LAG, written test of JULY 20, 2012

1. Let C be a parabola in Vg, with focus in (0, 0), directrix of equation 4z 4+ 3y = ¢, and
such that (1,0) € C.

(a) Find ¢ assuming that ¢ > 0. Find also the vertex and the equation of C.

(b) Find ¢ assuming that ¢ < 0.

2. A particle moves along the ellipse 42%+y? = 1 with position vector r(t) = (f(t), g(t)).
The motion is such that f'(t) = —g(t) for every t.
How much time is required for the particle to go once around the ellipse?

rT+y+z—t
)= z+2y+2z+t
2 + 3y + 2z

and T(V4) .

x
3. Let T: V4 — V3 defined by T ZZ/
t
(a) Find dimensions and bases of N(T)
1
(b) Does [ —1 | belong to T'(V4)? If the answer is yes, describe the set of all v € Vy
0
1
such that T'(v) = | —1
0

4. Let V be the space of real polynomials, with inner product (P.QQ) = f_ll P(x)Q(x)dx.
Moreover let W be the subspace of all polynomials of degree < 2.
Write P(x) = 2 as the sum of a polynomial in W and of a polynomial orthogonal to W.

5. Find all 3 x 3 symmetric matrices A such that A = 2 is an eigenvalue of A,
L((1,1,1),(1,2,—-1)) is an eigenspace of A, and det(A) = —100.

SOLUTIONS

1. (a) Let F' = (0,0) be the focus, let P = (1,0) be the point on C, and let L : 4o +3y = ¢
be the directrix. We have that d(P, F') = 1. Since — by definition of parabola — d(P, F') =
d(P, L), we have that d(P,L) = 1. We compute

(1,0) - (4,3) —¢| _ 4=

WL =" -

Hence |[4—c¢| = 5. Since ¢ > 0 then ¢ = 9. In this case the vertex is the point V' lying on the
line L((4,3)) such that d(V, F) = d(V, L). Therefore d(V, F') is the half of d(F,L) = 9/5.
Hence 9 (4.3) 0
=77 — " (4
v 10 5 50( ,3)



Cartesian equation:
5 5 |4z + 3y — 9|
A((2,y), F) = Va? + i = d((a,y), 1) = ==
Hence 2522 4+ 25y? = 1622 + 992 + 81 + 242y — 72x — b4y , that is

922 + 169> — 24xy + 722 + 54y — 81 = 0.
(b) From the equation |4 — ¢| = 5 we get that, if ¢ < 0, then ¢ = —1.

2. We have that, for all ¢, 4(f(¢))? + (g(t))? = 1 Hence 8f(t)f'(t) + 2g(t)¢’(t )
Since f'(t) = —g(t) we get —g(t)(8f(t ) +2¢'(t)) = This means that ¢'(t) =
Differentiating once again we get

{f”()z— g'(t) = —4f(t)
'(t) = 4f'(t) = —49()
From what you know of the differential equation " = cx both f(t) and ¢(t) are of the

form acos2t + bsin2t. It follows that the time needed to go once around the ellipse is
T=m.

\_/O

4f(t

3. (a) The matrix representing 7" with respect to the canonical bases of V4 and V3 is
1 1 1 —1
A=1|1 2 1 . The rank of T" is equal to the rank of A. From gaussian elimination
2 3 2
1 1 1 -1 1 1 1 -1 1 1 1 -1
121 1 ]—-1010 2 |—=1010 2
2 3 2 0 01 0 2 0 0 0 O
we have the rank is equal to 2. A basis of T'(V4 is, for example, given by two independent
1 1
columns of A, for example {[ 1 |, [ 2 | }. By the nullity plus rank Theorem, dim N (T") =
2 3

4 — 2 = 2. To find a basis we solve the homogenous system associated to the matrix A.
After the elimination we find y = —2t, © = —z +t. Hence N(T') is the space of 4-tuples of

—z+ 3t -1 3
the form 2 . Thus N(T) = L( 0 , —2 ).
z 1 0
t 0 1
1
(b) w= | —1 | belongs to T'(Vy) if and only if the linear system AX = w has solutions.
0

In this case the set of all v € V4 such that T'(v) = w is precisely the set of solutions of
the system AX = w. With gaussian elimination we compute

1 -1 1 1 11 -1 1
1 -1]—

11
Aw=[1 2 1 0 1
232 0 0 0 1



Hence w € T'(V4) and, solving the system, the set of all v such that T'(v) = w is the set

3—2z+3t
—2— 2t
of 4-tuples of the form ; , therefore
t

3 -1 3

-2 0 —2

o [TE4 1 || o)
0 0 1

4.  Note that dimW = 3 and that {1,z,2%} is a basis of W. By the Orthogonal
Decomposition Theorem, the required decomposition is

23 = pw(2®) + (2® — pw(2®)

where pw(2?) is the projection of 2% onto W. To find that, we first need to find an
orthogonal basis of W, say {Q1,Q2,Q3}. Then we have that

(263,@3)
(Qs,Q3)

(3737@2)
(Q2,Q2)

3\ ($3,Q1)
pw(e’) = (Ql,Ql)Ql "

Q2 + Q3

The easiest orthogonal basis of W is found by applying the Gram-Schmidt orthogonaliza-
tion to the basis {1,x,22}. Note that (1,z) = 0 so they are already orthogonal. Hence
@1 =1 and Q2 = z. To find @3, we use that

L @AQ) (@)
O3 = 0009 T (0. Q)

It is easy to compute the integrals: (z%,Q2) =0, (z2,Q1) = (2%,1) =2/3, and (Q1,Q1) =
(1,1) = 2. Hence

Q3=$2—§

Next, we compute pw (z3) using the above formula. It is easy to compute that the integrals
(z%,Q1) = (2°,Q3) = 0. Hence

In conclusion, the (unique!) decomposition as requested by the exercise is

3 3
z3 = 533—1— (23 — gx)



5. The condition on the eigenspace implies that A has a double eigenvalue. Moreover
the product of the eigenvalues has to be equal to —100. Thus there are two possibilities:
A=1= X =2, A3 =-25and \; = 2, (A\2)? = —50. However, the latter possibility is
ruled out by the fact that A is supposed to be symmetric, hence its eigenvalues need to be
real.

Moreover, since A is symmetric, the eigenvectors of different eigenvalues are perpendic-
ular. Therefore E4(2) = L((1,1,1),(1,2,—1)) and E4(—25) = L((—3,2,1)). Let B denote
the basis {(1,1,1),(1,2,—1),(—3,2,1)}. Letting T4 : V3 — V3 the linear transformation
defined by T4 (X) = AX, we have that m5(T4) = diag(2, 2, —25). Therefore, we consider

1 1 -3
the matrix C = mZ(id) = | 1 2 2 |. We have that diag(2,2,—25) = C~LAC.
1 -1 1

Hence
A = Cdiag(2,2,—25)C~*

Finding C~! and then computing the above product one finds explicitly the matrix A.
Note that it follows that there is a unique matrix A satisfying the requests of the exercise.



