
LAG, written test of JULY 20, 2012

1. Let C be a parabola in V2, with focus in (0, 0), directrix of equation 4x+ 3y = c, and
such that (1, 0) ∈ C.
(a) Find c assuming that c > 0. Find also the vertex and the equation of C.
(b) Find c assuming that c < 0.

2. A particle moves along the ellipse 4x2+y2 = 1 with position vector r(t) = (f(t), g(t)).
The motion is such that f ′(t) = −g(t) for every t.
How much time is required for the particle to go once around the ellipse?

3. Let T : V4 → V3 defined by T (


x
y
z
t

) =

 x+ y + z − t
x+ 2y + z + t
2x+ 3y + 2z

.

(a) Find dimensions and bases of N(T ) and T (V4).

(b) Does

 1
−1
0

 belong to T (V4)? If the answer is yes, describe the set of all v ∈ V4

such that T (v) =

 1
−1
0

.

4. Let V be the space of real polynomials, with inner product (P.Q) =
∫ 1

−1
P (x)Q(x)dx.

Moreover let W be the subspace of all polynomials of degree ≤ 2.
Write P (x) = x3 as the sum of a polynomial in W and of a polynomial orthogonal to W.

5. Find all 3 × 3 symmetric matrices A such that λ = 2 is an eigenvalue of A,
L((1, 1, 1), (1, 2,−1)) is an eigenspace of A, and det(A) = −100.

SOLUTIONS

1. (a) Let F = (0, 0) be the focus, let P = (1, 0) be the point on C, and let L : 4x+3y = c
be the directrix. We have that d(P, F ) = 1. Since – by definition of parabola – d(P, F ) =
d(P,L), we have that d(P,L) = 1. We compute

d(P,L) =
|(1, 0) · (4, 3)− c|
‖ (4, 3) ‖

=
|4− c|

5

Hence |4−c| = 5. Since c > 0 then c = 9. In this case the vertex is the point V lying on the
line L((4, 3)) such that d(V, F ) = d(V,L). Therefore d(V, F ) is the half of d(F,L) = 9/5.
Hence

V =
9
10

(4, 3)
5

=
9
50

(4, 3)
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Cartesian equation:

d((x, y), F ) =
√
x2 + y2 = d((x, y), L) =

|4x+ 3y − 9|
5

Hence 25x2 + 25 y2 = 16x2 + 9 y2 + 81 + 24xy − 72x− 54 y , that is

9x2 + 16 y2 − 24xy + 72x+ 54 y − 81 = 0.

(b) From the equation |4− c| = 5 we get that, if c < 0, then c = −1.

2. We have that, for all t, 4(f(t))2 + (g(t))2 = 1. Hence 8f(t)f ′(t) + 2g(t)g′(t) = 0.
Since f ′(t) = −g(t) we get −g(t)(8f(t) + 2g′(t)) = 0. This means that g′(t) = 4f(t).
Differentiating once again we get{

f ′′(t) = −g′(t) = −4f(t)
g′′(t) = 4f ′(t) = −4g(t)

From what you know of the differential equation x′′ = c x both f(t) and g(t) are of the
form a cos 2t + b sin 2t. It follows that the time needed to go once around the ellipse is
T = π.

3. (a) The matrix representing T with respect to the canonical bases of V4 and V3 is

A =

 1 1 1 −1
1 2 1 1
2 3 2 0

. The rank of T is equal to the rank of A. From gaussian elimination

 1 1 1 −1
1 2 1 1
2 3 2 0

→
 1 1 1 −1

0 1 0 2
0 1 0 2

→
 1 1 1 −1

0 1 0 2
0 0 0 0


we have the rank is equal to 2. A basis of T (V4 is, for example, given by two independent

columns of A, for example {

 1
1
2

 ,

 1
2
3

}. By the nullity plus rank Theorem, dimN(T ) =

4 − 2 = 2. To find a basis we solve the homogenous system associated to the matrix A.
After the elimination we find y = −2t, x = −z+ t. Hence N(T ) is the space of 4-tuples of

the form


−z + 3t
−2t
z
t

. Thus N(T ) = L(


−1
0
1
0

 ,


3
−2
0
1

).

