LAG, written test of JULY 20, 2012

1. Let C be a parabola in V_2 , with focus in (0,0), directrix of equation 4x + 3y = c, and such that $(1,0) \in C$.

(a) Find c assuming that c > 0. Find also the vertex and the equation of C.

(b) Find c assuming that c < 0.

2. A particle moves along the ellipse $4x^2 + y^2 = 1$ with position vector $\mathbf{r}(t) = (f(t), g(t))$. The motion is such that f'(t) = -g(t) for every t.

How much time is required for the particle to go once around the ellipse?

3. Let
$$T: \mathbf{V}_4 \to \mathbf{V}_3$$
 defined by $T\begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} x+y+z-t \\ x+2y+z+t \\ 2x+3y+2z \end{pmatrix}$.

(a) Find dimensions and bases of N(T) and $T(\mathbf{V}_4)$.

(b) Does
$$\begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$$
 belong to $T(\mathbf{V}_4)$? If the answer is yes, describe the set of all $\mathbf{v} \in \mathbf{V}_4$
such that $T(\mathbf{v}) = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix}$.

4. Let **V** be the space of real polynomials, with inner product $(P.Q) = \int_{-1}^{1} P(x)Q(x)dx$. Moreover let **W** be the subspace of all polynomials of degree ≤ 2 . Write $P(x) = x^3$ as the sum of a polynomial in **W** and of a polynomial orthogonal to **W**.

5. Find all 3×3 symmetric matrices A such that $\lambda = 2$ is an eigenvalue of A, L((1,1,1), (1,2,-1)) is an eigenspace of A, and det(A) = -100.

SOLUTIONS

1. (a) Let F = (0,0) be the focus, let P = (1,0) be the point on C, and let L : 4x + 3y = c be the directrix. We have that d(P, F) = 1. Since – by definition of parabola – d(P, F) = d(P, L), we have that d(P, L) = 1. We compute

$$d(P,L) = \frac{|(1,0) \cdot (4,3) - c|}{\| (4,3) \|} = \frac{|4-c|}{5}$$

Hence |4-c| = 5. Since c > 0 then c = 9. In this case the vertex is the point V lying on the line L((4,3)) such that d(V,F) = d(V,L). Therefore d(V,F) is the half of d(F,L) = 9/5. Hence

$$V = \frac{9}{10} \frac{(4,3)}{5} = \frac{9}{50} (4,3)$$

Cartesian equation:

$$d((x,y),F) = \sqrt{x^2 + y^2} = d((x,y),L) = \frac{|4x + 3y - 9|}{5}$$

Hence $25\,x^2+25\,y^2=16\,x^2+9\,y^2+81+24\,xy-72\,x-54\,y$, that is

$$9x^{2} + 16y^{2} - 24xy + 72x + 54y - 81 = 0.$$

(b) From the equation |4 - c| = 5 we get that, if c < 0, then c = -1.

2. We have that, for all t, $4(f(t))^2 + (g(t))^2 = 1$. Hence 8f(t)f'(t) + 2g(t)g'(t) = 0. Since f'(t) = -g(t) we get -g(t)(8f(t) + 2g'(t)) = 0. This means that g'(t) = 4f(t). Differentiating once again we get

$$\begin{cases} f''(t) = -g'(t) = -4f(t) \\ g''(t) = 4f'(t) = -4g(t) \end{cases}$$

From what you know of the differential equation x'' = cx both f(t) and g(t) are of the form $a \cos 2t + b \sin 2t$. It follows that the time needed to go once around the ellipse is $T = \pi$.

3. (a) The matrix representing T with respect to the canonical bases of \mathbf{V}_4 and \mathbf{V}_3 is $A = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & 1 & 1 \\ 2 & 3 & 2 & 0 \end{pmatrix}$. The rank of T is equal to the rank of A. From gaussian elimination $\begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & 1 & 1 \\ 2 & 3 & 2 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

we have the rank is equal to 2. A basis of $T(\mathbf{V}_4 \text{ is, for example, given by two independent}$ columns of A, for example $\left\{ \begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix} \right\}$. By the nullity plus rank Theorem, dim N(T) = 4 - 2 - 2. To find a basis we solve the homogenous system associated to the matrix A.

4-2=2. To find a basis we solve the homogenous system associated to the matrix A. After the elimination we find y = -2t, x = -z + t. Hence N(T) is the space of 4-tuples of (-z + 3t)

the form
$$\begin{pmatrix} -z+3t\\ -2t\\ z\\ t \end{pmatrix}$$
. Thus $N(T) = L\begin{pmatrix} -1\\ 0\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 5\\ -2\\ 0\\ 1 \end{pmatrix}$).

(b) $\mathbf{w} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ belongs to $T(\mathbf{V}_4)$ if and only if the linear system $AX = \mathbf{w}$ has solutions.

