
Fully Dynamic Balanced and Distributed SearchTrees with Logarithmic Costs �Adriano Di Pasquale1 Enrico Nardelli1;21. Dipartimento di Matematica Pura ed Applicata, Univ. of L'Aquila, Via Vetoio, Coppito,I-67010 L'Aquila, Italia. E-mail: nardelli@univaq.it2. Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, VialeManzoni 30, I-00185 Roma, Italia. { CONTACT AUTHORPrinted on: August 15, 1999AbstractIn this paper we consider the dictionary problem in a message passing distributedenvironment. We introduce a new version of an order-preserving distributed search tree,called BDST for Balanced and Distributed Search Tree, capable to both grow and shrinkas long as keys are inserted and deleted. This is the �rst distributed data structure toexplicitly support both insertion and deletion with logarithmic costs, i.e. a key can besearched, inserted and deleted in O(logn) messages, where n is the number of servers.Moreover a range query can be performed in O(logn + dkb e) messages, where k is thenumber of items returned by the search and b is the capacity of each server. Since balanceis explicitly maintained, the structure is able to adapt itself to any input distribution anddoes not depend on any uniformity assumption to obtain logarithmic performances.Keywords: distributed data structure, fully dynamic, order preserving, message passingenvironment, range queries.1 IntroductionWith the striking advance of communication technology it is now easy and cost-e�ective to setup distributed applications running on a network of workstations. The technological frameworkwe make reference to is the so called network computing : fast communication networks, in theorder of 10-100MB/sec, and many powerful and cheap workstation, in the order of 50-100MIPS. Many organizations have this kind of computing power: large organizations have easilya cumulative amount of main memory in the order of tenths of GB.In this work we consider the dictionary problem in a message passing distributed envi-ronment. Litwin, Neimat e Schneider [3] were the �rst to present and to discuss for thisenvironment a data structure paradigm called SDDS (Scalable Distributed Data Structure).The main properties of SDDS paradigm are:�Research partially supported by the European Union TMR project \Chorochronos".1

Version 2.6.1 | Last Revision: 15 August 1999 21. Keep a good performance level while the number of managed objects changes.2. Perform operations locally.The distributed environment we make reference to is constituted by a set of sites (processoror nodes) connected by a network. Every site in the network is either a server, that managesdata, or a client, that requests access to data. Each server manages data items belonging tosome parts of the data domain. Sites communicate by sending and receiving point-to-pointmessages. We assume network communication is free of errors. Every server can store asingle block (called bucket) of at most b data items, for a �xed number b. The overall dataorganization scheme we consider is a search tree: servers manage both nodes containing dataitems (leaf nodes) and nodes guiding the search process (internal nodes).The data distribution and management policy determines how data are distributed amongthe servers; there are no preconditions as to where the data can be stored. New servers canbe added as the volume of data increases to maintain the performance level. The clients arenot, in general, up-to-date with the evolution of the structure, in the sense they have somelocal indexing structure, but do not know, in general, the overall status of the data structure.Di�erent clients may therefore have di�erent and incomplete views of the data structure.The fundamental measure of the e�ciency of an operation in this distributed context is thenumber of messages exchanged between the computers of the network. In the literature variouskinds of SDDSs have been proposed: LH� [3], RP� [4], DRT [5], lazy k-d-tree [7, 9], RBST [8].All previous proposals but RBST considered explicitly only the semi-dynamic case, thatis the case where keys are only inserted and never deleted. In this work we focus on theextensions of binary search trees to the distributed case (like DRT and RBST) and consider afully dynamic context, i.e. keys can be both inserted and deleted.The theoretical study of the characteristics of scalable distributed search trees conductedby Kr�oll e Widmayer [10] showed that if all the hypothesis used to e�ciently manage searchstructures in the single processor case are carried over to a distributed environment then alower bound of
(pn) holds for the height of balanced search trees.Nardelli et al. devised in [8] an SSSD, called RBST, where some of these hypothesis, relatedto the way the search process is executed, are relaxed, yielding a cost of O(log2 n) messagesfor search and update operations, where n is the number of servers in the structure.In this paper, we relax some other hypothesis, related to the kind of synchronization be-tween servers and clients of the structure, and show that a distributed search trees can bemaintained balanced in a distributed environment so that search and update operations canbe executed with O(logn) messages. Hence we present the �rst balanced distributed searchstructure to be fully dynamic and order-preserving. We also show how to e�ciently answerrange queries in O(logn+dkb e) messages, where k is the number of items returned by the searchand b is the capacity of each server. Since the structure is explicitly kept balanced, logarithmicperformances are obtained without relying on uniformity assumptions. A preliminary versionof this paper was presented in [1].The paper is structured as it follows. In Section 2 we describe the context of our work andthe main idea our data structure is based on. Section 3 describes the search process, whileSection 4 discusses how insertion and deletions are managed to keep the structure balanced.Sections 5 and 6 give details on algorithms for insertion and deletion, respectively. Theircorrectness is proved in section 7, while Section 8 discusses issues related to rotations used

