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Introduction

We work with irreducible projective varieties on an algebraically closed field of any charac-
teristic, henceforth called varieties. The contents of this paper are:
(1) a general criterion expressing the vanishing of the higher cohomology of a line bundle on a
Cohen-Macaulay variety in terms of a certain first-order conditions on hyperplane sections. Such
conditions involve gaussian maps and the criterion is a generalization of well known results on
hyperplane sections of K3 and abelian surfaces;
(2) using a relative version of the above criterion we prove the vanishing of higher direct images
of Poincaré line bundles of normal Cohen-Macaulay subvarieties of abelian varieties1. As it is well
known, this is equivalent to generic vanishing, a far-reaching result known to hold for compact
Kahler manifolds thanks to a celebrated theorem of Green and Lazarsfeld. Our generic vanish-
ing in turn implies a Kodaira-type vanishing for normal Cohen-Macaulay subvarieties of abelian
varieties, holding for line bundles which are restrictions of ample line bundles on the abelian variety.

While part (1) consists of an essentially complete result, point (2) is an example, in a techni-
cally simple case, of a more general algebraic approach to generic vanishing applicable, in principle,
to all varieties mapping to abelian varieties. This will be the object of forthcoming work. However,
one should keep in mind the work of Hacon and Kovacs [HacKo] where – by exploiting the relation
between generic and Grauert-Riemenschneider vanishing theorems – are shown examples of mildly
singular varieties (over C) and even smooth varieties (in characteristic p > 0) of dimension ≥ 3,
with a (separable) generically finite map to an abelian variety where generic vanishing fails2.

Now we turn to a more detailed presentation of the above topics.

0.1. Motivation: gaussian maps on curves and vanishing on surfaces. To introduce the
first part, we start from a particular case: the vanishing of the H1 of a line bundle on a surface in
terms of gaussian maps on a sufficiently positive curve of the surface. To begin with, let us recall
what classical gaussian maps are. Given a curve C and a line bundle A on C, denote MA the kernel
of the evaluation map H0(C,A)⊗OC → A. It comes equipped with a natural differentiation map
(of sections of A)

MA → Ω1
C ⊗A

Date: June 29, 2013.
1by Poincaré line bundle of a subvariety X of an abelian variety A we mean the pullback to X × Pic0A of a

Poincaré line bundle on A× Pic0A
2this disproved an erroneous theorem of a previous preprint of the author
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defined as
MA = p∗(I∆ ⊗ q∗A)→ p∗((I∆ ⊗A)|∆) = Ω1

C ⊗A
where p, q and ∆ are the projections and the diagonal of the product C×C. Twisting with another
line bundle B and taking global sections one gets the gaussian map (or Wahl map) of A and B:

γA,B : Rel(A,B) := H0(C,MA ⊗B)→ H0(C,Ω1
C ⊗A⊗B) 3

In our treatment it is more natural to set A = N ⊗ P and B = ωC ⊗ P∨ for some line bundles N
and P on the curve C, and to consider the dual map

(0.1) gN,P : Ext1
C(Ω1

C ⊗N,OC)→ Ext1
C(MN⊗P , P )

Note that gN,P can defined directly (even if ωC is not a line bundle) as Ext1
C(·, P ) of the differen-

tiation map of MN⊗P .

The relation with the vanishing of the H1 of line bundles on surfaces is in the following result,
whose proof follows closely arguments contained in the papers of Beaville and Merindol [BM] and
Colombo, Frediani and the author [CFP]. Let X be a Cohen-Macaulay surface and let Q a line
bundle on X. Let L a base point-free line bundle on X such that also L⊗Q is base point-free, and
let C a (reduced and irreducible) Cartier divisor in |L|, not contained in the singular locus of X.
Let NC = L|C be the normal bundle of C. We have the extension class

e ∈ Ext1
C(Ω1

C ⊗NC ,OC)

of the normal sequence
0→ N∨C → (Ω1

X)|C → Ω1
C → 0

We consider the (dual) gaussian map

(0.2) gNC ,Q|C : Ext1
C(Ω1

C ⊗NC ,OC)→ Ext1
C(MNC⊗Q, Q|C)

Theorem. (a) If H1(X,Q) = 0 then e ∈ ker(gNC ,Q|C ).
(b) If L is sufficiently positive4 then also the converse holds: if e ∈ ker(gNC ,Q|C ) then H1(X,Q) = 0.

Note that e is non-zero if L sufficiently positive. For example, if X is a smooth surface with trivial
canonical bundle and Q = OX then (a) says that if X is a K3 then e ∈ ker(gKC ,OC

). This is a result
of [BM]. Conversely, (b) says that if X is abelian and C is sufficiently positive then e 6∈ ker(gKC ,OC

).
This a result of [CFP].

The proof is a calculation with extension classes which can be explained more geometrically
as follows. Suppose that C is a curve in a surface X and that C is embedded in an ambient variety
Z. From the cotangent sequence

0→ I/I2 → (Ω1
Z)|C → Ω1

C → 0

(where I is the ideal of C in Z) one gets the long cohomology sequence

(0.3) · · · → HomC(I/I2, N∨C ) HZ→ Ext1
C(Ω1

C , N
∨
C ) GZ→ Ext1

C((Ω1
Z)|C , N

∨
C )→ · · ·

The problem of extending the embedding C ↪→ Z to the surface X has an easy first-order obstruc-
tion: as it is well known, if the divisor 2C on X, seen as a scheme, is embedded in Z, then it lives, as
embedded first-order deformation, in the Hom on the left5. The forgetful map HZ , disregarding the

3the source is denoted Rel(A,B) because it is the kernel of the multiplication of global sections of A and B
4this means that L is a sufficiently high multiple of a fixed ample line bundle on X. This condition can be made

explicit.
5more precisely, the ideal of 2C in Z induces the morphism of OZ-modules I/I2 → NC whose kernel is I2C/Z/I2,

see e.g. [BaF] or [Fe]
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embedding, takes it to the class of the normal sequence e ∈ Ext1
C(Ω1

C , N
∨
C ). Therefore e ∈ ker(GZ).

Now we specialize to the case when the ambient variety is a projective space, specifically:

Z = P(H0(C,NC ⊗Q)∨) := PQ
(in this informal discussion we are assuming, for simplicity, that the line bundle L ⊗ Q is very
ample). By the Euler sequence the map GPQ

is the dual gaussian map gNC ,Q|C of (0.2). Notice that
in this case there is the special feature that our extension problem can be relaxed to the problem
of extending the embedding of C in PQ to an embedding of the surface X in a possibly bigger
projective space P, containing PQ as a linear subspace. Since the restriction of Ω1

P to PQ splits, this
has the same first-order obstruction, namely e ∈ ker(gNC ,Q|C ).

The relation of all that with vanishing of the H1 is classical: the embedding of C in PQ can
be extended (in the relaxed sense above) to an embedding of X if and only if the restriction map
ρX : H0(X,L⊗Q)→ H0(C,NC ⊗Q) is surjective. This is implied by the vanishing of H1(X,Q),
so we get (a). The converse is more complicated: by Serre vanishing, if L is sufficiently positive
the vanishing of H1(X,Q) is equivalent to the surjectivity of the restriction map ρX , and also to
the surjectivity of the restriction map ρ2C : H0(2C, (L ⊗ Q)|2C) → H0(C,NC ⊗ Q), hence to the
fact that 2C lives in HomC(I/I2, N∨C ). Now if e is in the kernel of gNC ,Q|C = GPQ

then e comes
from some embedded deformations in HomC(I/I2, N∨C ). However these do not necessarily include
2C. A more refined analysis proves that this indeed the case as soon as L is sufficiently positive.

0.2. Gaussian maps on hyperplane sections and vanishing. Extending the Theorem to
higher dimension is a bit more complicated. The relevant case deals with the vanishing of the
Hn of line bundle on variety of dimension n+ 1 6. To this purpose, we consider ”hybrid” gaussian
maps as follows: let C be a curve in a n-dimensional variety Y and let AC be a line bundle on C.
The Lazarsfeld sheaf ([L]) is the kernel F YAC

of the evaluation map of AC , seen as a sheaf on Y :

H0(AC)⊗OY → AC

(note that F YAC
is never locally free if dimY ≥ 3). As above, it comes equipped with a differentiation

map
F YAC

→ Ω1
Y ⊗AC

If B is a line bundle on Y , we define the gaussian map of AC and B as

γYAC ,B
: Rel(AC , B) = H0(Y, FAC

⊗B)→ H0(Ω1
Y ⊗AC ⊗B)

As above, we will rather use the dual map

gYMC ,R
: ExtnY (Ω1

Y ⊗MC ,OY )→ ExtnY (FMC⊗R, R)

where MC is a line bundle on C and R a line bundle on Y such that B = ωY ⊗ R∨ and AC =
MC ⊗R. Again, this map can defined directly (even if ωC is not a line bundle) as Ext1

C(·, R) of the
differentiation map of MMC⊗R. The case n = 1 is recovered taking Y = C.

These maps can be extended to a relative flat setting. In this paper we consider only the
simplest case, namely a family of line bundles on a fixed variety Y , as this is the only one needed in
the subsequent applications. In the notation above, let T be a another projective CM variety (or

6If 0 < k < n then, by Serre vanishing, Hk(X,Q) ∼= Hk(Y,Q|Y ), where Y is a sufficiently positive k+1-dimensional
hyperplane section. Hence this case can be reduced to the previous one.

