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Linear Algebra and Geometry, Midterm exam, 02.16.2011
NOTE: In the solution of a given exercise you must (briefly) explain the line of your argument. Solutions
without adequate explanations will not be evaluated.

1. Let W = L((1, 0,−1, 2), (0, 1, 1, 0)). Find an orthogonal basis {v1, v2, v3, v4} of V4 such that L(v1, v2) =
W .

Solution. The shortest way is to find two orthogonal vectors {v1, v2} such that L(v1, v2) = W and two
orthogonal vectors v3, v4 such that L(v3, v4) = W⊥. At this point {v1, v2, v3, v4} will be a basis a required,
since v3 and v4 belong to W⊥, and therefore they are orthogonal to both v1 and v2.

We set v1 = (1, 0,−1, 2). Then

v2 = (0, 1, 1, 0)− (1, 0,−1, 2) · (0, 1, 1, 0)
‖ (1, 0,−1, 2) ‖2

(1, 0,−1, 2) = (1/6, 1, 5/6, 1/3)

Next, let us compute a basis of W⊥ :
{

(1, 0,−1, 2) · (x, y, z, t) = 0
(0, 1, 1, 0) · (x, y, z, t) = 0 . Solving the system we get that W⊥ =

L((1,−1, 1, 0), (−2, 0, 0, 1)). Proceeding as above, we set v3 = (1,−1, 1, 0). Now

v4 = ((−2, 0, 0, 1)− (−2, 0, 0, 1) · (1,−1, 1, 0)
3

(1,−1, 1, 0) = (−4/3,−2/3, 2/3, 1).

2. Let v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (−1, 0, 1), u = (1, 2, 3). For a varying in R, let Ta : V3 → V3 be the
linear transformation defined by: Ta(v1) = av1 + 2v2, Ta(v2) = v1 +av2 + v3, Ta(v3) = 2v2 +av3. Find the
values of a such that u ∈ Ta(V3) and the values of a such that there is a unique v ∈ V3 such that Ta(v) = u.

Solution. Let B = {v1, v2, v3}. We have thatmBB(T ) =

 a 1 0
2 a 2
0 1 a

. We have that the linear transformation

Ta is bijective (that is, invertible) if and only if detmBB(Ta) 6= 0. One computes easily that detmBB(T ) =
a(a2 − 4) = a(a− 2)(a+ 2). Therefore, if a 6= 0, 2,−2, Ta(V3) = V3 hence u ∈ Ta(V3). Moreover, since Ta is
bijective, there is a unique v such that Ta(v) = u. The cases a = 0, 2,−2 need to be examined separately.
a = 0. In this case T0(v1) = 2v2, T0(v2) = v1 + v3, T0(v3) = 2v2. Hence, clearly, T (V3) = L(v2, v1 + v3) =
L((1, 0, 1), (0, 1, 1)). We need to check if u = (1, 2, 3) belongs to L((1, 0, 1), (0, 1, 1)), that is if there are
scalars x and y such that x(1, 0, 1) + y(0, 1, 1) = (1, 2, 3). Solving the corresponding system one discovers
that the answer is affirmative. Hence u ∈ T0(V3). However in this case the set of v such that T (v) = u is
infinite (why?).
a = 2. In this case T (V3) = L(2v1 + 2v2, v1 + 2v2 + v3, 2v2 + 2v3). It is enough to take two generators (we
know that the dimension is smaller than three, and, since the geneators are non-parallel, it has to be equal
to two). For example, we can take v1 + v2 = (2, 1, 1) and v2 + v3 = (0, 0, 2). Again, we have to see if there
are x and y such that x(2, 1, 1) + y(0, 0, 2) = (1, 2, 3), which is impossible. hence u 6∈ T2(V3).
a = −2. In this case T (V3) = L(−2v1 + 2v2, v1 − 2v2 + v3, 2v2 − 2v3). Again, we can take two generators,
for example v1 − v2 = (0, 1,−1) and v2 − v3 = (2, 0, 0). Arguing as above, one sees that u 6∈ T−2(V3).
Summarizing, there is v ∈ V3 such that Ta(v) = u if and only if a 6= 2,−2. Such v is not unique if and only
if a = 0.

3. (a) Exhibit an example of a non-diagonal symmetric matrix in M2,2(R) whose eigenvalues are λ1 = 2 and
λ2 = −3. (b) Exhibit an example of a non-diagonal non-symmetric matrix in M2,2(R) whose eigenvalues
are λ1 = 2 and λ2 = −3. (c) Exhibit an example of non-block-diagonal symmetric matrix in M3,3(R) whose
eigenvalues are λ1 = 4, λ2 = −1, λ3 = −3.