Version 2.6.1 | Last Revision: 15 August 1999 3to keep the structure balanced. Section 9 concludes the paper with �nal remarks and futurework.2 ContextMore formally, let T be a binary search tree with n leaves (and then with n�1 internal nodes).We call f1; : : : ; fn the leaves and t1; : : : ; tn�1 the internal nodes. To each leaf a bucket capableof storing b data items is associated. Let s1; : : : ; sn be the n servers managing the search tree.We de�ne leaf association the pair (f; s), meaning that the server s manages the leaf f andits associated bucket, node association the pair (t; s), meaning that the server s manages theinternal node t. In an equivalent way we de�ne the two functions:� t(sj) = ti, where (ti; sj) is a node association,� f(sj) = fi, where (fi; sj) is a leaf association.To each node x, either leaf or internal one, the interval I(x) of data domain managed by x isassociated.In the centralized case a search tree is a binary tree such that every node represents an intervalof the data domain. Moreover, the overall data organization satis�es the invariant that theinterval managed by a child node lies inside the father node's interval. Hence the search processvisit a child node only if the searched key is inside the father node's interval.Kr�oll and Widmayer call this behavior the straight guiding property [10]. They observedthat it is not possible, in the distributed case, to directly make use of rotations for balancinga distributed search tree while guaranteeing the straight guiding property. They proved thata lower bound of O(pn) holds for the height of balanced search trees if the straight guidingproperty has to be satis�ed.In [8] Nardelli et al. devised a distributed search tree, called RBST (for Relaxed BalancedSearch Tree) where, by accepting a violation of the straight guiding property, the height ofthe tree is kept logarithmic and all update operations have a logarithmic cost, but the upperbound on the complexity of the search process is O(log2 n) .In the following we relax the requirement of the straight guiding property, but by assuming adi�erent synchronization mechanism between clients' local indexes and servers we show howto keep a distributed binary search tree balanced while all operations are maintained within alogarithmic upper bound.2.1 Basic ideaIn all previous works on SDDS, whenever a client index is introduced to improve performances,it is always built and managed to exactly reect the global tree structure. This means thatboth clients and servers keep track of both node associations and leaf associations. Moreover itis assumed that the knowledge the client has of the global tree structure is partial and almostexact, in the sense it may possibly be incomplete and at a coarser level of detail than it is inthe reality. A correction to a client index consists only in adding more detailed information.If one wants to keep the overall structure balanced then rotations in the overall tree haveto be used. But after a rotation in the overall tree has been performed, client indexes do not

