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Abstract

The DRT* is an order preserving Scalable Distributed Data Struc-
tures with an almost constant amortized upper bound costs for ex-
act searches and insertions. The result is based on the correction
techinque the DRT* uses when a given request produces an ad-
dress error. This technique mainly consists in exchanging infor-
mation among servers about the distribution of data by means of
messages. Servers can exchange the maximum (complete correc-
tion technique) or the minimum (restricted correction technique)
information they know.

Here, we investigate the amortized lower bound of such dis-
tributed searching technique, proving that there is not any advantage
in using complete correction technique, because the lower bound
result of the complete correction technique is the same of the re-
stricted one.
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Grants No. CNRC00CAB8 and CNRG003EF8, and by the Research Project REAL-WINE,
partially funded by the Italian Ministry of Education, University and Research.
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1 Introduction

In this paper we investigate amortized lower bounds for the distributed
searching technique used in DRT* and its variants. The DRT* is an order
preserving Scalable Distributed Data Structures (SDDS) [5] able to deal
with insertions and exact searches both for the 1-dimensional and the k-
dimensional case with an almost constant amortized upper bound costs.

In [2] we analyzed the amortized behavior of DRT* and we proved
that a sequence σ of m requests of intermixed exact-searches and in-
sertions over a DRT* starting with one empty server and ending with

n servers has a cost of C(m,n) = O
(

m log(1+m/n) n
)

messages. Such a

result is obtained by adapting some of the techniques developed for the
solution of the Set Union Problem [7].

The same structural analogy between DRT* and Set Union Problem
allows to prove a lower bound for the cost of the sequence σ [1],i.e.,

C(m,n) = Ω
(

m log(1+m/n) n
)

.

Note that the latter result was based on a DRT* version using a re-
stricted correction rule in the distributed searching process, and it was an
open problem whether it holds for other correction rules (details about
correction technique are presented in Section 2.3).

Both the upper bound and the lower bound results are based on the
use of an analytical tool called Split Tree, used to keep track of the cost in
term of messages of the requests of σ.

Here, we define a new analytical tool called Reverse Split Tree (RST).
Using the RST we analyze the cost of σ on a DRT* version using the
complete correction rule of the distributed searching process. In particu-
lar, we are able to prove that the lower bound for such DRT* version is
the same of the restricted one.

In Section 2 and in Section 3 we review basic concepts on DRT* and
results from Set Union Problem, respectively. In Section 4 we present the
algorithm and the complexity analysis. Last Section concludes the paper.

2 Distributed Search Trees

Here we review the main concepts relative to DRT*, in order to prepare
the way for the presentation of our result. Servers manage data in buckets,
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clients manipulate data performing insertions and exact searches. Other
operations, like deletions, range searches and so on, are not considered in
the paper.

2.1 Bucket management

The protocol of a server managing a bucket is common to all the propos-
als on distributed search trees. Each server s manages a unique bucket of
keys. The bucket has a fixed capacity b. We define I(s) to be the interval
of keys managed by s, meaning that a key k ∈ I(s) should be searched or
should be inserted in s. We define s “to be in overflow” or “to go in over-
flow” when it manages b keys and one more key is assigned to it. When
s goes in overflow it starts the split operation. It requests the address of a
new fresh server snew to a special site called split coordinator. Whenever
s receives the address of snew, it sends to snew half of its keys.

After a split, s and snew manage b
2 and b

2 +1 keys, respectively. More-
over, I(s) is divided into two sub-intervals: I and Inew, with I(s) = I and
I(snew) = Inew.

2.2 Local tree

Each client c and server s has a local indexing structure, called local tree
(lt(c) and lt(s), respectively) to avoid them to make address errors (i.e.,
they send a request to a wrong server). Whenever a client performs a
request and makes an address error, it receives, together with the answer,
information to correct its local tree. This prevents a client to commit the
same address error twice.

From a logical point of view the local tree is an incomplete collection
of associations 〈s, I(s)〉 identifying a server s and the managed interval
of keys I(s). The local tree of a client can be wrong, in the sense that in
the reality server s is managing an interval smaller than what the client
currently knows, due to a split performed by s and yet unknown to the
client.