Note: one could think to consider the equality hn(X,Q) = h1(X,ωX⊗Q∨) and then reduce, as above, to a surface.
However, this is not possible in the relative case, since in general there is no Serre duality isomorphism of the direct
images. Even in the non-relative case the resulting criterion is usually more difficult to apply
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scheme), and let R be a line bundle on Y ×T . Let ν and π denote the two projections, respectively
on Y and T . We can consider the relative Lazarsfeld sheaf FYMC ,R, kernel of the relative evaluation
map

π∗π∗(R⊗ ν∗MC)→ R⊗ ν∗MC

where, as above, we see MC as a sheaf on Y . The OY×T -module F is a equipped with the
differentiation map (see Subsection 1.1 below)

(0.4) FYMC ,R → ν∗(Ω1
Y ⊗MC)⊗R

Applying ExtnY×T ( · ,R) and restricting to the direct summand ExtnY (Ω1
Y ⊗MC ,OY ) we get the

(dual) gaussian map

gYMC ,R : ExtnY (Ω1
Y ⊗MC ,OY )→ ExtnY×T (FYMC ,R ,R)

The announced generalization of the above Theorem is as follows. Let X be a n + 1-
dimensional Cohen-Macaulay variety, let T be another CM variety, and let Q be a line bundle
on X × T . Let be L a line bundle on X, with n divisors Y1, . . . , Yn ∈ |L| such that their
intersection is an integral curve C not contained in the singular locus of X. We assume also
that the line bundle ν∗L⊗n ⊗ Q is relatively base point-free, namely the relative evaluation map
π∗π∗(ν∗L⊗n ⊗ Q) → ν∗L⊗n ⊗ Q is surjective. Let NC denote the line bundle L|C . We choose a
divisor among Y1, . . . , Yn, say Y = Y1, such that C is not contained in the singular locus of Y . We
consider the ”restricted normal sequence”

(0.5) 0→ N∨C → (Ω1
X)|C → (Ω1

Y )|C → 0

Since

(0.6) Ext1
C(Ω1

Y ⊗NC ,OC) ∼= ExtnY (Ω1
Y ⊗N⊗nC ,OY )

(see Subsection 1.1 below) we can see the class e of (0.5) as belonging to ExtnY (Ω1
Y ⊗ N

⊗n
C ,OY ).

Finally, we consider the dual gaussian map

(0.7) gN⊗n
C ,Q|Y×T

: ExtnY (Ω1
Y ⊗N⊗nC ,OY )→ ExtnY×T (FY

N⊗n
C ,Q|Y×T

,Q|Y×T )

Then we have the following result, recovering part (b) the previous theorem as the case n = 1 and
T = {point}

Theorem A. If L is sufficiently positive and e ∈ ker(gY
N⊗n

C ,Q|Y×T
) then Rnπ∗Q = 0.

The relative case will be especially interesting for us because the vanishing of Riπ∗Q for i ≤ n
means generic vanishing (see below).

Concerning the other implication what we can prove is

Proposition B. (a) Assume that T = {point}. If Hn(X,Q) = 0 then e ∈ ker(gN⊗n
C ,Q|Y ).

(b) In general, assume that Riπ∗(Q|Y×T ) = 0 for i < n. If Rnπ∗Q = 0 then e ∈ ker(gY
N⊗n

C ,Q|Y×T
).

To motivate these statements, let us go back to the previous informal discussion. We assume
for simplicity that T = {point}. Let X be a n+1-dimensional variety and C a curve in X as above.
By the Koszul resolution of the ideal of C and Serre vanishing, the vanishing of Hn(X,Q) implies
the surjectivity of the restriction map ρX : H0(X,L⊗n ⊗ Q) → H0(C,N⊗nC ⊗ Q), and it is in fact
equivalent to that as soon as L is sufficiently positive. Hence it is natural to look for first order
obstructions to extending an embedding of the curve C (a 1-dimensional complete intersection of
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linearly equivalent divisors of X) into PQ = P(H0(C,N⊗nC ⊗ Q)∨) to X. More generally, we can
consider the same problem for any given ambient variety Z, rather than projective space. However,
to find a first-order obstruction one cannot anymore replace X with the first order neighborhood of
C in X. We rather have to pick a divisor in |L| containing C, say Y = Y1 and replace X with the
scheme 2Y ∩ Y2 ∩ · · · ∩ Yn. In analogy with the case of curves on surfaces, it is natural to consider
the long cohomology sequence

(0.8) · · · → HomC(IY /I2
Y , N

∨
C )

HY
Z→ Ext1

C((Ω1
Y )|C , N

∨
C )

GY
Z→ Ext1

C((Ω1
Z)|C , N

∨
C )→ · · ·

(where IY is the ideal of Y in Z). As above, a necessary condition for the lifting to X of the
embedding of C ↪→ Z is that the ”restricted normal class” e of (0.5) belongs to ker(GYZ ).

However note that, differently from the case when X is a surface, when Z = PQ the map
gN⊗n

C ,Q|Y
is not GYPQ

, but rather a more complicated ”hybrid” version of gaussian map. The reason
is that, looking for sufficient conditions (the most interesting for us) for the lifting to X of the
embedding C ↪→ PQ, one cannot assume that the divisor Y is already embedded in PQ.

The following version of the vanishing criterion provided by Theorem A is technically easier
to apply

Corollary C. Keeping the notation of Theorem A, if the line bundle L is sufficiently positive then
the kernel of the map gY

N⊗n
C ,Q|Y×T

is at most 1-dimensional (spanned by e). Therefore if gY
N⊗n

C ,Q|Y×T

is non-injective then Rnπ∗Q = 0.

Again, in the particular case T = {point}, and X is a surface with trivial canonical bundle
this says that the dual gaussian map gωC ,OC

is not injective if and only if X is a K3 surface, which
is well known by the result of Wahl (see [W]) and [CFP] Thm B.

0.3. Generic vanishing for subvarieties of abelian varieties. Although difficult – if not im-
possible – to use in most cases, the above results can be applied in some very special circumstances.
For example, in analogy with the literature on curves sitting on K3 surfaces and Fano 3-folds, or
Enriques surfaces and Enriques-Fano 3-folds (see for example [W], [BM],[V], [CLM], [KLM]) Propo-
sition B can supply non-trivial necessary conditions for a n-dimensional variety to sit in some very
special n+ 1-dimensional varieties.

However in this paper we rather focus on the sufficient condition for vanishing provided by
Theorem A and Corollary C, as it provides an algebraic approach to generic vanishing, a far-
reaching concept introduced by Green and Lazarsfeld in the papers [GL1] and [GL2]. Namely we
consider a variety X with a map to an abelian variety, generically finite onto its image

(0.9) a : X → A

Denoting Pic0A = Â the dual variety, we consider the pullback to X × Â of a Poincaré line bundle
P on A× Â:

(0.10) Q = (a× id bA)∗P
We keep the notation of the previous section. In particular we denote ν and π the projections of
X × Â. A first way of expressing generic vanishing is the vanishing of higher direct images

(0.11) Riπ∗Q = 0 for i < dimX

For smooth varieties over the complex numbers (0.11) was proved (as a particular case of a more
general statement) by Hacon ([Hac]), settling a conjecture of Green and Lazarsfeld. Another way
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of expressing the generic vanishing condition is the original one of Green and Lazarsfeld [GL1] and
[GL2]. This involves the cohomological support loci

V i
a (X) = {α ∈ Pic0A | hi(X, a∗α) > 0} .

Green-Lazarsfeld’s theorem is that, if the map a is generically finite, then

(0.12) codim bA V i
a (X) ≥ dimX − i 7.

It is easy to see that (0.11) implies (0.12). Subsequently, it has been observed in [PP1] and [PP2]
that (0.11) is equivalent to (0.12)8. The heart of Hacon’s proof of (0.11) consists in a clever reduction
to Kodaira-Kawamata-Viehweg vanishing. The argument of Green and Lazarsfeld for (0.12) uses
Hodge theory. On the other hand a characteristic-free example of both (0.11) and (0.12) is given
by abelian varieties themselves ([M] p.127). Here we show that (0.11) (and, therefore, (0.12)) holds
for normal Cohen-Macaulay subvarieties of abelian varieties on an algebraically closed field of any
characteristic

Theorem D. In the above notation, assume that X is normal Cohen-Macaulay and the morphism
a is an embedding. Then Riπ∗Q = 0 for all i < dimX.

The strategy of the proof consists of course in applying Theorem A to the Poincaré line
bundle Q. In order to do so we take a general complete intersection C = Y ∩ Y2 ∩ · · · ∩ Yn of X,
with Yi ∈ |L|, where, as above, L is a sufficiently positive line bundle on X and n+1 = dimX. The
main issue of the argument consists in comparing two spaces of first-order deformations: the first
is the kernel of the gaussian map gN⊗n

C ,Q
Y× bA . The second is the kernel of the map GYZ of (0.8) with

Z = A 9 (by (0.6) the two maps have the same source). As in the discussion following Theorem
A, the variety X ⊂ A induces naturally, via the restricted normal extension class e, a non trivial
element of kerGYA . In view of Corollary C, to get the vanishing of Rnπ∗Q it is enough to prove that
the intersection of kerGYA and ker gN⊗n

C ,Q|Y× bA is non-zero. This analysis is accomplished by means

of the Fourier-Mukai transform associated to the Poincarè line bundle10. In doing this we were
inspired by the classical papers [Mu1] and [Ke] where it is solved the conceptually related problem
of comparing the first-order embedded deformations of a curve in its jacobian and the first-order
deformations of the Picard bundle on the dual. The vanishing of Riπ∗Q for i < n follows from this
step, by reducing to a sufficiently positive i+ 1-dimensional hyperplane section.

Note that conditions (0.12) can be expressed dually as

codimPic0A{α ∈ Pic0A | hi(ωX ⊗ α) > 0 } ≥ i for all i > 0

According to the terminology of [PP2], this is stated saying that the dualizing sheaf ωX is a GV-
sheaf. As a first application we note that, combining with Proposition 3.1 of [PP3] (”GV tensor
IT0 = IT0”) we get the following Kodaira-type vanishing

Corollary E. Let X be a normal Cohen-Macaulay subvariety of an abelian variety A, and let L
be an ample line bundle on A. Then H i(X,ωX ⊗ L) = 0 for all i > 0.