Version 2.6.1 | Last Revision: 15 August 1999 4represent any more, in general, a portion of the global tree in an exact way. The approach ofsending messages from servers to all clients whenever a rotation is performed is clearly not ane�cient solution.Our basic idea to obtain logarithmic costs is to relax the synchronization between clients andserver indexes. By accepting a structural mismatch between the overall index and the localindexes we can then use rotations to maintain the overall tree balanced. The straight guidingproperty is still violated but we are now able to keep a logarithmic upper bound on bothsearch and update operations. We recently discovered that a similar approach was followed byKr�oll [11].To be more precise, we manage in di�erent ways the two associations in the two types ofindexes. Servers store in their index both node and leaf associations, while clients record onlyleaf associations. A rotation in the overall tree structure only a�ects node associations, sincewe never rotate leaves.The global tree is therefore kept balanced and the search process is bounded by logarithmiccosts. On the other side, client indexes will never have to be modi�ed due to rotations, sincethey do not keep track of node associations.2.2 The data structureThe distributed data structure we focus on is a binary search tree, where data are stored inthe leaves and internal nodes contains only routing information. Every node has zero or twochildren. For a binary search tree T we denote with h(T) the height of T , that is the numberof internal nodes on a longest path from the root to a leaf. Every server s but one, with leafnode association (t; s) and leaf association (f; s), records at least the following information:� An internal node t = t(s) and the associated interval of key's domain I(t),� The server p(s) managing the parent node pn(t) of t, if t is not the root node,� The server l(s) (resp., r(s)) managing the left child ls(t) (resp., right child rs(t)) of t,and the associated interval Il(t) (resp., Ir(t)),� A leaf f = f(s) and the associated interval of key's domain I(f),� The server pf(s) managing the father node pn(f) of f , if f is not the unique node ofglobal tree (initial situation).This information constitutes the local tree lt(s) of server s (see �gure 1). Since in a global treeof n nodes there are n�1 internal nodes, there is one server s0 managing only a leaf association,hence lt(s0) is made up by only the two last pieces of information in the above list.We say a server s is pertinent for a key k, if s manages the bucket to which k belongs. Inour case if k 2 I(f(s)). Moreover we say a server s is logically pertinent for a key k, if k isin the key interval of the internal node associated to s, that is if k 2 I(t(s)). Note that theserver managing the root is logically pertinent for each key. Note also that, due to the e�ectof rotations, it is not necessarily I(f(s)) � I(t(s)).When a server sends a message, it always adds its local tree to it. This is useful to increasethe knowledge about the global structure in the client receiving the message. As soon as aclient receives an answer from a server, it uses the received local tree to update its local index,

Version 2.6.1 | Last Revision: 15 August 1999 5
pn(t)=t(p(s))

t=t(s)

ls(t)=t(l(s)) rs(t)=t(r(s))

pn(f)=t(pf(s))

f=f(s)Figure 1: The local tree of server s.where only leaf associations are stored. A client uses its local index to better address itsqueries.2.3 The client indexEvery client manages an index to reduce addressing errors. This is a collection, in generalincomplete, of leaf associations. Since our complexity measure is the number of messages onthe network, then it is not important which is the structure used to store the associations. Itcan be a list or a search tree. If it is a search tree, its structure is, in general, di�erent fromthe structure of the global tree.A client uses its index to �nd the server s which should answer to a query so to issue apoint-to-point message to s. If this server is not found, then the client must send the query tothe server managing the root of the global tree. This is true, in particular, for a new client,whose index is empty.When a client issues a query, it receives in the answer message a certain number of servers'slocal trees (owned by the servers involved in the search process). It uses these local trees toimprove the knowledge about the overall structure recorded in its index. If the client has aleaf association (f; s) stored in its index, it knows that server s manages interval I(f(s)). Inthe reality it may be that either s has been released due to an underow or s is managing asub-interval of I(f(s)). Local trees received as part of the answer to search queries are usedto update this information.Note that it may happen that a client can send a request to a server that has been released.In this case the client has to use some timeout mechanism. When the timeout period expiresit sends the request to the server managing the root like if it were a new client.3 The search processWe now describe how to search in our structure, called BDST for Balanced and DistributedSearch Tree. We examine which events can occur and algorithms to treat them.