In a DRT*, a client c that wants to perform a request chooses in its
local tree the server s that should manage the request and sends it a request
message. If s is pertinent for the request, then it performs it. If s is not
pertinent, we have an address error. In this case s looks for the pertinent
server s′ in its local tree and forwards it the request.
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Since also s′ can be not pertinent, thus forwarding the request to still
another server, in general we can have a sequence of address errors that
causes a chain of messages between the servers s1,s2,..,sk. Finally, server
sk is pertinent and can satisfy the request.

2.3 Correction technique

In order to minimize the number of address errors, the following correc-
tion technique is applied during the search process: whenever a server s is
not pertinent for a request and has to forward it to another server, it adds
to the message to send some information taken from its local tree and
then it sends the message. The pertinent server extracts from the request
the information added by the servers which have been traversed by the
request. It builds up a correction tree C aggregating the received infor-
mation and its own one. Finally, it sends a Local Tree Correction (LTC)
message containing C to the client and to all the servers involved in the
request, so to allow them to correct their local trees.

In particular, we define a correction technique to be restricted if the
information added by each server s is 〈s, I(s)〉. Otherwise, we define a cor-
rection technique to be complete if the information added by each server
s is lt(s).

2.4 Split tree

Let T be a DRT*. From the description above of the local trees and
how they change due to the distribution of information about the overall
structure through LTC messages, it is clear that the number of messages
needed to answer a request changes with the increase of the number of re-
quests. To analyze how changes in the content and structure of local trees
affect the cost of answering to requests, we associate with each server s
of T a rooted tree ST (s), called the split tree of s (Figure 1.a shows a split
tree). The nodes of ST (s) are the servers pertinent for a request arriving
to s. The tree has an arbitrary structure except that the root is s. An arc
(s1,s2) in ST (s) means that s2 is in the local tree of s1. When a split oc-
curr in T , the structure of split trees changes (for example, in Figure 1.b,
the split of server e adds the node s′ and the arc (e,s′) in ST (s)).

In the same way, if we consider the correction of local trees, the struc-
ture of the split tree of s changes. Indeed, due to the correction, after a
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Figure 1: (a) The split tree ST (s). (b) Server e splits, with s′ as new server.
(c) The effect of a compression after a request pertinent for d and arrived
to s.

request to a server d, s adds all the servers in the path between s and d
in its local tree. The consequence is that now s can address directly these
servers in the future. In order to describe this new situation in the split
tree of s, we delete the arcs of the traversed path and add to s the arcs
between s and the traversed servers. The result is a compression of the
path between s and d (see Figure 1.c).

We use the split trees in order to take into account in the amortized
analysis the use of LTC messages to reduce the cost of satisfying the
request.

3 Results from Set Union Problem

The set union is a classical problem that has been deeply analyzed [7]. It is
the problem of maintaining a collection of disjoint sets of elements under
the operations of find and union. All algorithms for the set union prob-
lem appearing in the literature use an approach based on the canonical
element: within each set, we distinguish an arbitrary but unique element
called the canonical element, used to represent the set. Operations defined
in the set union problem are:

make-set(e): create a new set containing the single element e, which
at the time of the operation does not belong to any set. The canonical
element of the new set is e.

find(e): return the canonical element of the set containing element e.
union(e, f ): combine the sets whose canonical elements are e and f

into a single set, and make either e or f the canonical element of the new
set.
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Figure 2: (a),(b) Recursive definitions of Tk. (c) Examples of Tk trees.

To make finds possible, each set is represented by a rooted tree whose
nodes are the elements of the set and the root is the canonical element.
Each node x contains a pointer p(x) to its parent in the tree; the root points
to itself. These trees are named compressed trees.

To carry out find(e) we follow parent pointers from e until the root,
which is then returned. While traversing parent pointers, one can apply
some techniques for compressing the path from the elements to the root:
compression, splitting, and halving. To carry out union various techniques
can be applied: naive linking, linking by rank and linking by size (see [7]
for details).

For the sake of the presentation, we provide a number of definitions.
Consider a Tree T . Let r(T ) be the root node of T . We denote with

a→ b or b← a that b is the father node of a. Let T,T ′,T ′′ be trees. We
denote T = T ′← T ′′, if r(T ) = r(T ′) and r(T ′)← r(T ′′). Moreover, we
denote T = T ′ ↑ T ′′, if r(T )← r(T ′) and r(T )← r(T ′′).