7In general, if the map a is not generically finite, Hacon’s and Green-Lazarsfeld’s theorems are respectively
Riπ∗Q = 0 for i < dim a(X) and codimPic0A V

i
a (X) ≥ dim a(X) − i. However this can be reduced to the case of

generically finite a by taking sufficiently positive hyperplane sections of dimension equal to the rank of a
8in [PP2] this is stated only in the smooth case, but this hypothesis is unnecessary
9this is simply the dual of the multiplication map V ⊗ H0(NC ⊗ ωC) → H0(Ω1

Y ⊗ NC ⊗ ωC), where V is the
cotangent space of A at the origin

10we remark, incidentally, that (0.11) for abelian varieties is key point assuring that the Fourier-Mukai transform
is an equivalence of categories
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1. Proof of Theorem A and Proposition B

1.1. Preliminaries. The proof consists in a computation with extension classes, similar to the one
of [CFP] Lemma 3.1. The geometric explanation of the argument is outlined in the Introduction
(Subsections 0.1 and 0.2). In the first place, some warning about the notation:

Notation 1.1. We have the three varieties C ⊂ Y ⊂ X (respectively of dimension 1, n and n+ 1).
The projections of X × T on X and T are denoted respectively ν and π. It will make a difference
to consider the relative evaluation maps of a sheaf A on C × T seen as a sheaf on Y × T , or on
X × T , or on C × T itself: their kernels are the various different Lazarsfeld sheaves attached to A
in different ambient varieties. Therefore we denote

πY = π|Y×T πC = π|C×T

For example, on Y × T we have

(1.1) 0→ FYA,Q|Y×T
→ π∗Y π∗(Q⊗ ν∗A)→ Q⊗ ν∗A

and on X × T

(1.2) 0→ FXA,Q → π∗π∗(Q⊗ ν∗A)→ Q⊗ ν∗A

Next, we clarify a few points appearing in the statements.

The differentiation map (0.4). We describe explicitly the differentiation map (0.4) mentioned
in the Introduction. We keep the notation there: MC is a line bundle on the curve C while R is
a line bundle on Y × T . Now let p,q and ∆̃ denote the two projections and the diagonal of the
fibred product (Y × T )×T (Y × T ). Concerning the Lazarsfeld sheaf FYMC ,R we claim that there is
a canonical isomorphism

(1.3) FYMC ,R
∼= p∗(Ie∆ ⊗ q∗(R⊗ ν∗MC))

Admitting the claim, the differentiation map (0.4) is defined as usual, as p∗ of the restriction to ∆̃.
The isomorphism (1.3): in the first place p∗(Ie∆⊗ q∗(R⊗ ν∗MC) is the kernel of the map (p∗ of the
restriction map)

r : p∗q∗(R⊗ ν∗MC)→ p∗q
∗((R⊗ ν∗MC)|e∆) ∼= R⊗ ν∗MC

(it is easily seen that the sequence 0→ Ie∆ → OY×TY → Oe∆ → 0 remains exact when restricted to
(Y × T )×T (C × T )). To prove (1.3) we note that, by flat base change,

π∗|Y π∗(Q⊗ ν
∗MC) ∼= p∗q

∗(Q⊗ ν∗MC)

and, via such isomorphism, the map r is identified to the relative evaluation map.

The isomorphism (0.6). This follows from the spectral sequence

ExtiC(Ω1
Y ⊗N⊗nC , ExtjY (OC ,OY ))⇒ Exti+jY (Ω1

Y ⊗N⊗nC ,OY )
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using that, being C the complete intersection of n− 1 divisors in |L|Y |, Ext
j
Y (OC ,OY ) = N⊗n−1

|C if
j = n − 1 and zero otherwise. Seeing the elements of Ext-groups as higher extension classes with
their natural multiplicative structure (Yoneda Ext’s, see e.g. [E] p. 652–655), we denote

(1.4) KYC ∈ Extn−1
Y (OC , L⊗−(n−1)

|Y )

the extension class of the Koszul resolution of OC as OY -module

(1.5) 0→ L
⊗−(n−1)
|Y → · · · → (L⊗−1

|Y )⊕n−1 → OY → OC → 0 .

Then the multiplication with KYC

Ext1
C(Ω1

Y ⊗NC ,OC)
·KY

C→ ExtnY (Ω1
Y ⊗N⊗nC ,OY )

is an isomorphism (coinciding, up to scalar, with (0.6)).

1.2. Statement of first step and proof of Proposition B.

Notation 1.2. From this point we will adopt the hypotheses and the notation of Theorem A. We
also adopt the following typographical abbreviations:

FY = FY
N⊗n

C ,Q|Y×T
FX = FX

N⊗n
C ,Q g = gN⊗n

C ,Q|Y×T
.

The first, and most important, step of the proof consists of an explicit calculation of the class
g(e) of the statement of Theorem A and Proposition B. This is the content of Lemma 1.3 below.
The strategy is as follows. Applying ExtnY×Y ( · ,Q|Y×T ) to the basic sequence

0→ FY → π∗Y π∗(Q⊗ ν∗N⊗nC )→ Q⊗ ν∗N⊗nC → 0

(namely (1.1) for A = N⊗nC and R = Q|Y×T ) we get the following diagram with exact row
(1.6)

ExtnY×T (Q⊗ ν∗N⊗nC ,Q|Y×T ) h // ExtnY×T (π∗|Y π∗(Q⊗ ν
∗N⊗nC ),Q|Y×T ) f // ExtnY×T (FY ,Q|Y×T )

ExtnY (Ω1
Y ⊗N

⊗n
C ,OY )

g

OO

We will produce a certain class b in the source of f , namely

(1.7) b ∈ ExtnY×T (π∗|Y π∗(Q⊗ ν
∗N⊗nC ),Q|Y×T )

such that its coboundary map

δb : π∗(Q⊗ ν∗N⊗nC )→ Rnπ∗(Q|Y×T )

is the composition

(1.8) π∗(Q⊗ ν∗N⊗nC ) α //

δb

((QQQQQQQQQQQQQ
Rnπ∗(Q)

β

��
Rnπ∗(Q|Y×T )

where the horizontal map α is the coboundary map of the natural extension of OX×T -modules

(1.9) 0→ Q→ · · · → (Q⊗ ν∗L⊗n−1)⊕n → Q⊗ ν∗L⊗n → Q⊗ ν∗N⊗nC → 0
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(ν∗ of the Koszul resolution of OC as OX -module, twisted by Q⊗ ν∗L⊗n) and the vertical map β
is simply Rnπ∗ of the restriction map:

Rnπ∗(Q)→ Rnπ∗(Q|Y×T )

Then main Lemma is

Lemma 1.3. f(b) = g(e).

Note that this will already prove Proposition B. Indeed, if T = {point} then the space of
(1.7) is

(1.10) ExtnY (H0(C,Q⊗ ν∗N⊗nC )⊗OY ,Q|Y ) ∼= Homk(H0(C,Q⊗ ν∗N⊗nC ), Hn(Y,Q|Y ))

hence the class b coincides, up to scalar, with its coboundary map δb. If Hn(X,Q) = 0 then δb = 0.
Then the Lemma says that g(e) = 0, proving Proposition B in this case. If dimT > 0 we consider
the spectral sequence

ExtiT (π∗(Q⊗N⊗nC ) , Rjπ∗(Q|Y×T ))⇒ Exti+jY×T (π∗Y π∗(p
∗(Q⊗ ν∗N⊗nC )) , Q|Y×T ).

coming from the isomorphism

RHomT (π∗(Q⊗N⊗nC ) , Rπ∗(Q|Y×T )) ∼= RHomY×T (π∗Y π∗(p
∗(Q⊗ ν∗N⊗nC )) , Q|Y×T )

Since we are assuming that Riπ∗(Q|Y×T ) = 0 for i < n then the spectral sequence degenerates
providing an isomorphism as (1.10) and Proposition B follows in the same way. �

Definition of the class b of (1.7). We consider the exact complex of OX×T -modules (1.9).
Composing with the relative evaluation map of Q⊗ ν∗N⊗nC (seen as a sheaf on X × T )

π∗π∗(Q⊗ ν∗N⊗nC )→ Q⊗ ν∗N⊗nC
we get the exact complex

(1.11) 0→ Q→ · · · → (Q⊗ ν∗L⊗n−1)⊕n → E → π∗π∗(Q⊗ ν∗N⊗nC )→ 0

where E is a OX×T -module. Since toriX×T (π∗π∗(Q ⊗ ν∗N⊗nC ), ν∗OY ) = 0 for i > 0, restricting
(1.11) to Y × T we get an exact complex of OY×T -modules

(1.12) 0→ Q|Y×T → · · · → (Q⊗ ν∗L⊗n−1)⊕n|Y×T → E|Y×T → π∗Y π∗((Q⊗ ν∗N⊗nC ))→ 0

We define the class b of (1.7) as the extension class of the exact complex (1.12). The assertion
about its coboundary map follows from its definition.

1.3. Proof of Lemma 1.3. We first compute g(e) 11. The exact sequences defining FX and FY
(see Notation 1.2) fit into the commutative diagram

0 // FX

��

// π∗π∗(Q⊗ ν∗N⊗nC )

��

// Q⊗ ν∗N⊗nC //

=

��

0

0 // FY // π∗Y π∗(Q⊗ ν∗N
⊗n
C ) // Q⊗ ν∗N⊗nC // 0

yielding, after restricting the top row to Y × T , the exact sequence

(1.13) 0→ Q⊗ ν∗N⊗n−1
C → (FX)|Y×T → FY → 0

where the sheaf on the left is torOX×T

1 (Q⊗ ν∗N⊗nC ,OY×T ).

11This argument follows [V] p. 252)
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This sequence in turn fits into the commutative diagram with exact rows

0 // Q⊗ ν∗N⊗n−1
C

//

=

��

(FX)|Y×T //

��

FY //

��

0

0 // Q⊗ ν∗N⊗n−1
C

// Q⊗ ν∗(Ω1
X ⊗N

⊗n
C ) // Q⊗ ν∗(Ω1

Y ⊗N
⊗n
C ) // 0

where the class of the bottow row is e ∈ ν∗Ext1
C(Ω1

Y ⊗NC ,OC) It follows that g(e) (where now e is
seen in ν∗(ExtnY (Ω1

Y ⊗N
⊗n
C ,OY )), see (0.6) and Subsection 1.1) is the class of the sequence (1.13)

with ν∗ of the Koszul resolution of OC , as OY -module, (tensored with Q ⊗ ν∗N⊗nC ) attached on
the left:

(1.14) 0→ Q|Y×T → · · · → (Q⊗ ν∗L⊗n−2
|Y )⊕n−1 → (Q⊗ ν∗L⊗n−1

|Y )→ (FX)|Y×T → FY → 0 .

