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A PROOF OF LAZARSFELD’S THEOREM
ON CURVES ON K3 SURFACES

GIUSEPPE PARESCHI

The Gieseker-Petri theorem, asserted by Petri [P] and proved by
Gieseker in [G], states that for a general complex curve C of genus g
the following condition (usually referred to as the Brill-Noether-Petri con-
dition) holds:

For any line bundle 4 on C the multiplication map
to 4t H(A) e H (0,0 4") » H(0.)
is injective.

As is well known, the above theorem plays a central role in Brill-Noether
theory (see for instance [ACGH]). Recently Lazarsfeld provided a new
approach to the Gieseker-Petri theorem based on the observation that, in
principle, there is no evident Brill-Noether theoretic obstruction to embed
a smooth curve in a K3 surface. Lazarsfeld’s result is the following

Theorem 1 ([L]). Let S be a complex K3 surface and L a line bundle
on S such that the linear system |L| does not contain reducible or multiple
curves. Then the general curve C € |L|, if smooth, satisfies the Brill-
Noether-Petri condition.

This proves the Gieseker-Petri theorem since, -as is well known, for any
g > 2 there are K3 surfaces S such that Pic(S) = Z-[C], with C a
smooth irreducible curve of genus g. '

The purpose of this note is to give a proof of Theorem 1 which, while
following some of Lazarsfeld’s ideas, is essentially elementary and self-
contained. The argument is infinitesimal in nature and goes as follows: for
a line bundle 4 on C € |L| one considers its “u, map with respect to the

family |L|”, i.e. the composition of the gaussian map u, ,: ker(y, ,) —
Ho(w??‘ ) with the transpose of the Kodaira-Spencer map Jg’ 5 Ho(wgz)
— (TeIL)Y = H'(N/,s ® w;) = H'(&,) . The point is that this map, de-
noted u, A.5° has a nice interpretation in terms of a certain vector bundle
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F, on § canonically associated, following Lazarsfeld, to the pair (C, A4).
This allows one to show that if |L| satisfies the hypothesis of the theo-
rem then x4, , ¢ is always injective. From the well-known deformation-
theoretic interpretation of the map u, it follows that if C is general in
|L| then ker(u, ,) has to be zero.

The proof. To start with, let us establish the notation and recall a
few basic facts. The deformation-theoretic meaning of the map By 4"

ker(py 4) — HO(a)ng) (see the proof of Lemma 1 below for a defini-
tion) is as follows: let W be a sufficiently small open neighbourhood
of the point representing C in .#,. Then there exist a finite cover
A of W and a scheme Wd' parametrizing couples (C', A'), where
C' is parametrized by .# and A’ is a line bundle of C’ such that
deg(4) = d and h°(4") > r+1 on C' [AC]. Let n: ¥ — A be
the projection and dn(c, 0 Te, A)Wdr - H I(TC) the differential. Then,

in case hO(A) =r+ 1, we have that

Im(dn = Ann(Im(yg, ,)),

(C,A))

where Ho(a)?z) is identified to H I(TC)V via Serre duality (see e.g.
[CGGH, §2(¢c)]).

Now let S be a regular surface (i.e. hl(é"s) =0) and L a line bundle
on S. Let C be a smooth curve (if any) in |[L|, U a suitable open
neighborhood of C in [L|, and %, (U) the scheme parametrizing pairs
(C', A') where C' isacurvein U and 4’ isaline bundle on C’ of degree
d and hO(A') > r+ 1. Moreover, let 7: %’(U) — U be the projection
map. Since S is regular, 7|L| = HO(NCIS), where Neis is the normal
bundle of C"in §. If in addition S is a K3 surface Npg=wc. We will
prove the following

Theorem 2. Under the hypotheses of Lazarsfeld’s theorem, let C be a
smooth curve in |L| and let A be a base-point-free line bundle on C such
that deg(A4) =d and hO(A) =r+1. Ifthe Petri map u, , is not injective,
then the derivative 7

0
(dng)c, 4" T(C,A)Wdr(U) — Te|L| = H (N¢s)

IS not surjective.

As we are in characteristic 0, by Sard’s lemma, Theorem 2 implies Theo-
rem 1 (to consider base-point-free line bundles only is not restrictive since
if A is the base locus of a line bundle A such that x, , is not injective
then also Ho, 4(-a) is not injective).
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In our situation let o, : H O(NC! gl —+H ! (T,) be the Kodaira-Spencer

map of the family U . Its transpose Jg s 18 (up to scalar coefficients) the
coboundary map of the sequence

1 2
0—>Néls®wc—>ﬂs®wc—>w? -0

obtained by tensoring the cotangent sequence with .. From standard
first-order deformation theory one has that

-1
Im(d”S(c,A)) C 6C,S(Im(§C,S) N Im(dn(C,A))) ,
i.e., equivalently, that

Im(dng 4)C Ann(Im(éé’S o Uy 4))-

Set By as = dg o fy 4t ker(uO’A) — Hl(Ngls ® w.), Wwhere
‘H 1(Ng| s®w,) is identified to H O(NC, S)V via Serre duality. Theorem 2
is then implied by the following

Proposition. Let S be a K3 surface and L a line bundle on S such
that the linear system |L| does not contain reducible or multiple curves.
Then for any smooth curve C € |L| and for any base-point-free line bundle
A on C themap p; 4 ¢ Is injective.

