LAG, written test of Sept 24, 2012

1. Let *L* be the line of \mathcal{V}_3 : L = L((1,1,2)) and let π be the plane pf \mathcal{V}_3 : $\pi = L((1,2,0), (0,1,1))$.

Find the cartesian equations of all planes of \mathcal{V}_3 which are parallel to L, perpendicular to π , and such that their distance from the point P = (1, 3, 1) is equal to $\sqrt{3}$. (Recall that two planes are said to be perpendicular if and only if and only their normal vectors are perpendicular).

2. Let $\mathbf{v}_1 = (1, 2, 2)$ and $\mathbf{v}_2 = (1, 0, 1)$.

(a) Find an orthogonal basis of \mathcal{V}_3 , say $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ such that $L(\mathbf{v}_1) = L(\mathbf{w}_1)$ and $L(\mathbf{v}_1, \mathbf{v}_2) = L(\mathbf{w}_1, \mathbf{w}_2)$.

(b) Find an orthogonal basis of \mathcal{V}_3 , say $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ such that $L(\mathbf{v}_1, \mathbf{v}_2) = L(\mathbf{u}_1, \mathbf{u}_2)$, and the angle between \mathbf{V}_1 and \mathbf{u}_1 is equal to $\pi/4$.

3. A point moves in the plane with position vector $\mathbf{r}(t) = (x(t), y(t))$. The motion is such that $\mathbf{r}'' = -9\mathbf{r}(t)$. The initial position is $\mathbf{r}(0) = (0,3)$. The initial velocity is $\mathbf{r}'(0) = (-6,0)$.

(a) Find the function $\mathbf{r}(t)$.

(b) Find the cartesian equation of the trajectory. Make a sketch and indicate the direction of motion.

4. Let V = L(1, 1, 0), (0, 1, -1). Let $P_V : \mathcal{V}_3 \to \mathcal{V}_3$ be the projection onto V. Write the matrix (with respect to the canonical basis) of P_V .

5. Reduce the quadratic form $Q(x, y, z, t) = 2\sqrt{3}xz + 4yt + 4z^2 - 3t^2$ to canonical form (without explicitly finding the basis). Is the form positive, semipositive, negative, seminegative or indefinite?

SOLUTIONS

1. A normal vector to π is $(1,2,0) \times (0,1,1) = (2,-1,1)$. A normal vector to a plane parallel to L has to be perpendicular to (1,1,2). A normal vector to a plane perpendicular to π has to be perpendicular to (2,-1,1). Hence a normal vector to a plane which is both parallel to L and perpendicular to π has to be parallel to $(1,1,2) \times (2,-1,1) = (3,-3,3)$. Hence the cartesian equation of the planes we are looking for is of the form

$$x - y + z = d.$$

Denoting Q a point of our plane (any point), the distance of such a plane from the point P = (1, 3, 1) is

$$\frac{|(P-Q)\cdot N)|}{\|N\|} = \frac{|P\cdot N-d|}{\|N\|} = \frac{|-1-d|}{\sqrt{3}}$$

Therefore we have to impose

$$\frac{|-1-d|}{\sqrt{3}} = \sqrt{3}$$

yielding d = -4 and d = 2. In conclusion the required planes are two, having as cartesian equations

$$x - y + z = -4$$
 and $x - y + z = 2$

2. (a) We take $\mathbf{w}_1 = \mathbf{v}_1$. Then we find \mathbf{w}_2 using the formula

$$\mathbf{v}_2 - \frac{\mathbf{v}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 = \frac{1}{3} (2, -2, 1)$$