Next, we compute f(b). The exact complex (1.11) is the middle row of the commutative
exact diagram

(1.15) 0

��

0

��
FX

��

= // FX

��
0→ Q→ · · · → (Q⊗ ν∗L⊗n−1)⊕n

=

��

// E //

��

π∗π∗(Q⊗ ν∗N⊗nC )

��

// 0

0→ Q→ · · · → (Q⊗ ν∗L⊗n−1)⊕n // Q⊗ ν∗L⊗n

��

// Q⊗ ν∗N⊗nC

��

// 0

0 0

This provides us with the commutative exact diagram
(1.16)

0

��

0

��
0→ Q|Y×T → · · · → (Q⊗ ν∗L⊗n−2

|Y )⊕n−1 → Q⊗ ν∗L⊗n−1
|Y

// (FX)|Y×T //

��

FY //

��

0

E|Y×T // π∗Y π∗(Q⊗ ν∗N
⊗n
C ) // 0

where the long row is (1.14), whose class is g(e).

Next we claim that the exact complex (1.12) defining the class b is equivalent, as extension,
to the exact complex:
(1.17)

0→ Q|Y×T → · · · → (Q⊗ ν∗L⊗n−2
|Y )⊕n−1 → Q⊗ ν∗L⊗n−1

|Y → E|Y×T → π∗Y π∗(Q⊗ ν∗N⊗nC )→ 0
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Admitting this for the time being, we can complete diagram (1.16) as follows
(1.18)

0→ Q|Y×T · · · → (Q⊗ ν∗L⊗n−2
|Y )⊕n−1 → Q⊗ ν∗L⊗n−1

|Y
//

=

��

(FX)|Y×T //

��

FY //

��

0

0→ Q|Y×T · · · → (Q⊗ ν∗L⊗n−2
|Y )⊕n−1 → Q⊗ ν∗L⊗n−1

|Y
// E|Y×T // π∗Y π∗(Q⊗ ν∗N

⊗n
C ) // 0

The class of the bottow row is b. By definition, the class of the top row is f(b), and it is equal to
g(e). This proves Lemma 1.3.

Finally, we prove the claim. For n = 1, i.e. C = Y there is nothing to prove. For n > 1,
since C = Y1 ∩ · · · ∩ Yn, with Yi ∈ |L| and Y = Y1, restricting the ideal sheaf IC/X to Y one
gets a sheaf with a torsion part, namely IC/Y ⊕N−1

C . Accordingly the Koszul resolution of IC/X ,
0 → K•X → IC/X → 0, restricted to Y , splits as the direct sum sum of the Koszul resolution of
IC/Y :

0→ K•Y → IC/Y → 0

and of the twisted Koszul resolution

0→ K•Y ⊗ L−1
|Y → L−1

|Y → N−1
C → 0

shifted by one. At this point the claim follows from the fact that, restricting the exact complex (1.11)
to Y , in the ”tail” of (1.12) namely the exact complex 0 → Q|Y×T → · · · → (Q ⊗ ν∗L⊗n−1)⊕n|Y×T
one can eliminate the part corresponding to the resolution of IC/Y . �

1.4. Conclusion of the Proof of Theorem A. The last step is

Lemma 1.4. We keep the notation and setting of Lemma 1.3. Assume that the line bundle L on
X is sufficiently positive. If f(b) = 0 then b = 0.

Assuming this, Theorem A follows: if g(e) = 0 then, by Lemmas 1.3 and 1.4 it follows that
b = 0, hence its coboundary map δb = β ◦ α is zero (see (1.8)). Taking L sufficiently positive, it
follows easily from relative Serre vanishing that α is surjective and β is injective. Therefore the
map δb is zero if and only if its target, namely Rnπ∗(Q), is zero. �

Proof. (of Lemma 1.4) The proof is a somewhat tedious repeated application of Serre vanishing.
From the basic exact sequence of diagram (1.6) we have that if f(b) = 0 then there is a

c ∈ ExtnY×T (Q⊗ ν∗N⊗n|C ,Q|Y×T )

such that

(1.19) h(c) = b .



12 G. PARESCHI

Now we consider the commutative diagram

(1.20) ExtnY×T (Q⊗ ν∗N⊗nC ,Q|Y×T ) r //

h
��

ExtnX×T (Q⊗ ν∗L⊗n,Q|Y×T )

h′

��
ExtnY×T (π∗Y π∗(Q⊗ ν∗N

⊗n
C ),Q|Y×T ) s //

µ

��

ExtnX×T (π∗π∗(Q⊗ ν∗L⊗n),Q|Y×T ))

µ′

��
HomT (π∗(Q⊗ ν∗N⊗nC ), Rnπ∗(QY×T )) t // HomT (π∗(Q⊗ ν∗L⊗n)), Rnπ∗(Q|Y×T ))

where:
(a) h is as above and h′ is the analogous map ExtnX(evX ,Q|Y×T ), where evX is the relative
evaluation map on X × T : π∗π∗(Q⊗ ν∗L⊗n)→ Q⊗ ν∗L⊗n ;
(b) µ is the map taking an extension to its coboundary map. Consequently the map µ ◦ h takes
an extension class e ∈ ExtnY×T (Q⊗ ν∗N⊗nC )QY×T ) to its coboundary map

π∗(Q⊗ ν∗N⊗nC )→ Rnπ∗(Q|Y×T )

The map µ′ ◦ h′ operates in the same way;
(c) notice that the target of r is simply Hn(ν∗L⊗−n|Y×T ), i.e. ExtnY×T (ν∗L⊗n|Y ,OY×T ). Therefore r is
the natural map ExtnY×T ((ν∗L⊗n)|C ,OY×T )→ ExtnY×T (ν∗L⊗n|Y ,OY×T );
(d) s and t are the natural maps.

We know that the coboundary map of b, factorizes through the natural coboundary map
α : π∗(Q⊗ ν∗N⊗nC )→ Rnπ∗(Q). This precisely implies that t ◦ µ(b) = 0. Therefore (1.19) implies
that µ′ ◦ h′ ◦ r(c) = 0. The Lemma follows from the fact that r and µ′ ◦ h′ are injective.

Injectivity of r: if n = 1, i.e. Y = C, r is just the identity (compare (c) above). If n > 1, from
chasing in the Koszul resolution of OC as OY -module it follows that the injectivity of r holds as soon
as Extn−iY×T (ν∗L⊗n−i|Y ,OY×T ) = 0 for i = 1, . . . , n−1. But these are simply Hn−i(Y ×T, L⊗i−n|Y �OT )
and the result follows easily from Künneth decomposition, Serre vanishing and Serre duality.

Injectivity of µ′ ◦ h′: We have that ExtnX×T (Q⊗ ν∗L⊗n,Q|Y×T ) ∼= Hn(Y × T, L−n|Y �OT ).
If L is a sufficiently positive, it follows as above that this is isomorphic to
Hn(Y,L−n|Y )⊗H0(T,OT ). Therefore µ′◦h′ is identified to the H0 of the following map ofOT -modules

(1.21) Hn(Y,L−n|Y )⊗OT → HomT (π∗(Q⊗ ν∗L⊗n), Rnπ∗(Q|Y×T ))

Since the source is torsion-free, the injectivity of µ′ ◦ h′ holds as soon as (1.21) is injective at a
general fiber. For a closed point t ∈ T , let Qt = Q|X×{t}. By base change, for t general, the map
(1.21) at the fiber over t is

(1.22) Hn(Y,L⊗−n|Y )→ H0(X,Qt ⊗ L⊗n)∨ ⊗Hn(Y,Qt|Y ).

that is the the Serre-dual of the multiplication map of global sections

(1.23) H0(X,Qt ⊗ L⊗n)⊗H0(Y, (ωX ⊗Q−1
t ⊗ L)|Y )→ H0(Y, (ωX ⊗ L⊗n+1)|Y ).

At this point a standard argument with Serre vanishing shows that (1.23) is surjective as soon as
L is sufficiently positive. This will proves the injectivity of µ′ ◦ h′. This concludes also the proof of
the Lemma. �
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2. Proof of Corollary C

The deduction of Corollary C from Theorem A is a standard argument with Serre vanishing.
However, there are some complications due to the weakness of the assumptions on the singularities
of the variety X.

Definition of the gaussian map on the ambient variety X×T. The argument makes use
of a (dual) gaussian map defined on the ambient variety X × T itself. Namely, for a line bundle A
on X we define MX

A,Q as the kernel of the relative evaluation map

π∗π∗(Q⊗ ν∗A)→ Q⊗ ν∗A

As in (0.4) and Subsection 1.1 there is the isomorphism

(2.1) MX
A,Q
∼= p∗(Ie∆X

⊗ q∗(Q⊗ ν∗A))

and the differentiation map MX
A,Q → Q⊗ ν∗(Ω1

X ⊗A).

Now, taking as A = L⊗n and taking Extn+1
X×T ( · ,Q⊗ ν∗L∨) we get the desired dual gaussian

map on X:
gX : Extn+1

X (Ω1
X ⊗ L⊗n+1,OX)→ Extn+1

X×T (ML⊗n,Q, Q⊗ ν∗L∨) .