Version 2.6.1 | Last Revision: 15 August 1999 6Event 1. A query from a new client. A new client is a client that never issued a queryto the structure and then has no knowledge about it. Such a client, say c, always send therequest of a key k to the server r managing the root of global tree. If r is the pertinent serverfor k, then r manages the request and answers to c, else it chooses between the servers l(r) andr(r) managing its left and right sons the pertinent or logically pertinent one for k and sendsit the request. Note that one of the two has to be at least logically pertinent. The processcontinues until the request arrives to the pertinent server s0 for k. s0 manages the request andanswers to c, see �gure 2 (left).
Client

t(s")

t(s)

f(s’)
Client

t(s)

f(s’)
Client

t(r)

f(s’)Figure 2: Searching queries from a new client (left), from a client with addressing error sendingits request to: a logically pertinent server (center) and a non logically pertinent server (right).Event 2. A query from a client without addressing error. A client c sends the requestfor a key k to a server s which is the pertinent server for k. s manages the request and answersto c.Event 3. A query from a client with addressing error. A client c sends the requestfor a key k to a server s, but s is not the pertinent server for k.If s is logically pertinent (see �gure 2 center) for k then s chooses between the servers l(s)and r(s) managing left and right sons the pertinent or logically pertinent one for k and sendsit the request. Note that one of the two has to be at least logically pertinent. The processcontinues until the request arrives to the pertinent server s0 for k. s0 manages the request andanswers to c.If s is not logically pertinent (see �gure 2 right) for k then s sends the request to p(s), i.e.the server managing the father of t(s). From p(s) the search may proceed further upwards.There is certainly a node t00 in the path between t(s) and the root such that its managingserver s00 is pertinent or logically pertinent for k. If s00 is pertinent then it behaves like s0. Ifs00 is only logically pertinent then it chooses between the servers managing left and right sonsand continues as in previous case, see �gure 2 (right).Theorem 3.1 Let T be a BDST and let h = h(T). Searching for a given key requires in theworst case O(h) messages.Proof. If event 1 happens, a chain of messages departs from the root and arrives to a leaf.In the worst case, the chain is composed by h messages. Counting also request and answermessages, h + 2 messages are needed.

Version 2.6.1 | Last Revision: 15 August 1999 7If event 2 happens, only O(1) messages are needed (namely, the request and answer mes-sage).If event 3 happens, then we distinguish two cases. In the �rst case, s is logically pertinent,and h+ 2 messages are needed. In the second one, s is not logically pertinent, hence we mustgo up in the global tree to found the logically pertinent server. In the worst case we departfrom a leaf at height h and arrive to the root, then we go down again to another leaf of heighth (see �gure 3). In total we need 2h+ 2 messages. 2
h

ClientFigure 3: The worst case for searching.Now, if we keep the global tree balanced during updates by using rotations, the height h alwaysremains bounded by O(logn), hence also the cost of search process is bounded by O(logn).3.1 Range queriesNow we describe how to perform a range query (see �gure 4).A client searches in its index for a server with a leaf interval internal to the range of thequery and sends it the request. This server sends the request from f upwards until the lowestnode t0 that covers the query range is found. In the case of a new client (i.e., no informationis stored in the client index) or in the case of an address error (i.e., when the request from theclient is addressed to a server with an interval outside the range of the query), to reach t0 weoperate like in the case of exact search.Then t0 sends the request downward in the tree towards each of the dkb e servers within therange. All these servers answer to the client.To reach t0 we follow an upward path from a leaf to t0. The length of this path is O(logn).Then to reach the leaves from t0 we use one message for each edge of the sub-tree with k leavesrooted at t0, therefore a range query has a cost of O(logn+ dkb e) messages in the worst case.4 Insertion and deletionWe now describe how to perform insertion and deletion in a BDST. Please note that in adistributed environment insertion and deletion refers, respectively, to the creation of a newserver that receives part of the keys previously managed by an existing server that is now inoverow and to the release of an existing server that is now in underow and sends all itskeys to an existing server. Insertion and deletion of data items that do not cause, respectively,