Solution. (a) Perhaps the easy way is a s follows: let A =
(
a b
b d

)
. We want Tr(A) = a+ d = 2− 3 = 1

and det(A) = ad − b2 = 2(−3) = −6. We can set, for example, a = 1. Then, from the first equation,
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b = −2. Then, from the second equation, b2 = −2 + 6 = 4. Therefore we can take b = 2. In conclusion

A =
(

1 2
2 −2

)
is a symmetric matrix whose eingenvalues are 2 and −3.

(b) One can argue as above, with the difference that now we are looking for a matrix of the form
(
a b
c d

)
with b 6= c. In the same way, we find, for example,

(
1 1
4 −2

)
.

(c) Here one could proceed as above, but the computations are a bit more complicated. Another way (we can
be applied also to the previous question (a)) is as follows. We take an orthogonal basis B = {v1, v2, v3}, and

the matrix whose columns are v1, v2, v3, for example C =

 1 1 1
1 −1 1
1 0 −2

. We look for a matrix A having

v1 as eigenvector of 4, v2 as eigenvector of −1 and v3 as eigenvector of −3. Such a matrix must be symmetric
because the corresponding linear transformation TA is symmetric (this is becausemB′

B′
(TA) = diag(4,−1,−3)

is a symmetric matrix, where B′ is the orthogonal basis contained by B by dividing each vector by its norm).
Since

diag(4,−1,−3) = C−1AC

we will have
A = C diag(4,−1,−3)C−1

(to find A explicitly one has to compute C−1 and the product).

4. Let Q(x, y, z, t) = 2(xz + yt). Reduce Q to diagonal form. Exhibit a point of maximum and a point of
minimimum of Q on the unit sphere.

Solution. The associated matrix is A =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

. The characteristic polynomial is PA(λ) =

det


λ 0 −1 0
0 λ 0 −1
−1 0 λ 0
0 −1 0 λ

 =

= λ det

 λ 0 −1
0 λ 0
−1 0 λ

− det

 0 −1 0
λ 0 −1
−1 0 λ

 = λ2(λ2 − 1) + λ2 − 1 = (λ− 1)2(λ+ 1)2.

Therefore there are the two double eigenvalues λ1 = 1 and λ2 = −1. We have that E(1) is the space of

solutions of the homogeneous system
{
x− z = 0
y + t = 0 , that is L((1, 0, 1, 0), (0, 1, 0,−1) = L(v1, v2). Similarly

E(−1) = L((1, 0,−1, 0), (0, 1, 0, 1)) = L(v3, v4). Note that v1 and v2 (resp. v3 and v4 are already orthogo-
nal). Therefore one can take as orthonormal basis B = {(1/

√
2)v1, (1/

√
2)v2, (1/

√
2)v3, (1/

√
2)v4}. Letting

(x′, y′, z′, t′) the coodinates of (x, y, z, t) with respect to the basis B, we have that

Q(x, y, z, t) = x′
2 + y′

2 − z′2 − t′2.

A point of maximum of the form on the unit sphere is, for example, (1/
√

2)v1. A point of mininimum is, for
example, (1/

√
2)v3.

5. In the real linear space V = C([−1, 1]) with inner product < f, g >=
∫ 1

−1
f(t)g(t)dt, let f(x) = ex. Let

W = P2 be the linear subspace of V whose elements are polynomials of degree at most two. Find p ∈ W
and g ∈W⊥ such that f = p+ g.

Solution. p must be the projection of f on W and g = f − p. To find p we have to find an orthogonal basis
of W , say {p0, p1, p2}. Then p will be the sum of the projections of f on the pi’s:

p =
< f, p0 >

< p0, p0 >
p0 +

< f, p1 >

< p1, p1 >
p1 +

< f, p2 >

< p2, p2 >
p2 (1)
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A natural basis for W is {1, x, x2} = {w0, w1.w2} but this is not orthogonal: it is easily checked that
< w0, w1 >= 0 and < w1, w2 >= 0 but < w0, w2 >= 2/3 since

∫ 1

−1
t2dt = 2/3. Therefore we have

orthogonalize this basis according to Gram-Schmidt: we set

p0 = w0 = 1, p1 = w1 = x, and p2 = w2 −
< w2, p0 >

< p0, p0 >
p0 −

< w2, p1 >

< p1, p1 >
p1 = w2 − 1/3 = x2 − 1/3.

Now let us compute: < p0, p0 >= 2
< p1, p1 >=

∫ 1

−1
t2dt = 2/3.

< p2, p2 >=
∫ 1

−1
(t2 − 1/3)2dt = 2/5 + 4/9 + 2/9 = 2/5 + 2/3 = 16

15 .

< f, p0 >=
∫ 1

−1
etdt = e− e−1.

< f, p1 >=
∫ 1

−1
ettdt = ..byparts.. = 2e−1.

< f, p2 >=
∫ 1

−1
et(t2 − 1/3)dt = int1−1e

tt2dt− 1/3(e− e−1) = ..byparts.. = e− e−1 − 4e−1.

Plugging everything in (1) you will get the answer.
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