute the cosine of the angle between u− v + w and 2u− v − 2w.
(b) Find a basis of

(
L(u − v + w)

)⊥ (express the vectors of the required basis as linear
combinations of the vectors of B).

Solution. We start by recalling a well known (and easy) fact from the theory: if
{u1, · · · ,un} is an orthogonal basis, u =

∑n
i=1 xiui and v =

∑n
i=1 yiui then

u · v =
n∑

i=1

xiyiui · ui

(a) (u−v+w)·(u−v+w) = 1+4+9 = 14, (2u−v−2w)·(2u−v−2w) = 4+4+36 = 44,
(u−v +w) · (2u−v− 2w) = 2 + 4− 18 = −12. Therefore the cosine of the angle between
u− v + w and 2u− v − 2w is −12/(

√
14
√

44).
(b)

(
L(u − v + w)

)⊥ is the subspace whose elements are the vectors perpendicular to
u− v + w, namely the vectors xu + yv + zw such that x− 4y + 9z = 0. Solving, we have
(x, y, z) = y(4, 1, 0) + z(−9, 0, 1). Therefore

(
L(u− v + w)

)⊥ = L(4u + v,−9u + w).

2. Let r(t) be a space motion such that r′′(t) = λ(t)r(t), where λ(t) is a nowhere zero
scalar function. Assume that r′(t0) = (1, 2,−1) and r′′(t0) = (2, 1, 3). Is there a plane
containing r(t) for all t? If the answer is yes, find the equation of the plane.

Solution. All this follows easily from the theory. I recall the reasoning: we have that
r × r′′ = (r × r′)′ and this, by hypothesis, is constantly zero. Therefore r(t) × r′(t) ≡ u,
where u is a constant vector. Hence r(t)·u ≡ 0, that is r(t) belongs to the plane (containing
the origin) X ·u = 0. To find u we note that u = r(t0)× r′′(t0), which is a non-zero scalar
multiple of (2, 1, 3)× (1, 2,−1) = (−7, 5, 3). In conclusion, the answer is yes and the plane
is: −7x+ 5y + 3z = 0.

3. Let T : V2 → V2 be the linear transformation such that T ((1,−2)) = (1, 1) and
T ((−1, 1)) = (2, 0). Find all (x, y) ∈ V2 such that T ((x, y)) = (−2, 3).

Solution. Clearly T is bijective, hence invertible. Therefore a (x, y) such that T ((x, y)) =
(−2, 3) exists and it is unique, namely (x, y) = T−1((−2, 3)). One can compute it in
different (very similar) ways. One making full use of the theory is as follows. Let B =
{(1,−2), (−1, 1)}. We know that

mBE (T ) = A =
(

1 2
1 0

)
.

We find

A−1 = −1
2

(
0 −2
−1 1

)
=
(

0 1
1/2 −1/2

)
1



and we know that
A−1 = mEB(T−1)

This implies that A−1

(
−2
3

)
is the vector of components of T−1((−2, 3)) with respect to

the basis B. Since A−1

(
−2
3

)
=
(

3
−5/2

)
we have that

T−1((−2, 3)) = 3(1,−2)− (5/2)(−1, 1) = (11/2,−17/2)

In conclusion, there is a unique (x, y) ∈ V2 such that T ((x, y)) = (−2, 3), namely (x, y) =
(11/2,−17/2).

4. Let U be the linear space of real polynomials of degree ≤ 3. For P,Q ∈ U define:

(P,Q) = P (0)Q(0) + P (1)Q(1) + P (2)Q(2)

and
< P,Q >= P (0)Q(0) + P ′(0)Q′(0) + P (−1)Q(−1) + P (1)Q(1)

Which of the above formulas defines as inner product on U? For such inner product(s)
compute the projection of the polynomial t3 on the linear subspace W whose elements are
the polynomials of degree ≤ 2.

Solution. The first one does not define an inner product because the positivity property
is not satisfied. To see this we note that (P, P ) = P (0)2 +P (1)2 +P (2)2 and, for example,
P (t) = t(t− 1)(t− 2) is such that (P, P ) = 0, but P is non-zero.

The second one defines an inner product. Indeed the various linearity properties are
satisfied (easy to check) and also the positivity. In fact < P,P >= P (0)2 + P ′(0)2 +
P (1)2 + P (−1)2 which is non-negative. Moreover, if < P,P >= 0 then P (0) = P ′(0) =
P (1) = P (−1) = 0. This means that 0, 1 and 2 are zeroes of P , and 0 is at least a double
zero. Thus P has 4 zeroes (with two of them coinciding). Since the degree of P is at most
3, this implies that P must be identically zero.

To answer the last question, we first need to find an orthogonal basis of W . To do this
we apply the Gram-Schmidt procedure to the basis {1, t, t2} of W . It is easy to see that
1 and t are already orthogonal, as t and t2. Therefore the required orthogonal basis of W
will be {1, t, P (t)} with P (t) = t2 − (< t2, 1 > / < 1, 1 >)1 = t2 − (2/3)1 = t2 − (2/3).
Finally, the required projection is the sum of the projections on the one-dimensional linear
spaces spanned by the elements of the orthogonal basis, namely

< t3, 1 >
< 1, 1 >

1 +
< t3, t >

< t, t >
t+

< t3, t2 − 2/3 >
< t2 − 2/3, t2 − 2/3 >

(t2 − 2/3) = 0 + (2/3)t+ 0 = (2/3)t

5. Let V be the linear space of all real convergent sequences {an}. Define T : V → V as
follows: if limn→∞ an = ā then T

(
{an}

)
= {bn}, where bn = ā− an for n ≥ 1.
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Find all eigenvalues of T and the corresponding eigenspaces. Specify which eigenspaces
are infinite dimensional. Compute the dimension of the finite dimensional eigenspaces.

Solution. (This is Exercise 10 os Section 4.4 of Apostol, Vol. II. It was solved in class.)
To find the eigenvalues, one cannot use the characteristic polynomial (we are in infinite
dimension). We rather argue directly as follows: let λ ∈ R such that T ({an)}) = {ā−an} =
{λan}. Taking the limit we get: ā− ā = 0 = λā. Therefore either λ = 0 or ā = 0. In the
former case we get a − an ≡ 0. Therefore an = ā for each n ≥ 1, that is the sequence is
constant = ā for each n ≥ 1. We have just found out that λ = 0 is an eigenvalue and that
the corresponding eigenspace E(0) is the linear subspace whose elements are the constant
sequences. This is finite dimensional, and in fact has dimension equal to 1, since every
constant sequence is a scalar multiple of the constant sequence an ≡ 1.

It remains to analyze the case ā = 0. In this case we get {−an} = λ{an}, hence
λ = −1. We have just found out that also −1 is an eigenvalue, and that the corresponding
eigenspace E(−1) is the linear subspace consisting of all sequences converging to 0. This is

infinite dimensional (for example, it contains all sequences for the form an =
{

0 if n 6= n0

1 if n = n0

for each n0 ≥ 1, which are linearly independent and infinitely many).
By the previous analysis there are no other eigenvalues.
In conclusion: the eigenvalues are 0 and −1. The eigenspace of 0 is one-dimensional,

while the eigenspace of −1 is infinite dimensional.
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