(b) w =

 1
−1
0

 belongs to T (V4) if and only if the linear system AX = w has solutions.

In this case the set of all v ∈ V4 such that T (v) = w is precisely the set of solutions of
the system AX = w. With gaussian elimination we compute

A|w =

 1 1 1 −1 1
1 2 1 1 −1
2 3 2 0 0

→
 1 1 1 −1 1

0 1 0 2 −2
0 1 0 2 −2

→
 1 1 1 −1 1

0 1 0 2 −2
0 0 0 0 0


2



Hence w ∈ T (V4) and, solving the system, the set of all v such that T (v) = w is the set

of 4-tuples of the form


3− z + 3t
−2− 2t

z
t

, therefore


3
−2
0
0

+ L(


−1
0
1
0

 ,


3
−2
0
1

).

4. Note that dim W = 3 and that {1, x, x2} is a basis of W. By the Orthogonal
Decomposition Theorem, the required decomposition is

x3 = pW(x3) + (x3 − pW(x3)

where pW(x3) is the projection of x3 onto W. To find that, we first need to find an
orthogonal basis of W, say {Q1, Q2, Q3}. Then we have that

pW(x3) =
(x3, Q1)
(Q1, Q1)

Q1 +
(x3, Q2)
(Q2, Q2)

Q2 +
(x3, Q3)
(Q3, Q3)

Q3

The easiest orthogonal basis of W is found by applying the Gram-Schmidt orthogonaliza-
tion to the basis {1, x, x2}. Note that (1, x) = 0 so they are already orthogonal. Hence
Q1 = 1 and Q2 = x. To find Q3, we use that

Q3 = x2 − (x2, Q1)
(Q1, Q1)

Q1 −
(x2, Q2)
(Q2, Q2)

Q2

It is easy to compute the integrals: (x2, Q2) = 0, (x2, Q1) = (x2, 1) = 2/3, and (Q1, Q1) =
(1, 1) = 2. Hence

Q3 = x2 − 1
3

Next, we compute pW(x3) using the above formula. It is easy to compute that the integrals
(x3, Q1) = (x3, Q3) = 0. Hence

pW(x3) =
(x3, x)
(x, x)

x =
2
5
2
3

x =
3
5
x

In conclusion, the (unique!) decomposition as requested by the exercise is

x3 =
3
5
x+ (x3 − 3

5
x)
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5. The condition on the eigenspace implies that A has a double eigenvalue. Moreover
the product of the eigenvalues has to be equal to −100. Thus there are two possibilities:
λ = 1 = λ2 = 2, λ3 = −25 and λ1 = 2, (λ2)2 = −50. However, the latter possibility is
ruled out by the fact that A is supposed to be symmetric, hence its eigenvalues need to be
real.

Moreover, since A is symmetric, the eigenvectors of different eigenvalues are perpendic-
ular. Therefore EA(2) = L((1, 1, 1), (1, 2,−1)) and EA(−25) = L((−3, 2, 1)). Let B denote
the basis {(1, 1, 1), (1, 2,−1), (−3, 2, 1)}. Letting TA : V3 → V3 the linear transformation
defined by TA(X) = AX, we have that mBB(TA) = diag(2, 2,−25). Therefore, we consider

the matrix C = mBE (id) =

 1 1 −3
1 2 2
1 −1 1

. We have that diag(2, 2,−25) = C−1AC.

Hence
A = C diag(2, 2,−25)C−1

Finding C−1 and then computing the above product one finds explicitly the matrix A.
Note that it follows that there is a unique matrix A satisfying the requests of the exercise.
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