
LINEAR ALGEBRA AND GEOMETRY written test of JULY 10, 2013

1. In V3, let us consider the two straight lines L = {(−2,−5, 4) + t(1, 1,−1)} and
R = {(0, 1, 3) + t(−1, 3, 2)}.
(a) Compute the intersection L ∩R.
(b) Is there a plane containing both L and R? if the answer is yes, compute its cartesian
equation.

Solution. (a) A point P lies in the intersection if and only if there are scalars t0 and s0
such that (−2,−5, 4) + t0(1, 1,−1) = (0, 1, 3) + s0(−1, 3, 2) = P . Therefore t0(1, 1,−1) −
s0(−1, 3, 2) = (2, 6,−1). Solving the system we find −s0 = 1, hence s0 = −1. Therefore
P = (0, 1, 3)− (−1, 3, 2) = (1,−2, 1).
(b) The plane is {(1,−2, 1)+t(1, 1,−1)+s(−1, 3, 2)}. Cartesian equation: 5x−y+4z = 11.

2. Let V = {(1, 0, 1, 0), (0, 1, 0,−1)} and let RV : V4 → V4 be the reflection with respect
to V . Compute the matrix representing RV with respect to the canonical basis of V4

(equivalently: for (x, y, z, t) compute RV ((x, y, z, t))).

Solution. Let us call {v1, v2} the given basis of V . It is already orthogonal. One
sees easily that {w1, w2} = {(1, 0,−1, 0)(0, 1, 01)} is an (orthogonal) basis of V ⊥. Given
(x, y, z, t) ∈ V4, its decomposition with respect to V is

(x, y, z, t) =
x+ z

2
v1 +

y − t
2

v2 +
x− z

2
w1 +

y + t

2
w2

Therefore, by definition,

RV ((x, y, z, t)) =
x+ z

2
v1 +

y − t
2

v2 −
x− z

2
w1 −

y + t

2
w2 = ... = (z,−t, x,−y)

Therefore the required matrix is

A =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


Alternatively, one takes as

C =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


and

A = C · diag(1, 1,−1,−1) · C−1

If the calculations are correct (CHECK!!) one arrives to the same matrix.

3. Let r : (a, b)→ V3 be a motion such that r(t) 6= 0 for all t ∈ (a, b) and r′(t) is always
parallel to r(t). Describe the underlying curve.
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Solution. The underlying curve is a piece of a half-line of a line passing trough 0. Indeed
let T (t) be the unit tangent vector. By hypothesis there is a (never vanishing) function
λ(t) such that T (t) = λ(t)r(t). Therefore T ′(t) = λ′(t)r(t) + λ(t)r′(t) is parallel to T (t).
But we know that T ′(t) is always perpendicular to T (t). Therefore T ′(t) ≡ 0. Hence
T (t) ≡ a for some constant unit vector a. Hence r(t), which is, by hypothesis, parallel to
T (t) is of the form µ(t)a for a scalar function µ(t) of constant sign. (see also Apostol,
Vol. 1, Ex. 24 of section 14.4).

4. Let V be the linear space whose elements are continuous functions F : [0, π] → R.
Let W be the linear subspace of V of functions f ∈ V having continuous second derivative
and such that f(0) = f(π) = 0. Let T : W → V defined by T (f) = f ′′. Compute all
eigenvalues and eigenspaces of T .

Solution. The answer is: the eigenvalues are all numbers of the form −n2, with n
a (non-zero) natural number. The corresponding eigenspace is 1-dimensional, precisely
E(−n2) = L(sinnt). One arrives to this result by analyzing what is known for the solutions
of the differential equation f ′′ = λf . I don’t repeat this since I did it in class. See also
Apostol, Vol. II, Ex. 9 of Section 4.4.

5. Let us consider the quadratic form

Q(x, y, z) = 3x2 + 6xy − 6xz − 3
2
y2 − 3yz − 3

2
z2

(a) Reduce Q to canonical form. (b) Find the maximum and minimum of Q on the unit
sphere of V3 and describe the points of minimum and maximum.

Solution. The matrix of Q is

A =

 3 3 −3
3 − 3

2 − 3
2

−3 − 3
2 − 3

2


The characteristic polynomial:

det

λ− 3 −3 3
−3 λ+ 3

2
3
2

3 3
2 λ+ 3

2

 = det

λ− 3 −3 3
−3 λ+ 3

2
3
2

0 λ+ 3 λ+ 3

 = · · · = (λ− 6)(λ+ 3)2

Therefore the eigenvalues are λ1 = 6, λ2 = λ3 = −3. Eigenspaces:
E(−3) = L((1,−2, 0), (0, 1, 1)). Orthonormalizing: E(−3) = L((1,−2, 0), 1√

29
(2, 1, 5)).

E(6) = L((1, 2, 0)× (0, 1, 1)) = L((−2,−1, 1)) = L( 1√
6
(−2,−1, 1)).

Let B = {v1, v2, v3} be the orthonormal basis obtained putting together the orthonormal
bases of E(6) and E(−3). Writing (x, y, z) = x′v1 + y′v2 + z′v3 we have that

Q(x, y, z) = 6(x′)2 − 3(y′)3 − 3(z′)2

(b) The maximum on the unit sphere is λ1 = 6. The points of maximum are two: +v1
and −v1.
The minimum on the unit sphere is −3. The points of minimum are infinitely many: they
are all vectors of the form λv2 + µv3 with λ2 + µ2 = 1.
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