LINEAR ALGEBRA AND GEOMETRY written test of JULY 10, 2013

1. In V3, let us consider the two straight lines L = {(—2,-5,4) + ¢(1,1,—1)} and
R={(0,1,3) +t(—1,3,2)}.

(a) Compute the intersection L N R.

(b) Is there a plane containing both L and R? if the answer is yes, compute its cartesian
equation.

Solution. (a) A point P lies in the intersection if and only if there are scalars ¢ty and sg
such that (—2,-5,4) +to(1,1,—1) = (0,1,3) + so(—1,3,2) = P. Therefore to(1,1,—1) —
so(—1,3,2) = (2,6,—1). Solving the system we find —sg = 1, hence sg = —1. Therefore
P=(0,1,3) — (—1,3,2) = (1,—2,1).

(b) The planeis {(1, —2,1)+¢(1,1,—-1)+s(—1,3,2)}. Cartesian equation: 5x—y+4z = 11.

2. Let V=1{(1,0,1,0),(0,1,0,—1)} and let Ry : V; — V4 be the reflection with respect
to V. Compute the matrix representing Ry with respect to the canonical basis of V4
(equivalently: for (z,y, z,t) compute Ry ((x,y, z,1))).

Solution. Let us call {v1,v2} the given basis of V. It is already orthogonal. One
sees easily that {w;,ws} = {(1,0,—1,0)(0,1,01)} is an (orthogonal) basis of V1. Given
(x,y,z,t) € Vg, its decomposition with respect to V is

Tr+z y—1 -z y+t

v+ v2+x2 wy + Lo

(x7y727t) =

Therefore, by definition,

T+ z —t xr—z +t
RV((xawavt)): 9 v1+y2 Vo2 — 9 w J

Therefore the required matrix is

0O 0 1 O

0 0 0 -1
A= 1 0 0 0

0 -1 0 O

Alternatively, one takes as

1 0 1 0

0 1 0 1
¢= 1 0 -1 0

01 0 -1

and
A=C- diag(1,1,-1,-1) -C~*

If the calculations are correct (CHECK!!) one arrives to the same matrix.

3. Letr:(a,b) — V3 be a motion such that r(t) # 0 for all ¢ € (a,b) and r'(¢) is always
parallel to r(¢). Describe the underlying curve.
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Solution. The underlying curve is a piece of a half-line of a line passing trough 0. Indeed
let T'(t) be the unit tangent vector. By hypothesis there is a (never vanishing) function
A(t) such that T'(t) = A(¢)r(t). Therefore T"(t) = N (t)r(t) + A\(¢)r'(¢) is parallel to T'(t).
But we know that 7”(t) is always perpendicular to T'(¢). Therefore T'(t) = 0. Hence
T'(t) = a for some constant unit vector a. Hence r(¢), which is, by hypothesis, parallel to
T(t) is of the form pu(t)a for a scalar function p(t) of constant sign. (see also Apostol,
Vol. 1, Ex. 24 of section 14.4).

4. Let V be the linear space whose elements are continuous functions F' : [0,7] — R.
Let W be the linear subspace of V' of functions f € V having continuous second derivative
and such that f(0) = f(7) = 0. Let T : W — V defined by T(f) = f”. Compute all
eigenvalues and eigenspaces of T

Solution. The answer is: the eigenvalues are all numbers of the form —n?, with n

a (non-zero) natural number. The corresponding eigenspace is 1-dimensional, precisely
E(—n?) = L(sinnt). One arrives to this result by analyzing what is known for the solutions
of the differential equation f”” = Af. I don’t repeat this since I did it in class. See also
Apostol, Vol. II, Ex. 9 of Section 4.4.

5. Let us consider the quadratic form

3 3
Q($7y72:) - 31'2 + ny — 6:82 — 5:1/2 — 3y2 — 522

(a) Reduce @ to canonical form. (b) Find the maximum and minimum of ¢ on the unit
sphere of V3 and describe the points of minimum and maximum.

Solution. The matrix of @) is

3 3 -3
A=| 3 -3 _32
3 3 _3
2 2
The characteristic polynomial:
A—3 =3 3 A—3 =3 3
det | =3 X+32 2 |J=det|{ -3 X+3 2 |=---=(A-6)(A+3)
3 3 a+3 0 A+3 A+3
Therefore the eigenvalues are Ay = 6, A\ = A3 = —3. Eigenspaces:

E(-3) = L((1,-2,0),(0,1,1)). Orthonormalizing: F(—3) = L((1,-2,0), \/%*9(27 1,5)).
Let B = {v1,v92,v3} be the orthonormal basis obtained putting together the orthonormal

bases of E(6) and E(—3). Writing (x,y, z) = 2’v1 + y'vs + z’v3 we have that

Q(mv Y, Z) = 6('1;/)2 - 3(y/)3 - 3(2/>2
(b) The maximum on the unit sphere is Ay = 6. The points of maximum are two: +uv;
and —v;.
The minimum on the unit sphere is —3. The points of minimum are infinitely many: they
are all vectors of the form Avy + pvs with A2 + p? = 1.