Therefore we can take $\mathbf{w}_2 = (2, -2, 1)$. Then we can take $\mathbf{w}_3 = \mathbf{w}_1 \times \mathbf{w}_2 = (6, 3, -6)$. (b) Clearly we can take $\mathbf{u}_3 = \mathbf{w}_3 = (6, 3, -6)$. A convenient way to find \mathbf{u}_1 and \mathbf{u}_2 is as follows: we first normalize $\mathbf{v}_1 = \mathbf{w}_1$ and \mathbf{w}_2 , thus obtaining two orthogonal unit vectors, say \mathbf{w}'_1 and \mathbf{w}'_2 , parallel respectively to \mathbf{v}_1 and \mathbf{w}_2 . At this point, two vectors \mathbf{u}_1 and \mathbf{u}_2 as required are, for example, $\mathbf{u}_1 = (1/\sqrt{2})\mathbf{w}'_1 + (1/\sqrt{2})\mathbf{w}'_2$ and $\mathbf{u}_2 = (1/\sqrt{2})\mathbf{w}'_1 - (1/\sqrt{2})\mathbf{w}'_2$ (here $(1/\sqrt{2}) = \cos(\pi/4) = \sin(\pi/4)$). Hence

$$\mathbf{u}_1 = \frac{1}{\sqrt{2}}(1,0,1)$$
 and $\mathbf{u}_2 = \frac{1}{3\sqrt{2}}(-1,4,1)$

3. The functions x(t) and y(t) satisfy the equations with initial conditions

$$\begin{cases} x''(t) = -9x(t), & x(0) = 0, & x'(0) = -6\\ y''(0) = -9y(t), & y(0) = 3, & y'(0) = 0 \end{cases}$$

Since both functions are of the form $a\cos 3t + b\sin 3t$, one finds easily that

$$x(t) = -2\sin 3t$$
 and $y(t) = 3\cos 3t$

The trajectory is the conic section of cartesian equation

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

The sense of motion is counterclockwise.

4. In general (that is, in $\mathcal{V} - n$, with arbitrary n), the best way to answer a question like this is to first write down the matrix of P_V with respect to a convenient basis of \mathcal{V}_n (for example a basis obtained by putting together the known basis of V and a basis of V^{\perp}). The matrix is $B = \text{diag}(1, \ldots, 1, 0, \ldots, 0)$ (the number of 1's is the dimension of V). Then one can obtain the matrix with respect to the canonical basis from B via the change-of-basis procedure. You are invited to solve this exercise also with this method. However, the case of this exercise is especially easy, because V^{\perp} is one-dimensional. In this case the formula for the projection is so easy that it is shorter to proceed directly. We have that V^{\perp} is generated by a normal vector, as for example $N = (1, 1, 0) \times (0, 1, -1) = (-1, 1, 1)$. Hence the projection of a vector (x, y, z) onto V is

$$(x, y, z) - \frac{(x, y, z) \cdot N}{N \cdot N} N = (x, y, z) - \frac{-x + y + z}{3} (-1, 1, 1) = \frac{1}{3} (4x - y - z, x + 2y - z, x - y + 2z)$$

Therefore the matrix of the projection P_V with respect to the canonical basis of \mathcal{V}_3 is

$$A = \frac{1}{3} \begin{pmatrix} 4 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

5. The characteristic polynomial is

$$P(\lambda) = \det \begin{pmatrix} \lambda & 0 & -\sqrt{3} & 0 \\ 0 & \lambda & 0 & -2 \\ -\sqrt{3} & 0 & \lambda - 4 & 0 \\ 0 & -2 & 0 & \lambda + 3 \end{pmatrix} = \lambda(\lambda^2 + 3\lambda - 4) - \sqrt{3}(\sqrt{3}(\lambda^2 + 3\lambda - 4)) = \lambda(\lambda^2 + 3\lambda - 4) = \lambda(\lambda^2 + 3\lambda - 4$$

$$= (\lambda^2 + 3\lambda - 4)(\lambda^2 - 4\lambda - 3).$$

Its roots are $4, -1, 2 + \sqrt{7}, 2 + \sqrt{7}$. Therefore the canonical form is

$$Q(x, y, z, t) = 4(x')^{2} + (2 + \sqrt{7})(y')^{2} + (2 - \sqrt{7})(z')^{2} - (t')^{2}$$

where (x', y', z', t') are the components of (x, y, z, t) with respect to an orthonormal basis of eigenvectors of the matrix above above. The form is indefinite.