
An Amortized Lower Bound for Distributed Searhingof k -dimensional Data �Adriano Di Pasquale1 Enrio Nardelli1;21. Dipartimento di Matematia Pura ed Appliata, Univ. of L'Aquila, Via Vetoio, Coppito, I-67010L'Aquila, Italia. E-mail: nardelli�univaq.it2. Istituto di Analisi dei Sistemi ed Informatia, Consiglio Nazionale delle Rierhe, Viale Manzoni30, I-00185 Roma, Italia. � CONTACT AUTHORPrinted on:June 21, 2000AbstratIn this paper we onsider the salable distributed data struture paradigm introdued by Litwin,Neimat and Shneider and analyze osts for insert, exat and range searhes in an amortized frame-work. We show that both for the 1-dimensional and the k -dimensional ase insert and exat searheshave an amortized almost onstant osts, namely O �log(1+A) n�, where n is the total number ofservers of the struture, b is the apaity of eah server, and A = b2 . Considering that A is a largevalue, in the order of thousands, we an assume to have a onstant ost in the real distributedstrutures.Only worst ase analysis has been previously onsidered and the almost onstant ost for theamortized analysis of the general k -dimensional ase appears to be very promising in the light ofthe well known di�ulties in proving optimal worst ase bounds for k -dimensions.Keywords: distributed data struture, order preserving, message passing environment, multi-dimensional environment, range queries.1 IntrodutionThe onstant inrease of PCs and workstations onneted by a network and the need to manage greaterand greater amount of data motivates the researh fousing on the design and analysis of distributeddatabases. The tehnologial framework we make referene to is the so alled network omputing : fastommuniation networks and many powerful and heap workstations. There are several aspets makingthis environment attrative. The most important one is that a set of sites has more power and resoureswith respet to a single site, independently from the equipment of a site. Moreover the network o�ers atransfer speed that is not omparable with the magneti or optial disks one. Therefore this frameworkis a suitable environment for the newer appliations with high performane requirements, like, forexample, spatio-temporal databases [15, 3℄.In this work we onsider the ditionary problem in a message passing distributed environment andwe follow the paradigm of the SDDS (Salable Distributed Data Struture) de�ned by Litwin, Neimat eShneider [9℄. The main properties of SDDS paradigm are:1. Keep a good performane level while the number of managed objets hanges.�Researh partially supported by the Italian MURST 40% projet �Algoritmi, Modelli di Calolo e Strutture Informa-tive� and by the the European Union TMR projet �Chorohronos�.1



Version 1.5.0 � Last Revision: May 10, 2000 22. Perform operations loally.We assume that data are distributed among a variable number of servers and aessed by a set oflients. Both servers and lients are distributed among the nodes of the network. Clients and serversommuniate by sending and reeiving point-to-point messages. We assume network ommuniationis free of errors. Servers store objets uniquely identi�ed by a key. Every server stores a single blok(alled buket) of at most b data items, for a �xed number b. New servers are brought in as the volumeof data inreases to maintain the performane level.The fundamental measure of the e�ieny of an operation in this distributed ontext is the numberof messages exhanged between the sites of the network. The internal work of a site is negleted.In order to minimize the number of messages, in a searh operation it is possible to use some indexloally to a site to better address the searh towards another site. The searh proess in the loal indexperformed by a site is not aounted in the omplexity analysis.The lients are not, in general, up-to-date with the evolution of the struture, in the sense they havesome loal indexing struture, but do not know, in general, the overall status of the data struture.Di�erent lients may therefore have di�erent and inomplete views of the data struture.In an extreme ase we an design the following distributed struture: there is a server root knowingall the other servers. When a split ours, the new server whih is brought in sends a messages to rootto ommuniate its presene. When a server is not pertinent for a request, it sends the request to root,that looks for the orret server in its loal index and sends it the request. Eah aess has thus aost of at most 2 messages. But with this solution root is a bottlenek, beause it has to manage eahaddress error, and this violates the basi salability requirement of the SDDS paradigm.However, the above example shows that we an have, within this distributed omputing framework,a worst ase onstant ost for the searh proess, while in the entralized ase the lower bound is wellknown to be logarithmi.There are various proposal in the literature addressing the ditionary problem within the paradigmof the SDDS: LH� [9℄, RP� [10℄, DRT [8℄, lazy k-d-tree [11℄, RBST [1℄, BDST [4℄ distributed B+-trees [2℄.In this work we propose a variant of the management tehnique for distributed data used in theDRT [8℄. We ondut an amortized analysis of the proposed strategy showing it has an almost onstantost for insert and searh and we show how to adapt the strategy to the multi-dimensional ase.2 Desription of the struture2.1 Split managementServers manage their buket in the usual way. We say a server goes in over�ow when it is managingb keys and a new one is sent to it, where b is the apaity of a server. For the sake of simpliity, weassume b is even. When a server goes in over�ow it has to split: it �nds a new server to bring in (forexample asking to a speial site, alled Split Coordinator), and sends it half of its keys.The interval of the keys managed by s is divided by