First step. We consider the commutative diagram

(2.2) ExtnY (Ω1
Y ⊗N

⊗n
C ,OY )

g //

µ

��

ExtnY×T (FY
N⊗n

C ,Q|Y×T
,QY×T )

η

��

Extn+1
X (Ω1

X ⊗ L⊗n+1,OX)
gX // Extn+1

X×T (MX
L⊗n,Q,Q⊗ ν

∗L∨)

where, as in the previous section, g denotes the main character, namely the (dual) gaussian map
gN⊗n

C ,QY×T
. The maps µ and η are the natural ones, and the definition is left to the reader. However

such maps are most easily seen by considering the commutative diagram

(2.3) Hq(X × T,MX
L⊗n,Q ⊗Q

∨ ⊗ ν∗(ωX ⊗ L))
g′X //

η′

��

H0(X,Ω1
X ⊗ L⊗n+1 ⊗ ωX)

µ′

��
Hq(Y × T,FY

N⊗n
C ,Q ⊗Q

∨ ⊗ ν∗ωY ) g′ // H0(Y,Ω1
Y ⊗ L⊗n ⊗ ωY )

where q = dimT . (Note that, since X is Cohen-Macaulay, adjunction formulas for dualizing sheaves
do hold. Incidentally we note also that, if X is Gorenstein, then (2.3) is the dual of diagram (2.2).

As it is easy to see, after tensoring with ωC⊗NC the restricted normal sequence (0.5) remains
exact:

(2.4) 0→ ωC → Ω1
X ⊗ L⊗ ωC → Ω1

Y ⊗NC ⊗ ωC → 0

Therefore e defines naturally a linear functional on H0(Ω1
Y ⊗NC ⊗ωC) (compare also (2.9) below),

still denoted by e. We have

Claim 2.1. If L is sufficiently positive, then the map g′X is surjective, while cokerµ′ is one-
dimensional since (cokerµ′)∨ is spanned by e.
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Proof. The Claim for µ′ follows immediately from the exact sequence (2.4). This is because Serre
vanishing ensures the surjectivity of the restriction

H0(Ω1
X ⊗ L⊗n ⊗ ωX)→ H0(Ω1

X ⊗ L⊗ ωC).

Concerning the surjectivity of the map g′X , we first note that by Serre vanishing,

(2.5) Rip∗(Ie∆X
⊗ q∗(ν∗L⊗n ⊗Q)) =

{
0 for i > 0
locally free for i = 0

Now we project on T . A standard computation using (2.5), base-change and Serre vanishing, Leray
spectral sequence and Künneth decomposition show that the map g′X is identified to
(2.6)
Hq
(
T, π∗

(
p∗
(
Ie∆X

⊗ q∗(ν∗L⊗n ⊗Q)
)
⊗ ν∗L⊗Q−1 ⊗ ωX×T

))
→ Hq(T,H0(X,Ω1

X ⊗ L⊗n+1)⊗ ωT ))

This the Hq of a map of coherent sheaves on the q-dimensional variety T . Hence the surjectivity
of (2.6) is implied by the generic surjectivity of the map of sheaves itself. By base change, at a
generic fibre X × t the map of sheaves is the gaussian map

γt : H0(X, p∗(I∆X
⊗ q∗(L⊗n ⊗Qt))⊗ L⊗Q−1

t ⊗ ωX)→ H0(X,Ω1
X ⊗ L⊗n+1 ⊗ ωX)

The map γt is defined by restriction to the diagonal in the usual way. Once again it follows from
relative Serre vanishing (on (X × T ) ×T (X × T )) that, as soon as L is sufficiently positive, γt is
surjective for all t. This proves the surjectivity of the g′X and concludes the proof of the Claim. �

Last step. If C is Gorenstein, Claim 2.1 achieves the proof of Corollary C. Indeed, diagram
(2.2) is dual to diagram (2.3) and it follows that the kernel of our map g = gY

N⊗n
C ,Q is at most

one-dimensional, spanned by e. In the general case, Corollary C follows in the same way once
proved the following

Claim 2.2. As soon as L is sufficiently positive, the maps g′X and µ′ are respectively Serre-dual of
the maps gX and µ.

Proof. To prove this assertion for g′X we note that, concerning its source, by (2.5) the sheafMX
L⊗n,Q

is locally free. Therefore

Extn+1
X×T (MX

L⊗n,Q,Q⊗ ν
∗L∨) ∼= Hq(MX

L⊗n,Q ⊗Q⊗ ν
∗ωX)

Next, we show the Serre duality

(2.7) H0(X,Ω1
X ⊗ ωX ⊗ L⊗n+1)∨ ∼= Extn+1

X (Ω1
X ⊗ L⊗n, L−1)

Indeed, since, by definition of dualizing complex ([H], Ch.V,§2, Prop. 2.1 at p. 258) in the derived
category of X, OX = RHom(ωX , ωX), we have that

RHomX(Ω1
X ⊗ L⊗n+1,OX) = RHomX(Ω1

X ⊗ L⊗n+1,RHom(ωX , ωX)) =

= RHomX((Ω1
X ⊗OX ⊗ L⊗n+1)⊗LωX , ωX)

By Serre-Grothendieck duality, this is isomorphic to

(2.8) RHomk(RΓ(X, (Ω1
X ⊗ L⊗n+1)⊗LωX [n+ 1]), k)

The spectral sequence computing RΓ(X, (Ω1
X ⊗ L⊗n+1)⊗LωX) degenerates to the isomorphisms

H i(X,Ω1
X ⊗ L⊗n+1⊗LωX) ∼=

⊕
i

H0(X, torXi (Ω1
X , ωX)⊗ L⊗n+1)
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(if L is sufficiently positive, by Serre vanishing there are only H0’s). Therefore (2.7) follows. This
proves the Claim for g′X .

Concerning µ′, at this point it is enough to prove the Serre duality

(2.9) ExtnY (Ω1
X |C ⊗ L

n,OY ) ∼= Ext1
C(Ω1

Y |C ⊗ L,OC) ∼= H0(Ω1
C ⊗N ⊗ ωC)∨

where the first isomorphism is (0.6). Arguing as above, it is enough to prove that the OC-modules

toriC((Ω1
Y )|C , ωC)⊗NC

have vanishing higher cohomology for all i. For i > 0 this follows simply because they are supported
on points. For i = 0 note that, by the exact sequence (2.4), it is enough to show that

(2.10) H1(Ω1
X ⊗NC ⊗ ωC) = 0

To prove this, we tensor the Koszul resolution of OC as OX -module with Ω1
X ⊗ωX ⊗L⊗n+1 getting

a complex (exact at the last step on the right)

0→ Ω1
X ⊗ ωX ⊗ L→ · · · → (Ω1

X ⊗ ωX ⊗ L⊗n)⊕n → Ω1
X ⊗ ωX ⊗ L⊗n+1 → Ω1

X ⊗ ωC ⊗NC → 0

Since C is not contained in the singular locus of X, the homology sheaves are supported on points.
Therefore the required vanishing (2.10) follows from Serre vanishing via a diagram-chase. This
concludes the proof of Claim 2.2 and of Corollary C. �

3. Gaussian maps and Fourier-Mukai transform

We begin the proof of Theorem D. This section serves to establish the notation and the
setup. The main goal is to show that, when the parameter variety T is an abelian variety, the
(dual) gaussian map gN⊗n

C ,Q|Y×T
of the Introduction can be naturally intepreted as a piece of a

certain relative version of the classical Fourier-Mukai transform associated to the Poincarè line
bundle, applied to a certain space of morphisms.

Assumptions/Notation 3.1. We will keep all the notation and hypotheses of the Introduction.
Explicitly:

- let X be a n + 1-dimensional normal Cohen-Macaulay subvariety of an abelian variety A. As
usual we choose an ample line bundle L on X such that we can find n divisors Y = Y1, . . . , Yn ∈ X
such that their intersection in an irreducible curve C. The line bundle L|C is denoted NC .
- Let P be a Poincaré line bundle on A× Â. We denote

Q = P|X× bA and R = P|Y× bA
- ν and π are the projections of Y × Â.
- We assume that the line bundle ν∗L⊗n ⊗ Q is relatively base point-free, namely the evaluation
map π∗π∗(ν∗L⊗n ⊗Q)→ ν∗L⊗n ⊗Q is surjective.
- p, q and ∆̃ are the projections and the diagonal of (Y × Â)× bA (Y × Â)
- The gaussian map of the Introduction (see (0.7)) is
(3.1)
g = gN⊗n

C ,R : Ext1
C(Ω1

Y ⊗NC ,OC) ∼= ExtnY (Ω1
Y ⊗NC ,OY )→ Extn

Y× bA(p∗(q∗(Ie∆ ⊗R⊗ ν∗N⊗nC )),R)

obtained as (the restriction to the relevant Künneth direct summand) of Extn
Y× bA( · ,R) of the

differentiation (i.e. restriction to the diagonal) map (see also Subsection 1.1).
- The projections of Y ×A will be denoted p1 and p2.
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Warning 3.2. Since the variety X is assumed to be smooth in codimension 1, and our arguments
will concern a sufficiently positive line bundle L, we could have assumed from the beginning that
the curve C is smooth and the divisor Y is smooth along Y . This would simplify some points of the
argument. For example, under that assumption the restricted equisingular normal sheaf of the next
section becomes a honest locally free restricted normal bundle, making much easier some of the
steps (e.g. Prop. 4.2(b) below). However, in view of possible future generalizations, we preferred to
develop the arguments in greater generality as far as we could, making the smoothness asumption
only at the end of the proof. See also Remarks 4.1 and 5.5 below.

mFourier-Mukai transform. Now we consider the trivial abelian scheme Y × A → Y and
its dual Y × Â → Y . The Poincaré line bundle P induces naturally a Poincaré line bundle P̃ on
(Y ×A)×Y (Y × Â) (namely the pullback of P to Y ×A× Â) and we consider the functors

RΦ : D(Y ×A)→ D(Y × Â) and RΨ : D(Y × Â)→ D(Y ×A)

defined respectively by Rπ
Y× bA∗(π∗Y×A( · )⊗ P̃ ) and RπY×A∗(π

∗
Y× bA( · )⊗ P̃ ). By Mukai’s theorem

([Mu2] Thm 1.1) they are equivalences of categories, more precisely

(3.2) RΨ ◦RΦ ∼= (−1)∗[−q] and RΦ ◦RΨ ∼= (−1)∗[−q]

It follows that, if F and G are sheaves on Y ×A then we have the functorial isomorphism

(3.3) FMi : ExtiY×A(F ,G)
∼=−→ Exti

Y× bA(RΦ(F),RΦ(G))

(note that the Ext-spaces on the right are usually hyperexts).