Version 2.6.1 | Last Revision: 15 August 1999 8
Client

O(log n)

k

t(s)Figure 4: The range query.overow and underow, do not require any rebalancing action, and their complexity analysisis the same of searching data items. When overows and underows occur, we must performsome actions to keep the structure balanced and a binary search tree (i.e. each node has eitherzero or two children).The balance actions must a�ect only internal nodes and never change the leaves, sincerotating the leaves would force to transfer the whole bucket content to another server andthis is not e�cient. This means that during balancing only node associations change while leafassociations remains the same. Therefore a leaf can change its father, but can never become aninternal node. It is possible to use any balancing technique which satis�es these assumptionsand keeps the costs logarithmic.In the description of algorithms for insertion and deletion we assume that a server is able toexecute a function, called balance bdst, which performs the action that may be needed to keepthe BDST balanced after an update. We assume balance bdst uses at most O(logn) messages,where n is the number of servers managing the BDST, and that before the execution of thealgorithms described below the BDST is already balanced, i.e. h, the height of BDST, isbounded by O(logn).As a preliminary remark please note that an important problem in this distributed, fullydynamic context is the following hysteresis situation.One server receives an insert operation, goes in overow and splits itself in two to returnwithin the size bound. Just after the split, it receives a delete operation. Now its bucket goesunder b2 keys and then it has to manage the underow, and eventually performs a merge. Thissequence of split and merge can be possibly repeated any number of times, with a correspondingdegrade of the structure's performances.This is a well known problem in the theory of �le structures. One way to tackle it is toavoid to split an overowing server or to release an underowing server by exchanging keysbetween adjacent leaves.Another way is to assign to the underow a lower threshold than the one for the overow,e.g. at b3 instead that at b2 .In general, we may to deal with this problem by applying any strategy known from the �lestructure theory.The approach based on checking for a possible transfer of keys is carried out by the functiontransfer keys. This is composed by the following sub-steps (see �gure 5):

Version 2.6.1 | Last Revision: 15 August 1999 9
t(c)

t(b)

f=f(s)
f’=f(s’) f"=f(s")

t(c)

t(b)

f=f(s)
f’=f(s’) f"=f(s")

t(c)

t(b)

f=f(s)
f’=f(s’) f"=f(s")

keysFigure 5: Transfer keys among adjacent leaves1. Looking for the adjacent leaves (�gure 5, left). The server s starts a chain of searchmessages toward the adjacent leaves f 0 = f(s0) and f 00 = f(s00) of f(s).2. Decide the policy (�gure 5, center). On the basis of information received by s0 and s00,s decides if it is possible to exchange keys among them without splitting/ releasing theserver s. If it is possible, there will be a transfer of keys between s0 and s and/or betweens00 and s. How many keys to transfer and whether to involve in the transfer both s0 ands00 or not are further issues to be considered for performance optimization purposes.3. Interval change and key transfer (�gure 5, right). If keys have been transferred,then from f 0 and f 00 a chain of change messages starts and follows the same path ofsearch messages and return to f . Each node reached by these messages, changes its keyinterval.5 Algorithm for insertionStep 1: Insert { We search for the leaf where the new key has to be inserted and insert it.We assume that this insert generates an overow, that is the key to be inserted is the (b+1)-thkey assigned to that bucket.Step 2: Manage the overow { Leaf f , managed by server s, goes in overow. In this casewe have to decide whether s has to be split or if it is possible to transfer its keys to adjacentnodes. Details about this aspect have been discussed in the previous section. Assume then thedecision was to split the node. Then s must perform a function called split. This function issimilar to the synonymous one described in [3, 5]. Leaf f splits in two new leaves f1 and f2. Anew internal node tn+1 replaces f in the tree. A new server sn+1 is called to manage the newinternal node and one of the new leaf. Server s releases the old leaf f and manages the othernew leaf.In conclusion we delete leaf association (f; s) and add two leaf associations (f1; s) and(f2; sn+1) and one node association (tn+1; sn+1) (see �gure 6). The old interval I(f) is dividedin the new intervals I(f1) and I(f2), such that I(f1) [I(f2) = I(f).