In this case the set of all $\mathbf{v} \in \mathbf{V}_4$ such that $T(\mathbf{v}) = \mathbf{w}$ is precisely the set of solutions of the system $AX = \mathbf{w}$. With gaussian elimination we compute

$$A|\mathbf{w} = \begin{pmatrix} 1 & 1 & 1 & -1 & 1 \\ 1 & 2 & 1 & 1 & -1 \\ 2 & 3 & 2 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 2 & -2 \\ 0 & 1 & 0 & 2 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Hence $\mathbf{w} \in T(\mathbf{V}_4)$ and, solving the system, the set of all \mathbf{v} such that $T(\mathbf{v}) = \mathbf{w}$ is the set $\sqrt{3-z+3t}$

of 4-tuples of the form $\begin{pmatrix} 3-z+3t\\-2-2t\\z\\t \end{pmatrix}$, therefore $\begin{pmatrix} 3\\-2\\0\\0 \end{pmatrix} + L\begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 3\\-2\\0\\1 \end{pmatrix}$).

4. Note that dim $\mathbf{W} = 3$ and that $\{1, x, x^2\}$ is a basis of \mathbf{W} . By the Orthogonal Decomposition Theorem, the required decomposition is

$$x^{3} = p_{\mathbf{W}}(x^{3}) + (x^{3} - p_{\mathbf{W}}(x^{3}))$$

where $p_{\mathbf{W}}(x^3)$ is the projection of x^3 onto **W**. To find that, we first need to find an orthogonal basis of **W**, say $\{Q_1, Q_2, Q_3\}$. Then we have that

$$p_{\mathbf{W}}(x^3) = \frac{(x^3, Q_1)}{(Q_1, Q_1)}Q_1 + \frac{(x^3, Q_2)}{(Q_2, Q_2)}Q_2 + \frac{(x^3, Q_3)}{(Q_3, Q_3)}Q_3$$

The easiest orthogonal basis of **W** is found by applying the Gram-Schmidt orthogonalization to the basis $\{1, x, x^2\}$. Note that (1, x) = 0 so they are already orthogonal. Hence $Q_1 = 1$ and $Q_2 = x$. To find Q_3 , we use that

$$Q_3 = x^2 - \frac{(x^2, Q_1)}{(Q_1, Q_1)}Q_1 - \frac{(x^2, Q_2)}{(Q_2, Q_2)}Q_2$$

It is easy to compute the integrals: $(x^2, Q_2) = 0$, $(x^2, Q_1) = (x^2, 1) = 2/3$, and $(Q_1, Q_1) = (1, 1) = 2$. Hence

$$Q_3 = x^2 - \frac{1}{3}$$

Next, we compute $p_{\mathbf{W}}(x^3)$ using the above formula. It is easy to compute that the integrals $(x^3, Q_1) = (x^3, Q_3) = 0$. Hence

$$p_{\mathbf{W}}(x^3) = \frac{(x^3, x)}{(x, x)}x = \frac{\frac{2}{5}}{\frac{2}{3}}x = \frac{3}{5}x$$

In conclusion, the (unique!) decomposition as requested by the exercise is

$$x^{3} = \frac{3}{5}x + (x^{3} - \frac{3}{5}x)$$

5. The condition on the eigenspace implies that A has a double eigenvalue. Moreover the product of the eigenvalues has to be equal to -100. Thus there are two possibilities: $\lambda = 1 = \lambda_2 = 2, \ \lambda_3 = -25 \ \text{and} \ \lambda_1 = 2, \ (\lambda_2)^2 = -50.$ However, the latter possibility is ruled out by the fact that A is supposed to be symmetric, hence its eigenvalues need to be real.

Moreover, since A is symmetric, the eigenvectors of different eigenvalues are perpendicular. Therefore $E_A(2) = L((1,1,1), (1,2,-1))$ and $E_A(-25) = L((-3,2,1))$. Let \mathcal{B} denote the basis $\{(1,1,1), (1,2,-1), (-3,2,1)\}$. Letting $T_A : \mathbf{V}_3 \to \mathbf{V}_3$ the linear transformation defined by $T_A(X) = AX$, we have that $m_{\mathcal{B}}^{\mathcal{B}}(T_A) = \text{diag}(2, 2, -25)$. Therefore, we consider the matrix $C = m_{\mathcal{E}}^{\mathcal{B}}(\mathrm{id}) = \begin{pmatrix} 1 & 1 & -3 \\ 1 & 2 & 2 \\ 1 & -1 & 1 \end{pmatrix}$. We have that $\operatorname{diag}(2, 2, -25) = C^{-1}AC$. Hence

$$A = C \operatorname{diag}(2, 2, -25) C^{-1}$$

Finding C^{-1} and then computing the above product one finds explicitly the matrix A. Note that it follows that there is a unique matrix A satisfying the requests of the exercise.