The gaussian map. Now we focus on the target of the gaussian map (3.1). Let ∆Y ⊂ Y × A
be the graph of the embedding Y ↪→ A. In other words, ∆Y is the diagonal of Y × Y , seen as
subscheme of Y ×A. It follows from the definitions that

(3.4) RΦP̃(O∆Y
) = P|Y× bA = R

Moreover, we have that

(3.5) p∗(q∗(Ie∆ ⊗R⊗ ν∗N⊗nC )) ∼= R0Φ(I∆Y
⊗ p∗2N⊗nC )

This is because

(Y × Y )×Y (Y × Â) ∼= Y × Y × Â ∼= (Y × Â)× bA (Y × Â)

and, via such isomorphisms, P̃|(Y×Y )×Y (Y× bA)
∼= q∗(P|Y× bA) = q∗(R).

Moreover, for any sheaf F supported on Y ×C (as I∆Y
⊗ ν∗N⊗nC ) we have that RiΦ(F) = 0

for i > 1. Therefore the fourth quadrant spectral sequence

Extp
Y× bA(RqΦ(F),R)⇒ Extp−q(RΦ(F),R)

reduces to a long exact sequence
(3.6)
· · · → Exti−1

Y× bA(R0Φ(F),R)→ Exti+1

Y× bA(R1Φ(F),R)→ Exti
Y× bA(RΦ(F),R)→ Exti

Y× bA(R0Φ(F),R)→ · · ·
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Putting together all that we are led to the following diagram, with right column exact in the middle

(3.7) ExtnY (Ω1
Y ⊗N

⊗n
C ,OY )

=

��
Extn∆Y

((I∆Y
⊗ p∗2N

⊗n
C )|∆Y

,O∆Y
)

u

��

Extn+1

Y× bA(R1Φ eP(I∆Y
⊗ p∗2N

⊗n
C ),R)

α

��

ExtnY×A(I∆Y
⊗ p∗2N

⊗n
C ,O∆Y

) ∼=
FMn // Extn

Y× bA(RΦ eP(I∆Y
⊗ p∗2N

⊗n
C ),R)

β
��

Extn
Y× bA(R0Φ eP(I∆Y

⊗ p∗2N
⊗n
C ),R)

where u is the natural map (see also (4.13) below). In conclusion, the kernel of the gaussian map
can be described as follows

Lemma 3.3. The gaussian map g = gN⊗n
C ,R of (3.1) is the composition β ◦ FMn ◦ u. Therefore

ker(g) ∼= Im(FMn ◦ u) ∩ Im(α)

Proof. The identification of the two maps follows from (3.5) and simply because they are defined
in the same way. �

4. Cohomological computations on Y ×A and a reduction of Theorem D

In this section we describe the source of the Fourier-Mukai map FMn of diagram (3.7) above,
and related cohomology spaces of sheaves F on Y ×A which are supported on Y ×C. We will use
the Grothendieck duality (or change of rings) spectral sequence

(4.1) ExtiY×C(F , ExtjY×A(OY×C ,O∆Y
))⇒ Exti+jY×A(F ,O∆Y

)

With this in mind, we compute the sheaves ExtiY×A(OY×C ,O∆Y
) in Proposition 4.2 below.

4.1. Preliminaries. The following standard identifications will be useful

(4.2)
⊕
i

ExtiY×A(O∆Y
,O∆Y

) ∼=
⊕
i

ΛiTA,0 ⊗O∆Y

(as graded algebras), where TA,0 is the tangent space of A at 0. This holds because ∆Y is the
preimage of 0 via the difference map Y ×A→ A, (y, x) 7→ y−x (which is flat), and Ext•A(k(0), k(0))
is Λ•TA,0 ⊗ k(0).

Moreover, letting ∆C ⊂ Y × C ⊂ Y ×A the diagonal of C × C and

δC : C
∼=−→ ∆C ↪→ Y × C

the natural embedding, we have

(4.3)
⊕
i

ExtiY×A(O∆C
,O∆Y

) ∼=
⊕
i

Λi−n+1TA,0 ⊗ δC∗N⊗n−1
C
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(as graded modules on the algebra above). This is seen as follows: since C is the complete in-
tersection of n − 1 divisors of Y , all of them in |L|Y |, Ext

j
∆Y

(O∆C
,O∆Y

) = 0 if j 6= n − 1 and
Extn−1

∆Y
(O∆C

,O∆Y
) = δC∗N

n−1
C . Therefore (4.3) follows from (4.2) and the spectral sequence

Exth∆Y
(O∆C

, ExtjY×A(O∆Y
,O∆Y

))⇒ Exth+j
Y×A(O∆C

,O∆Y
).

4.2. The (equisingular) restricted normal sheaf. We consider the OC-module N ′ defined by
the sequence

(4.4) 0→ (TY )|C → (TA)|C → N ′ → 0

When Y = C the sheaf N ′ is usually called the equisingular normal sheaf ([S] Prop. 1.1.9).
Therefore we will refer to N ′ as the restricted equisingular normal sheaf.

Remark 4.1. Note that, since X is non-singular in codimension one then the curve C can be taken
to be smooth and the divisor Y smooth along C so that N ′ is locally free and it is the restriction to
C of the normal sheaf of Y . Eventually we will make this assumption in the last section. However
the computations of the present section work in the more general setting.

The sheaves ExtjY×A(OY×C ,O∆Y
) appearing in (4.1) are described as follows

Proposition 4.2. (a)⊕
i

ExtiY×A(OY×C ,O∆Y
) ∼=

⊕
i

δC∗(Λ
i−n+1N ′ ⊗N⊗n−1

C )

(as graded modules on the algebra (4.2)). In particular the left hand side it is zero for i < n− 1.
(b)

Extq−1
Y×A(OY×C ,O∆Y

) ∼= ωC .

Proof. (a) We apply HomY×A( · ,O∆Y
) to the basic exact sequence

(4.5) 0→ I∆C/Y×C → OY×C → O∆C
→ 0

where I∆C/Y×C denotes the ideal of ∆C in Y × C. Since ∆C is the intersection (in Y ×A) of ∆Y

and Y × C, the resulting long exact sequence is chopped in short exact sequences (where we plug
the isomorphism (4.3))

(4.6) 0→ Exti−1
Y×A(I∆C/Y×C ,O∆Y

)→ Λi−n+1TA,0 ⊗N⊗n−1
C → ExtiY×A(OY×C ,O∆Y

)→ 0 .

This proves that

(4.7) ExtiY×A(OY×C ,O∆Y
) =

{
0 if i < n− 1
δC∗N

⊗n−1
C if i = n− 1

.

For i = n it follows from (4.7) and the spectral sequence (4.1) applied to I∆C/Y×C that

Extn−1
Y×A(I∆C/Y×C ,O∆Y

) ∼= HomY×C(I∆C/Y×C , Ext
n−1
Y×A(OY×C ,∆Y ) ∼= δC∗(TY ⊗N⊗n−1

C )

and that (4.6) is identified to (4.4), tensored with Nn−1
|C , i.e.

(4.8) 0→ TY ⊗N⊗n−1
C → TA,0 ⊗N⊗n−1

C → N ′ ⊗N⊗n−1
C → 0

This proves the statement for i = n. For i > n, Proposition 4.2 follows by induction. Indeed
Ext•Y×A(OY×C ,O∆Y

) is naturally a graded-module over the exterior algebra Ext•Y×A(O∆,O∆Y
) ∼=(

Λ•TA,0
)
⊗ O∆Y

(see (4.2)). Assume that the statement of the present Proposition holds for the
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positive integer i − 1. Because of the action of the exterior algebra the sequences (4.6) and (4.8)
yield that the kernel of the surjection

Λi−n+1TA,0 ⊗N⊗n−1
C → ExtiY×A(OY×C ,O∆)→ 0

is surjected (up to twisting with N⊗n−1
C ) by Λi−nTA,0 ⊗ (TY )|C . Therefore ExtiY×A(OY×C ,O∆) is

equal to (Λi−n+1Ñ ′)⊗N⊗n−1
C . This proves (a).

(b) If Y is smooth along C then N ′ is locally free (coinciding with the restricted normal bundle)
(see Remark 4.1). In this case (b) follows at once from (a). In the general case the proof is as
follows. We claim that for each i the left hand side of (a) can be alternatively described as follows

ExtiY×A(OY×C ,O∆Y
) ∼= T orY×Aq−1−i(p

∗
2ωC ,O∆Y

)

This is proved by means of the isomorphism of functors

RHomY×A(OY×C ,O∆Y
) ∼= RHomY×A(OY×C ,OY×A)⊗L

Y×AO∆Y

and the corresponding spectral sequences. In fact, since C is Cohen-Macaulay, we have that
ExtiY×A(OY×C ,OY×A) = 0 for i 6= q − 1 and equal to p∗2ωC for i = n − 1. The spectral sequence
computing the right hand side degenerates, proving the claim.

In particular, for i = q − 1 we have Extq−1
Y×A(OY×C ,O∆Y

) ∼= (p∗2ωC)⊗O∆Y
∼= δC∗ωC �

4.3. Reduction of the statement of Theorem D. As a first application of Prop. 4.2, we
reduce the statement of Theorem D – in the equivalent formulation provided by Lemma 3.3 – to a
simpler statement. This will involve the issue of ”comparing two spaces of first-order deformations”
mentioned in the Introduction (after the statement of Theorem D). All this will the content of
Proposition 4.4 below.