Version 2.6.1 | Last Revision: 15 August 1999 10
split

f=f(s)

tn+1 sn+1=t()

f =f(s)1 f2 sn+1=f()Figure 6: Insertion of an element in an overowing bucketStep 3: Balance the BDST { Perform the balance bdst function starting from tn+1.Theorem 5.1 Insertion in a BDST made up by n servers costs in the worst case O(logn)messages.Proof. From the algorithm above we have in the worst-case the following costs for thevarious steps:Step 1: From theorem 3.1 this costs O(logn) messages.Step 2: A constant number of messages is needed to perform the split function (see [3, 5]).Step 3: From the assumptions above we have a cost of O(logn) messages. 26 Algorithm for deletionStep 1: Delete { We search for the leaf where the key has to be deleted and delete it. Weassume that this generates an underow, that is by deleting that key the bucket has less thanb2 keys.Step 2: Manage the underow { The leaf f , managed by server s, goes in underow.In this case we have to decide whether s has to be released or if it is possible to transfer keysfrom the adjacent leaves, without releasing s. Details on this aspect have been discussed insection 4. Assume then the decision was to release s. Then s performs a function called merge.This is its behaviour:If f is the root, the BDST is composed by one node and then no action are performed.If the BDST is composed by the root r and two leaves f and x, there are only two serverss and s0. Then s is released and after the communication to s0 and the deletion of r, x becomethe root of BDST. All the keys of f are sent to x.In the general case f is the leaf in �gure 7. The case with f as left son is analogous. Weassume b is the server such that t(b) is the father node of f(s) and c is the server such thatt(c) is the father node of t(b). t(a) can be a leaf or an internal node. In this case the functionis constituted by the following sub-steps (see also �gure 7):1. Release server s and delete leaf f = f(s).

Version 2.6.1 | Last Revision: 15 August 1999 11
merge

t=t(s)

t(c)

t(b)

t(a) f=f(s)

I(t(a)) I(f)

t=t(b)

t(c)

t(a)

I(t(a)) I(f) UFigure 7: Deletion of an element from an underowing bucket2. Since node t(b) has now one son, then delete t(b) and replace it with t(a) as the son oft(c).3. If s managed an internal node t = t(s), then from now on t is managed by server b (notethat b has just released its internal node t(b)).Step 3: Balance the BDST { Perform the balance bdst function starting from t(c).Theorem 6.1 Deletion in a BDST made up by n server costs in the worst case O(logn)messages.Proof. From the algorithm above we have the following worst case costs for the various steps:Step 1: From theorem 3.1 this costs O(logn) messages.Step 2: From lemma 7.2 this costs O(logn) messages.Step 3: From the assumptions above we have a cost of O(logn) messages. 27 Proofs of correctnessIn the next lemma we prove that every message needed to perform the merge and transfer keysfunctions can actually be sent, i.e. every server searching in the local tree eventually �nds theservers destination of messages.Lemma 7.1 The merge and transfer keys functions are correct with respect to the local treeof the servers involved.Proof. For the merge: In step 2 server s has to notify to b that it has to release its internalnode t(b). This can be done since b is the father of f = f(s) and then is in the local tree of s.Server b has to notify to servers a and c the change of, respectively, the father of t(a) and theson of t(c). This can be done since we can �nd a and c in the local tree of b. In step 3, if smanaged an internal node t, then s has to notify to b the new internal node t to manage (thiscan also be performed in previous messages from s to b) and which are the father and the sons