In [7], Tarjan and Van Leeuwen have conducted a worst-case analysis
on the Set Union Problem. In particular, our proof is based on their lower
bound results for the instances of Set Union Problem where finds are car-
ried out with any compression technique and unions are carried out with
naive linking.

To get the lower bound result, the class of compressed trees Tk is
defined. Figure 2-a and Figure 2-b show the recursive definitions of a Tk
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tree for j ≥ 2. Figure 2-c shows examples of Tk trees with j = 2.
Main properties of the class of Tk trees are the following:

Definition 1 Tk = Tk−1← Tk− j (see Figure 2.a).

Definition 2 Tk = T1 ↑ T2 ↑ ... ↑ Tk− j−1 ↑ Tk− j (see Figure 2.b).

Lemma 1 If we link a tree containing a single node with a Tk tree and
then perform j compressions, we obtain a new Tk tree with an extra node.

In the following, we report the main lower bound result for the Set
Union Problem (from [7]).

Theorem 1 Let S be a generic instance of Set Union Problem where finds
are carried out with any compression technique and unions are carried
out with naive linking.

The time of a sequence ρ of m finds and n unions on S is

C(m,n) = Ω
(

m log1+m/n n
)

Proof. We obtain bad examples as follows: Suppose m ≥ n ≥ 2. Let
j = bm/nc, i = blog j+l(n/2)c+ 1, and k = i j. Build a Tk tree. Note that
|Tk| ≤ ( j + 1)i−1 ≤ n/2. Repeat the following operations bn/2c times:
Link a single-node tree with the existing tree, which consists of Tk with
some extra nodes. Then perform j finds, each traversing a path of i + 1
nodes, to reproduce Tk with some extra nodes. There are at most m finds,
and the total number of nodes on find paths is at least jbn/2c(i + 1) =

Ω
(

m log1+m/n n
)

. 2

In [1, 2], we proved that a sequence ρ of m finds and n unions in the
Set Union Problem can be associated to a sequence σ of m requests of
intermixed exact-searches and insertions over a DRT*, and vice-versa.
This has been possible showing the relation between split trees on DRT*
and compressed trees on Set Union Problem.

In particular, this relation has been used to prove that a sequence σ
of m requests of intermixed exact-searches and insertions over a DRT*
starting with one empty server and ending with n servers has a cost of

C(m,n) = Ω
(

m log(1+m/n) n
)

messages. But, the result holds only in case

the restricted correction technique is used in DRT*.
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4 The Reverse Split Tree

The Reverse Split Tree (RST) of a server s, say RST (s), is a virtual struc-
ture similar to ST (s). While ST (s) shows the path of a request starting
from s, on the contrary, a path from a node t to s in RST (s) describes a
request arriving to t and pertinent for s, ∀t ∈ RST (s).

We define such a request server search and we denote that with srch(t,s).
The definitions of nodes and arcs in a RST are the same as of split trees.

The following algorithm in pseudo code describes how to build up
RST(s) from a given configuration of a DRT* T of n nodes.

ALGORITHM: RST BUILD(s)
RST(s) = {s};
N∗ = {s0, ...,sn−1};
extract s from N∗.
while ( N∗ 6= /0 )
{
extract t ∈ N∗ from N∗.
foreach( r ∈ RST(s) )
{
if( r ∈ lt(t) and I(r) = min{I(r′)|r′ ∈ lt(t) && I(s)⊆ I(r′)} )
{
add node r in RST (s);
add arc (t,r) in RST (s);
}

}
}

Figure 3 shows a possible configuration of a DRT* T , ST (s0) and RST(s4).
In the following, we show how it is possible to build up a RST iso-

morph to a Tk tree for a given k. We calculate the cost in terms of messages
of such procedure. Finally, we use the result in [7] and [1] to prove the
main result.

Lemma 2 Let us consider RST (s0) with a generic shape T . There exists
a sequence of requests which creates an RST isomorph to a tree Tk← T .
(see Figure 4.a).
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Figure 3: (a) A configuration of a DRT* T : the distributed virtual tree; (b)
local trees of servers s0 and s1; (c) ST (s0) and RST (s4).

Proof. The result holds for k ≤ j with a split of r(T ) (Figure 4.b).
For k = j + 1, we perform 2 splits producing a← b← r(T ). After

that, a srch(r(T ),a) produces RST (a) = Tj+1← T .
Suppose now by induction to build a RST R = Tk− j ← T . By the

inductive hypothesis we can build up a new RST R′ = Tk− j−1 ← R. For
the same reason, we can build up a new RST R′′ = Tk− j−2← R′.