We consider the first spectral sequence (4.1) applied to F = p∗2N
⊗n
C , rather than to I∆ ⊗

p∗2N
⊗n
C . Plugging the identification provided by Lemma 4.2 we get

Hj(C,Λi−n+1N ′ ⊗N−1
C )⇒ Extj+iY×A(p∗2N

⊗n
C ,O∆Y

)

Since the H i’s on the left are zero for i 6= 0, 1, the spectral sequence is reduced to short exact
sequences

(4.9) 0→ H1(C,Λi−nN ′ ⊗N−1
C ) vi→ ExtiY×A(p∗2N

⊗n
C ,O∆Y

) wi→ H0(C,Λi−n+1N ′ ⊗N−1
C )→ 0

At the beginning, for i = n, we have in fact the exact sequence

0→ H1(C,N−1
C ) vn→ ExtnY×A(p∗2N

⊗n
C ,O∆Y

) wn→ H0(C,N ′ ⊗N−1
C )→ 0

Combining with the exact sequence coming from the spectral sequence (3.6), applied to F =
p∗2N

⊗n−1
C we get

(4.10) H1(C,N−1
C )

��

vn

��

Extn+1

Y× bA(R1Φ(p∗2N
⊗n
C ),R)

an

��

ExtnY×A(p∗2N
⊗n
C ,O∆Y

) ∼=
FMn //

wn

����

Exti
Y× bA(RΦ(p∗2L

⊗n
C ),R)

bn
��

H0(C,N ′ ⊗N−1
C ) Exti

Y× bA(R0Φ(p∗2N
⊗n
C ),R)
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Remark 4.3. Note that, as shown by the exact sequence (4.4) defining the restricted equisingular
normal sheaf, we get that

H0(C,N ′ ⊗N∨C ) = ker(H1(C, TY ⊗N∨C ) G→ H1(C, TA ⊗N∨C ))

This map G is the (restriction to H1(C, TY ⊗ N∨C )) of the map GYA of the Introduction (see also
Remark 5.3 below).

Proposition 4.4. If the map an is non-zero then the map wn ◦ FM−1
n ◦ an is non-zero and its

image is contained in the kernel of the gaussian map (3.1).

Proof. We apply ExtnY×A(· ,O∆Y
) to the usual exact sequence

(4.11) 0→ I∆C/Y×C ⊗ p
∗
2N
⊗n
C → p∗2N

⊗n
C → δC∗N

⊗n
C → 0

Using the spectral sequence (4.1) and the isomorphisms provided by Prop. 4.2 we get the commu-
tative exact diagram

(4.12) H1(C,N−1
C )⊗ Λ0TA,0

= //

‖
��

H1(C,N−1
C )⊗ Λ0TA,0

�� ��
H1(C,N−1

C )⊗ Λ0TA,0 // vn // ExtnY×A(p∗2N
⊗n
C ,O∆Y

)
wn // //

f
��

H0(C,N ′ ⊗N−1
C )

��

��
ExtnY×A(I∆C/Y×C ⊗ p

∗
2N
⊗n
C ,O∆Y

)

��

H1(TY ⊗N−1
C )oouoo

GY
A

��

H1(C,N−1
C )⊗ TA,0

= // H1(C,N−1
|C )⊗ TA,0

where:
- we have used Lemma 4.3 to compute

ExtiY×A(δC∗N
⊗n
C ,O∆Y

) ∼= H1(C,N−1
C )⊗ Λi−n+1TA,0

and the map

(4.13) u : H1(TY ⊗N−1
C )→ ExtnY×A(I∆C/Y×C ⊗ p

∗
2N
⊗n
C ,O∆Y

)

is the composition of the natural inclusion

H1(TY ⊗N−1
C ) ↪→ Ext1

C(Ω1
Y ⊗NC ,OC) ∼= Ext1

Y×C(I∆C/Y×C , δC∗N
−1
C ) ∼=

∼= Ext1
Y×C(I∆C/Y×C ⊗ p

∗
2N
⊗n
C , Extn−1

Y×A(OY×C ,O∆Y
))

(see Prop. 4.2) and the natural injective map, arising in the beginning of the spectral sequence
(4.1),

Ext1
Y×C(I∆C/Y×C ⊗ p

∗
2N
⊗n
C , Extn−1

Y×A(OY×C ,O∆Y
)) ↪→ ExtnY×A(I∆C/Y×C ⊗ p

∗
2N
⊗n
C ,O∆Y

) .

Next, we look at the Fourier-Mukai image of the central column of (4.12). In order to do so,
we first apply the Fourier-Mukai transform RΦ to sequence (4.11). We claim that we get the exact
sequence

0→ R0Φ(I∆C/Y×C ⊗ p
∗
2N
⊗n
C )→ R0Φ(p∗2N

⊗n
C )→ ν∗(N⊗nC )⊗R → 0

and the isomorphism

(4.14) R1Φ(I∆C/Y×C ⊗ p
∗
2N
⊗n
C ) ∼→ R1Φ(p∗2N

⊗n
C )
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Indeed we have that RiΦ(δC∗(N
⊗n
C )) = ν∗(N⊗nC ) ⊗ R for i = 0 and zero otherwise. The map

R0Φ(p∗2N
⊗n
C )→ ν∗(N⊗nC ⊗R) is nothing else but the relative evaluation map

π∗π∗(ν∗(N⊗nC )⊗R)→ N⊗nC ⊗R

whose surjectivity follows from the assumptions (see Notation/Assumptions 3.1). This proves what
claimed.

Now we apply to that RHom
Y× bA(· , R) and the spectral sequence on the Y × Â-side, namely

(3.6). We get the exact diagram
(4.15)

H1(N−1
C )⊗H0(O bA) = //

��

H1(N−1
|C )⊗H0(O bA)

��
Extn+1(R1Φ(p∗2N

⊗n
C ),R)

an //

∼=
��

Extn(RΦ(p∗2N
⊗n
C ),R)

bn //

FMn(f)
��

Extn(R0Φ(p∗2N
⊗n
C ),R)

��

Extn+1(R1Φ(p∗2N
⊗n
C ),R) α // Extn(RΦ(I∆Y

C/Y×C
⊗ p∗2N

⊗n
C ),R) β //

��

Extn(R0Φ(I∆Y
C/Y×C

⊗ p∗2N
⊗n
C ),R)

��
H1(N−1

C )⊗H1(O bA) = // H1(N−1
C )⊗Hn(O bA)

where, for brevity, at the place on the left of the second row we have plugged the isomorphism (4.14)
into Extn(RΦ eQ(I∆Y

C/Y×C
⊗p∗2Nn

C),R). It follows, in particular, that the map FMn(f) induces the
isomorphism of the images of an and α;

(4.16) FMn(f) : im(an)
∼=−→ im(α)

A diagram-chase in (4.12) in (4.15) proves the first part of the Proposition, namely that if the map
an is non-zero then the map wn ◦FM−1

n ◦an is non-zero. The second part follows from Proposition
3.3. �

5. Proof of Theorem D

The strategy of proof of Theorem D now proceeds seeing the exact sequences of diagram
(4.10) (the one on the left column is induced by the spectral sequence (4.1) on Y ×A and the one
on the right column is induced by the spectral sequence (3.6) on Y × Â) as the first homogeneous
pieces of two exact sequences of graded modules over the exterior algebra. Namely, for each i ≥ n
we have

(5.1)
⊕

i Ext1
C(L⊗n|C ,Λ

i−nN ′ ⊗N⊗n−1
C )

��
vi

��

⊕
i Exti+1

Y× bA(R1Φ(p∗2N
⊗n
C ),R)

ai

��⊕
i ExtiY×A(p∗2N

⊗n
C ,O∆Y

) ∼=
FMi //

wi

����

⊕
i Exti

Y× bA(RΦ(p∗2N
⊗n
C ),R)

bi
��⊕

i HomC(N⊗nC ,Λi−n+1N ′ ⊗N⊗n−1
C )

⊕
i Exti

Y× bA(R0Φ(p∗2N
⊗n
C ),R)
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The exterior algebra acts on the left-hand side as Λ•TA,0 ∼= Ext•Y×A(O∆Y
,O∆Y

) (see (4.2) and
(4.3)) and on the right hand side as Λ•H1(O bA) ↪→ Ext•

Y× bA(R,R).

5.1. Computations in degree q− 1. In this subsection we will perform some explicit calculations
in degree q − 1. Although not strictly necessary for the proof of Theorem D, they render the
argument more explicit. In degree q − 1 we have the special feature that the Hom space at the
bottom of the left column is naturally isomorphic to Hom(N⊗nC , ωC) (Prof. 4.2(b)). The following
Proposition shows that what we want to prove in degree n, namely that the map wn ◦ FM−1

n ◦ an
is non-zero, is true, in strong form, in degree q − 1.

Proposition 5.1. The map wq−1 has a canonical (up to scalar) section σ and the injective map
τ = (FMq−1)|Im(σ) factorizes trough aq−1. Summarizing, in degree i = q − 1 diagram (5.1)
specializes to

(5.2) Ext1
C(L⊗n|C ,Λ

q−1−nN ′ ⊗N⊗n−1
C )

��
vq−1

��

Extq
Y× bA(R1Φ(p∗2N

⊗n
C ),R)

aq−1

��

Extq−1
Y×A(p∗2N

⊗n
C ,O∆Y

) oo
∼=

FMq−1 //

wq−1

����

τ 22

Extq−1

Y× bA(RΦ(p∗2N
⊗n
C ),R)

bq−1

��

HomC(N⊗nC , ωC)

σ

99

Exti
Y× bA(R0Φ(p∗2N

⊗n
C ),R)

Proof. The section σ is given (up to scalar) by the product map

(5.3) Extq−1
Y×A(p∗2N

⊗n
C ,OY×A)⊗HomY×A(OY×A,O∆Y

) σ→ Extq−1
Y×A(p∗2N

⊗n
C ,O∆Y

)

In fact, note that,

Extq−1
Y×A(p∗2N

⊗n
C ,OY×A) ∼= p∗1H

0(OY )⊗ p∗2Extq−1
A (N⊗nC ,OA) ∼= p∗1H

0(OY )⊗ p∗2HomC(N⊗nC , ωC)

The fact that s is a section of wq−1 is clear, as the latter is the natural map Extq−1
Y×A(p∗2N

⊗n
C ,O∆Y

)→
H0(Extq−1

Y×A(p∗2N
⊗n
C ),O∆Y

) ∼= H0(Extq−1
Y×A(p∗2N

⊗n
C ,OY×A)⊗O∆Y

) ∼= p∗2Extq−1
A (N⊗nC ,OA)⊗H0(O∆Y

).