Version 2.6.1 | Last Revision: 15 August 1999 12of t. Then this change has to be noti�ed to the servers managing the father and the sons of t.All the required information is in the local tree of s.For the transfer keys: Each server sends a search message or a change messages to itsparent or to its child, therefore it �nds the destination of message in its local tree. The searchmessages transport the address of s, therefore s0 and s00 can exchange messages with s. 2Lemma 7.2 The merge function costs O(1) messages in the worst case. The transfer keysfunction costs O(logn) messages in the worst case.Proof. For the merge: From lemma 7.1 we can see that step 2 needs one message from sto b, one from b to a, and one from b to c.If s was not managing an internal node t then step 3 needs zero messages, else it needs onemessage from s to b, one from s to the server managing the father of t (zero if n is the root),and two from s to the servers managing the sons of t. This makes a total of 6 messages.If b coincides with s then only two messages are needed. In the two special cases we have,respectively, zero and one messages.For the transfer keys: We follow at most four times a path in the tree from t(c) to a leaf.The length L of this path is O(logn) in the worst case. Counting the remaining messages, wehave 4L+ 9 messages. 2The servers involved in the merge function have to be locked, like in the split function case.In the next lemma we show that on the contrary the transfer keys does not need to lock theservers.Lemma 7.3 The transfer keys may be correctly executed without locking the involved servers.Proof. We want to prove that during every steps of the transfer keys, each request of keysin I(f) will be satis�ed. We give a proof for the case where we transfer the keys from s to s0.The proof for the other case is analoguous.We denote with R the requests of keys belonging to I(f) (see �gure 8).1. As long as f(s0) has not received the keys and changed its interval, each request followsthe path to f(s) where the keys reside.2. After f(s0) has received the keys, requests arriving to s0 for keys in I(f) do not goupwards like in the previous case, but are directly satis�ed by s0. Requests arriving to sare forwarded to s0.3. For each internal node s� belonging to the path beetween t(a) and f(s0), after s� hasbeen reached by the change messages and has changed its interval, the requests arrivingto it for keys in I(f) do not go upwards like before, but are sent downward to f(s0).These requests will be satis�ed because s0 now has the keys. The ancestors of s�, thathave not yet been reached by the change messages, send the requests upwards to f(s).These messages will be satis�ed too, because when will arrive to s, s will forward themto s0.4. When the change messages arrive to s, eventually s begins the merge function, lockingthe involved servers. 2

Version 2.6.1 | Last Revision: 15 August 1999 13
t(b)

t(a)
f=f(s)

f’=f(s’)

t(s*)

R

R R

R

R

RFigure 8: The chain of change messages8 Rotations in a distributed environmentRotations in a distributed environment are performed via message exchanges between servers.Since we are in a concurrency framework, in the sense that various clients independentlymanipulate the structure, each rotation must be preceeded by a lock of the servers involved.Then some messages are needed to create the lock, others to communicate the modi�cationsand others to release the lock. Each rotation has therefore a cost in terms of messages. Wecan show that the cost of one rotation is a constant and then if a balancing strategy uses alogarithmic number of rotations for operation, then the overall cost is kept logarithmic.We show by means of an example how to execute rotations in a distributed environment.Without loss of generality, let us consider �gure 9 (�rst), and suppose that node a must rotatewith node b. The ow of events is the following:1. a sends messages to (client) nodes A, B and to (server) node b, to notify that a lockmust be created. After having received these messages, nodes A, B, and b stop routingmessages towards a and send a lock acknowledgement to a.2. b sends messages to (client) node C and to (server) node c, to notify that a lock must becreated and that acknowledgement must be sent to a. After this message, nodes C andc stop routing messages towards b.3. Every server answers to a, see �gure 9 (second), to acknowledge the lock state.4. a noti�es to all servers involved in the rotation which modi�cations are needed and afterall servers have been con�rmed a releases all locks, see �gure 9 (third).5. When locks are released the situation is shown in �gure 9 (last) and all servers restartto route messages.It is easy to prove that the example is correct with respect to the local tree of a server. Weused 15 messages and 5 servers are involved. We note that in each rotation exists a serverthat does not need to be informed of the rotation, and then is not involved in the lock. In thediscussed example this server is C. We can therefore improve the procedure and use only 12messages (with 4 servers involved).