Proof. Following Lazarsfeld, we associate canonically to A4 a vector
bundle M, on C and vector bundle F, on S as follows: M, is the
kernel of the evaluation map ev. ,: HO(A) ®0. — A. Since A is base-
point-free, we have that M, is locally free of rank r, sitting in an exact
sequence

(1) 0—+MA—>H0(A)®@’C—>A—>O.
Note that det(M,) = 4" .

Viewing A as a coherent sheaf on S, let us denote by F, the kernel of
the evaluation map evg ,: H 0(A) ®F; — A. Since 4 is base-point-free,

we have that F, is a locally free sheaf of rank r + 1 on S, sitting in an
exact sequence

(2) 0 F,— H(4)®F;— A 0.

By Porteous’s formula one has that det(F,) = @¢(-C).

By construction there is a natural surjection F e M, - 0. By
determinant reasons the kernel is the line bundle 4A® N, gl - In such a way
one obtains canonically an exact sequence

(3) 7 0— A® Ngg— Fyyo = M, — 0.
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Tensoring (3) with NC| s ® A" and using that, since S is a K3 surface,
N¢|s = @ one gets an exact sequence

(4) 056, > F w04 - M,0,894" — 0.

The point is

Lemma 1. The coboundary map HO(MA ® W, ® 47y - Hl(@’c) of
sequence (4) is (up to scalar coefficients) the map i, A4S

Proof. We follow an argument of C. Voisin [V, Lemma 1.2(b)].
In the first place let us remark that, tensoring sequence (1) with W-® A7
and taking cohomology, one has immediately that ker Ko g4 =
HM,00.04).

Let us recall how the map By 4 is obtained. Tensoring the deriva-
tion operator d: &, — w, with the evaluation map evc 4 one obtains
a map HO(A) ®d, — W, ® A whose restriction to M, is & -linear.
Tensoring this map with w,. ® A" one obtains a map of O-modules
St M, ® 0w, ® A — w?z and u, , is simply the corresponding map
at the global sections level. As above, tensoring the derivation operator
d:Og — Qé with the map evg . one gets a map HO'(A) QT — Q; ® A
whose restriction to F, is &g-linear. Tensoring this map with w . ® 47
one gets a map of &.-modules ¢: F, @ o 04" — Qé ® W, , fitting in the
commutative exact diagram

0 o, Few,®A4" —— M,@0.®4" —— 0
I I ls
0 G Qé®wc i w?z —s 0

where the top row is sequence (4). Then the lemma follows immedi-
ately. q.e.d.

Let us continue with the proof of the proposition. Because of Lemma 1
to prove the proposition is equivalent to proving that hO(F L ® W, @A) =
1. To this end let us record some of the properties of the bundle F 'y

Lemma 2. (a) h°(F,)=h'(F,)=0.

(b) FAv is generated by its global sections away from a finite set.

(€ W(F,0F))=h(F,00.04").

Proof- (a) is obtained taking cohomology in (2), since hl(ﬁs) = 0.
Dualizing the sequence (2), since & xt;,S (O, O) = NC| § = @, one gets

(5) 0-H(A) @G~ F] »w.04" —0.
Since hl(é’s) = 0, (5) is exact at the global sections level and then (b)
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follows easily. Finally tensoring (5) with F, one gets
0> H4) ' ®F, - F,0F, - F, 00,94 —0.
Then (a) implies (c). q.e.d.

What we have proved so far is completely general. The hypothesis that
|L| contains only reduced and irreducible curves comes into play with the
following key observation of Lazarsfeld’s.

Lemma 3 [L,, Lemma 1.3]. If h°(F,® F}) > 1, ie, if F, has
nontrivial endomorphisms, then the linear system |C| contains a reducible
or multiple curve.

Then Lemma 3, together with Lemma 1 and Lemma 2(c), proves the
proposition. q.e.d.

For the benefit of the reader, we reproduce here the outline of the proof
of Lemma 3. Since there are nontrivial endomorphisms, there is some
f: Ff;/ — FAv dropping rank everywhere. To see this, one takes a nontrivial
endomorphism g of F/;/ and an eigenvalue A of g(x) for some x €
S . The determinant of f := g — A-1 vanishes at x. Since det(f) €
H°(det(F, ® F))) = C it vanishes identically.

Let N = Im(f), M, = coker(f), and set M = M,/T(M,), where
T(M,) is the torsion subsheaf of M. Thus

[Cl=c(E)=c/(N)+c,(M)+c (T(M,))

in the Chow group 4,(X) = Pic(X). Now ¢, (T(M,)) is represented
by a nonnegative linear combination of the codimension-one irreducible
components of the support of 7'(M,). Therefore it is enough to prove that
c,(N) and ¢, (M) are represented by nonzero effective curves. We have
that N and M are torsion-free sheaves of positive rank and, as quotients
of F} , generatéd by their sections away from a finite set (Lemma 2(b)).
Moreover, N and M are nontrivial, since HO(F ,) = 0 (Lemma 2(a)).
Let us assume for simplicity that N and M are locally free. Then, by
the above, we already have that ¢,(N) and c,(M) are represented by
effective (possibly zero) curves. Now such curves are in fact nonzero since,
by Porteous’s formula, ¢,(N) = 0 (resp. ¢,(M) = 0) if and only if N
(resp. M) is trivial. If N, M are not locally free, one needs a little extra
argument involving the double duals of N and M. q.e.d.
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