Next, we prove the second part of the statement. On the Y ×Â-side, we consider the following
product map

(5.4) Hom
Y× bA(R1Φ(p∗2N

⊗n
C ),OY×0̂) ⊗ Extq

Y× bA(OY×0̂,R) //

∼=
��

Extq
Y× bA(R1Φ(p∗2N

⊗n
C ),R)

aq−1

��
Ext−1

Y× bA(RΦ(p∗2N
⊗n
C ),OY×0̂) ⊗ Extq

Y× bA(OY×0̂,R) // Extq−1

Y× bA(RΦ(p∗2N
⊗n
C ),R)

where the vertical isomorphism comes from the usual spectral sequence (3.6). By (3.2) the inverse
of the Fourier-Mukai transform is (−1)∗A ◦RΨ[q]. We have that

(−1)∗A ◦RΨ(OY×0̂) = (−1)∗A ◦R0Ψ(OY×0̂) ∼= OY×A

and, by (3.4),
(−1)∗A ◦RΨ(R) ∼= (−1)∗A ◦RqΨ(R) = O∆Y
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Therefore, thanks to Mukai’s inversion theorem (3.2), the Fourier-Mukai transform identifies – on
the Y ×A-side – the source of the bottom row in diagram (5.4) to

Ext−1
Y×A(p∗2N

⊗n
C [−q],OY×A)⊗ Extq(OY×A,O∆Y

[−q]) ∼=

Extq−1
Y×A(p∗2N

⊗n
C ,OY×A)⊗HomY×A(OY×A,O∆Y

)

This concludes the proof of the Proposition. �

5.2. Proof of Theorem D.

Notation 5.2. We introduce the following typographical abbreviations on diagram (5.1): the iso-
morphic (via the Fourier-Mukai transform) spaces of the central row of diagram (5.1) are identified
to vector spaces Ei, and we denote Vi, Ei,Wi the spaces appearing in the left column of diagram
(5.1) (from top to down), and Ai, Ei, Bi the spaces appearing in the right column (from top to
down). We denote also Λ•T the acting exterior algebra. The structure of Λ•T -graded modules in-
duces natural maps (we focus on degrees n and q−1 as they are the relevant ones in our argument)

(5.5)

An

an

��
Vn // vn // En

wn // //

bn
��

Wn

Bn

↓ φ

Λq−1−nT∨ ⊗Aq−1

ãq−1

��
Λq−1−nT∨ ⊗ Vq−1

//
ṽq−1 // Λq−1−nT∨ ⊗ Eq−1

w̃q−1// //

b̃q−1

��

Λq−1−nT∨ ⊗Wq−1

Λq−1−nT∨ ⊗Bq−1

where we have denoted ṽq−1 = id⊗ vq−1 and so on. We denote also

φAn : An → Λq−1−nT∨ ⊗Aq−1

and so on.

At this point we make the following assumption

(*) the extension class e of the restricted cotangent sequence

(5.6) 0→ N∨C → (Ω1
X)|C → (Ω1

Y )|C → 0

belongs to the subspace H1(TY ⊗N∨C ) of Ext1
C(Ω1

Y ⊗NC ,OC). Note that if C is smooth and Y
is smooth along C this is obvious, since the two spaces coincide.
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Remark 5.3. Note that, if (*) holds then e belongs to the subspace H0(N ′⊗N∨C ) of H1(TY ⊗N∨C ).
In essence, this follows from the deformatic-theoretic interpretation: as mentioned in Remark 4.3
from the exact sequence defining the restricted equisingular normal sheaf (4.4) we get that

H0(C,N ′ ⊗N∨C ) = ker
(
H1(C, TY ⊗N∨C ) G→ H1(C, TA ⊗N∨C )

)
The fact that e belongs to H0(N ′ ⊗N∨C ) follows from deformation-theoretic interpretation of this
map G (it is the (restriction to H1(C, TY ⊗N∨C ) of the map GYA of the Introduction). More formally,
one sees that e belongs to kerG because the target of G is Homk(Ω1

A,0, H
1(C,N∨C )) and G takes an

extension class f to the map Ω1
A,0 → H1(N−1

C ) obtained by composing the coboundary map of f
with the map Ω1

A,0 → H0((Ω1
Y )|C). If the extension class is (5.6) then this map factorizes through

H0((Ω1
X)|C), hence e ∈ kerG.

From diagram (5.5) we have the map

φWn : H0(C,N ′ ⊗N∨C ) = ker(G)→ Hom(Λq−1−nT,H0(ωC ⊗N−⊗nC ))

Lemma 5.4. φWn(e) 6= 0 .

Proof. Recall that T = TA,0. We make the identification Λq−1−nTA,0 ∼= Λn+1Ω1
A,0. Accordingly

φWn(e) is identified to a map

φWn(e) : Λn+1Ω1
A,0 → H0(ωC ⊗N∨C )

We consider the map

(5.7) Λn+1Ω1
A,0 → H0((Λn+1ΩX)|C)

obtained as Λn+1 of the co-differential Ω1
A,0 ⊗OC → (Ω1

X)|C . Since the co-differential is surjective
the map (5.7) is non-zero. If C is smooth and X and Y are smooth along C then the target of (5.7)
is H0((ωX)|C) = H0(ΩC ⊗ N−nC ). Via the above identifications, the map φWn(e) coincides, up to
scalar, with (5.7). The Lemma follows in this case, Even ifX is not smooth along C the φWn(e) is the
composition of the map (5.7) and theH0 of the canonical map Λn+1((Ω1

X)|C)→ (ωX)|C ∼= ωC⊗N−1
C .

Such composition is clearly non-zero and the Lemma follows as above. �

At this point, the line of the argument is clear. Since φWn(e) is non-zero, by Lemma 5.4 and
by Proposition 5.1 it belongs to the image of ãq−1. Thus it must come from a non-zero element of
the image of an. By Lemma 3.3 and Proposition 4.4 we can apply Corollary C. This will prove
that Rnπ∗Q = 0.

However, some verification still has to be made. The point is that, since the maps in diagram
(5.5) at degree n does not seem to have any natural splitting compatible with the multiplicative
structure, it is not a priori clear that the fact that φWn(e) is non-zero, and belongs to Im(ãq−1)
implies that there is a d ∈ Im(an) such that φ(d) = φWn(e). (In fact, by Proposition 4.4, it is
enough to show that the map an is non-zero). An argument ensuring that this is in fact the case
is as follows.

Again, we consider the vector space
⊕

iEi namely⊕
i

ExtiY×A(p∗2N
⊗n
C ,O∆Y

) ∼=
⊕
i

Exti
Y× bA(RΦ(p∗2N

⊗n
C ),R)

Besides being a graded module over the exterior algebra Λ•T , it is in fact a graded module over the
bigraded algebra H•(OC)⊗Λ•T . This follows, for example, from the natural action of p∗2H

•(OA)
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on
⊕

i ExtiY×A(p∗2N
⊗n
C ,O∆Y

), and this action factorizes trough p∗2H
•(OC)12. The action of H•(OC)

on the left column of diagram (5.1) is by cup-product with H1(OC), which is zero for elements of
Vi, and belongs to Vi+1 for elements of Wi (see Notation 5.2). On the right column of (5.1), the
action is given by the cup-product R0Φ(N⊗nC )⊗H1(OC)→ R1Φ(N⊗nC ) and taking Ext’s. Therefore
the product of elements of Ai with H1(OC) is in Bi+1, while the product of elements of Bi with
H1(OC) is zero.

Now we claim that this cup-product induces an injective map

(5.8) Wq−1 → H1(OC)∨ ⊗ Vq
namely

H0(ωC ⊗N−nC )→ H1(OC)∨ ⊗H1(ωC ⊗N−nC )
Indeed such map is the dual of

H0(N⊗nC )⊗H1(OC)→ H1(N⊗nC )

which is surjective, since it is the H1 of the evaluation map H0(N⊗nC ) ⊗ OC → N⊗nC and NC is a
line bundle on a curve. This proves (5.8).

Now we are ready for the conclusion of the argument. We consider the commutative diagram

En
φEn //

��

ψ

**UUUUUUUUUUUUUUUUUUUUU Λq−1−nT∨ ⊗ Eq−1

η

��
H1(OC)∨ ⊗ En+1

// Λq−1−nT∨ ⊗H1(OC)∨ ⊗ Eq

From Lemma 5.4 (and Proposition 5.1) φWn(e) is a non zero element of eq−1 ∈ Λq−1−nT∨⊗Aq−1 ⊂
Λq−1−nT∨⊗Eq−1. By the injectivity of (5.8) η(eq−1) is non-zero. It follows that there is a ẽn ∈ En
such that ψ(ẽn) = η(eq−1) is non-zero. Knowing how multiplication with H1(OC) works, this
implies that there is a non-zero d ∈ Im(an) such that ψ(d) = ψ(en). As explained above, this
proves that the gaussian map g is non-injective, hence that Rnπ∗Q = 0, as soon as assumption (*)
can be made. This is certainly the case if the ambient variety X is normal, since in this case, for
sufficiently positive L, we can take C in the smooth locus of X, C smooth and Y smooth along C.

To prove the vanishing of Riπ∗Q for i < n one takes a sufficiently positive ample line bundle
M on X and a i+ 1-dimensional complete intersection of divisors in |M |, say X ′. It follows easily
from relative Serre vanishing that Riπ∗(Q) = R1π∗(Q|X′× bA). Therefore the desired vanishing
follows by induction. This concludes the proof of Theorem D.

Remark 5.5. The hypothesis that X is smooth in codimension one is used to ensure that assump-
tion (*) can be made.
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