Continuing with this procedure, we can build up a RST= T1← T2←
...← Tk− j ← T .

After that, we perform a further split of r(T1), with a as new
server, producing RST(a) = a ← T1 ← T2 ← ... ← Tk− j ← T and a
srch(r(Tk− j),a).

For the definition 2, RST (a) = Tk← T . (see Figure 4.e and 4.f). 2

Lemma 3 Consider a compressed tree belonging to the class of Tk trees,
with j ≥ 2. There exists a sequence of requests which creates an RST
isomorph to Tk.

Proof. Consider a RST(s0) made up by the unique server s0. The result
holds for k≤ j without any request.

In the case j + 1 ≤ k ≤ 2 j, a chain of k− j splits creating servers
s1, ...,sk− j is performed, such that s0 ← s1 ← ... ← sk− j. After that, a
srch(s0,sk− j) creates RST (sk− j) isomorph to Tk.

Suppose by induction that a sequence of requests builds up a RST
made up by a tree Tk−1. Hence, the same applies for a Tik− j tree.

For the lemma 2, it is possible to build up a RST isomorph to Tk−1←
Tk− j, and hence, isomorph to Tk. 2
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Figure 4: Evolution of lemma 2.

Lemma 4 The number of messages needed to create an RST isomorph
to Tk is O(k).

Proof. Let C(k) be the number of messages need to create an RST
isomorph to Tk. For the definition 1, Tk = Tk−1 ← Tk− j, and, hence,
Tk−1 = Tk−2← Tk−1− j.

Following the procedures to build up Tk of lemmas 3 and 2, we
build up the tree Tk−2 ← Tk−1− j ← Tk− j, and we perform the last
srch(r(Tk− j),r(Tk−2)), that costs 2 messages.

Hence, we can state that C(k) =C(k−2)+C(k−1− j)+C(k− j)+2
The solution of this recursive function is just C(k) = O(k). 2

A simpler formula for C(k) can be derived thinking that one message
of the last server search has been used to build up Tk−1 and one message
to build up Tk. Hence, C(k) = C(k−1)+C(k− j)+1.

We now provide an example of the described procedure. Suppose we
want to build up a RST with the shape of T6, with j = 2. Consider the
following sequence of requests on a DRT* T starting with the unique
server s0: a set of inserts creates s1 from the split of s0, and s2 from the
split of s1. Now, RST (s2) = s2← s1← s0 (see Figure 5.a).

A srch(s0,s2) modifies the shape of RST(s2) to the one of Figure 5.b.
Servers s3 and s4 are created by a chain of splits starting from s2. A
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Figure 5: A sequence of requests on DRT* builds up RST(s7) with the
shape of T6.

srch(s2,s4) is performed (see Figure 5.c).
Servers s5,s6,s7 are created by a chain of splits starting from s4.

Please note that now RST (s7) = T1 ← T2 ← T3 ← T4 (see Figure 5.d).
A srch(s2,s7) is performed, producing RST(s7) with the shape of T6 (see
Figure 5.e).

From the previous lemma and from the results in [1] and [7], the following
theorem holds.

Theorem 2 Let T be a DRT* with a complete correction technique, start-
ing with one empty server and ending with n servers. Then, the number
of messages of a sequence σ of m requests made up by intermixed inserts
and exact searches over T is

C(m,n) = Ω
(

m log1+m/n n
)

5 Conclusions

We have analyzed amortized lower bound for distributed searching tech-
nique used in DRT and its variants, where the complete correction tech-
nique is used. Previously, lower bound results were presented only for the
DRT* version with the restricted correction technique [1].

From an implementation point of view, we recall that the complete
technique is very expensive in terms of size of messages, with respect
to the restricted one, since, a server always adds its entire local tree to a
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forwarding message. Our result suggests us that using such an expensive
technique does not help to improve the overall performance.

A similar analysis can be performed on the variant of DRT*, like the
ones defined in [3, 4], showing that also in those cases the bounds are
tight.

Our proof is based on the structural analogy between DRT* and com-
pressed trees used in the set union problem [6, 7]. A deeper analysis of
this analogy suggests other protocols, in some cases more efficient, for
the management of distributed data.
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