Version 2.6.1 | Last Revision: 15 August 1999 14
c

b

a

A B

C

c

a

b

CB

A

c

b

a

A B

C

c

b

a

A B

CFigure 9: Locking messages during a rotationEach lock, in a certain sense, reduces the degree of concurrency and this is a drawback in adistributed environment. It is then important to keep the number of locks small.Although any balancing strategy with a logarithmic number of messages is good for thegeneral objective, we must focus on those minimizing the number of rotations and then thenumber of locks. For example the splay tree [12] uses a large number of rotations.It is more convenient to use a data structure like a red-black-tree [13], which has a constantnumber of rotations both for deletion and insertion operations.Much work has been done about reducing the number of rotations while balancing a concurrentsearch tree [2, 6], but this regards the concurrent, shared-memory case.There is a big di�erence between this kind of work and the distributed tree studied here.In [2, 6] every update operation can unbalance the structure, while in our case a great numberof update operations do not cause an unbalance to the structure.This is due to the fact that data are managed in buckets of size b. If a server s startwith an empty bucket, b insert operations addressed to s do not cause an overow and do notchange the distributed tree's structure. More in general if we have k insert operations in astructure where each server manages b2 keys (i.e. every server has just performed a split), thenthe number of overows (and then of splits) is bounded by d2kb e (the bound holds when allk inserts are in the same server). Then if b is large, we have a low number of overows. Ananalogous situation holds for underows.9 ConclusionsWe have presented an approach to keep a distributed binary search tree balanced, enabling it tomanage both insertion and deletion of data items in a message-passing distributed environment.Hence we have shown that a fully-dynamic and order preserving distributed search struc-ture, that is a structure that is able to grow and shrink as long as data items are insertedand deleted, can be implemented in a message-passing distributed environment as e�ciently,namely with a O(logn) worst case bound, as in the single processor case. We have also shownhow to answer range queries with O(logn+ dkb e), where k is the number of returned elementsand b is the bucket size.Our data structure keeps the same good level of performance for every distribution of thekeys in the domain of values. There are other order-preserving distributed structure with goodperformances, but often only under the hypothesis of a uniform distribution of the keys. Future

Version 2.6.1 | Last Revision: 15 August 1999 15work will focus on a thorough experimental analysis of our data structure behavior, also incomparison with its competitors.References[1] A.Di Pasquale, E. Nardelli: Balanced and Distributed Search Trees, 1st Southern Sympo-sium on Computing, Hattiesburg, Ma., December 1998.[2] J. Eckerle, O. Nurmi: Technical Report Aug17-7, Technical University of Munich, 1994.[3] W. Litwin, M.A. Neimat, D.A. Schneider: LH* - Linear hashing for distributed �les, ACMSIGMOD Int. Conf. on Management of Data, Washington, D. C., 1993.[4] W. Litwin, M.A. Neimat, D.A. Schneider: RP* - A family of order-preserving scalabledistributed data structure, in 20th Conf. on Very Large Data Bases, Santiago, Chile, 1994.[5] B. Kr�oll, P. Widmayer: Distributing a search tree among a growing number of processor,in ACM SIGMOD Int. Conf. on Management of Data, pp 265-276 Minneapolis, MN, 1994.[6] K. Larsen, E. Soisalon-Soininen, P. Widmayer: Relaxed balance through standard rota-tions, in Workshop on Algorithms and Data Structures, Halifax, Nova Scotia, Canada,August 1997.[7] E. Nardelli: Distribuited k-d trees, in XVI Int. Conf. of the Chilean Computer ScienceSociety (SCCC'96), Valdivia, Chile, November 1996.[8] F. Barillari, E. Nardelli, M. Pepe: Fully Dinamic Distribuited Search Trees Can Be Bal-anced in O(log2N) Time, Technical Report 146, Dipartimento di Matematica Pura edApplicata, Universita' di L'Aquila, July 1997, submitted for publication.[9] E. Nardelli, F.Barillari, M. Pepe: Distributed Searching of Multi-Dimensional Data: aPerformance Evaluation Study, Journal of Parallel and Distributed Computation, 49,1998.[10] B. Kr�oll, P. Widmayer: Balanced distributed search trees do not exists, in 4th Int.Workshop on Algorithms and Data Structures (WADS'95), Kingston, Canada, (S. Aklet al., Eds.), Lecture Notes in Computer Science, Vol. 955, pp. 50-61, Springer-Verlag,Berlin/New York, August 1995.[11] B.Kr�oll: Dynamisch verteilte Woerterbuecher. PhD thesis, ETH Z�urich, Institute of The-oretical Computer Science, February 1997.[12] D.D. Sleator, R.E. Tarjan: Self-Adjusting Binary Search Trees, Journal of the ACM32(3):652-686, 1985.[13] T.H. Cormen, C.E. Leiserson, R.L. Rivest: "Introduction to Algorithms", McGraw-Hill,New York, 1990.