the split in two sub-intervals. From now on,the server s manages one of this sub-intervals (the one that ontains the keys remaining in s), while s0manages the other one. We assume that after a split the splitting server s always manages the lowerhalf of the two intervals resulting from the split and the new server s0 manages the upper half. Also,after this split, s knows that s0 is the server brought in by itself.After a split, one of the two resulting servers manages b2 keys and the other one b2 + 1 keys. LetA = b2 . Whit m requests, it follows diretly that we an have at most �mA � splits.2.2 Loal treeThe lients and the servers have a loal indexing struture, alled loal tree. From a logial point of viewthis is a tree omposed by an inomplete olletion of servers. For eah server s the managed intervalof keys I(s) is also stored. The loal tree of a lient an be wrong, in the sense that in the reality a
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Figure 1: Possible ases of the searh proess.server s is managing an interval smaller than what the lient urrently knows, due to a split performedby s and unknown to the lient. In partiular, given the split management poliy above desribed, ifIr = [a; b) is the real interval of s, and Ilt = [; d) is the interval of s in some loal tree, then a =  andb � d. For example in reality Ir(s) = [100; 200), while in a loal tree we ould have Ilt(s) = [100; 250).The loal tree an be managed internally with any data struture: list, tree,et.Note that for eah request of a key k reeived by a server s, k is within the interval I that s managedbefore its �rst division. This is due to the fat that if a lient has information on s, then ertainly smanages an interval I 0 � I , due to the way over�ow is managed through splits. Therefore if s is hosenas server to whih to send the request of a key k, it means that k 2 I 0 ) k 2 I .The loal tree of a lient  is set up and updated using the answers of servers to request of . Theloal tree of a server s is omposed at least by the servers generated by s through a split. In partiular,sine a server always knows the next ones brought in by itself through its splits, this always guaranteesthe existene of a path between the initial server and any other server. A server always adds its loaltree in every message to update lients with information about its view of the overall struture.2.3 Requests managementA lient  that wants to perform a request hooses in its loal tree the server s that should manage therequest and sends it a request message.If s is pertinent for the request then performs it (see �gure 1-a). In general, if the request is a searhoperation then an answer is always sent bak to the lient; if it is an insert no answer is sent.If s is not pertinent we have an address error. In this ase s looks for the pertinent server s0 in itsloal tree and forwards it the request.Sine also s0 an be not pertinent, thus forwarding the request to still another server, in general wean have a series of address error that auses a hain of messages between the servers s1,s2,..,sk. Finally,server sk is pertinent and an satisfy the request. Moreover, sk reeives the loal trees of the servers1,s2,..,sk�1 whih have been traversed by the request. It �rst builds a orretion tree C aggregatingthe loal trees reeived and its own one, and then sends Loal Tree Corretion (LTC) messages withC to the lient (even if it was an insert operation) and to all servers s1,s2,..,sk�1, so to allow them toorret their loal trees (see �gure 1-b).In �gure 1 the possible ases of searh proess are shown. We have that eah request has a ost,without ounting the initial request and the �nal answer messages, either 0 (ase a) or 2(k� 1)(ase b).This strategy to manage the distributed struture, is very similar to the one de�ned by Kröll andWidmayer for DRT [8℄ and therefore we all it DRT*.2.4 Split treeFrom the desription above of the loal trees and how they hange due to the distribution of informationabout the overall struture through LTC messages, it is lear that the number of messages needed toanswer a request hanges with the inrease of the number of requests. To analyze how hanges in theontent and struture of loal trees a�et the ost of answering to requests we assoiate to eah server
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Figure 2: The splits build up ST0(a) (e splits, with s0 as new server)(left and enter). The e�et of aompression after a request pertinent for d and arrived to a (right). ST () does not orrespond anymoreto the sub-tree Ta() of ST (a). The same for b.s of DRT* a distint rooted tree ST (s), alled the split tree of s. The nodes of ST (s) are the serverspertinent for a request arriving to s. The tree has an arbitrary struture exept that (i) the root is sand (ii) an ar (s1; s2) in ST (s) means that s1 is in the loal tree of s2. When a server updates its loaltree using LTC messages the struture of ST (s) hanges.We all ST0(s) the split tree of server s obtained from a sequene of requests over a DRT* withoutapplying the orretion of the loal trees of the servers using LTC messages, i.e. ST0(s) is shaped onlyby splits of the servers. Initially ST0(s) is made up only by s. Whenever s splits, with s0 as new server,the node s0 and a new ar (s0; s) are added to ST0(s). The same holds for the splits of servers whihare nodes in ST0(s) (for example, in �gure 2-enter, the split of server e adds the node s0 and the ar(s0; e) in ST0(a)).Sine eah server s0 in ST0(s) was reated by a hain of splits emanating from s, then s0 manages asub-interval of the initial interval managed by s.If we onsider the orretion of loal trees, the struture of the split tree of s hanges. In fat, dueto the orretion, after a request to a server d, s adds all the servers in the path between s and d in itsloal tree. The onsequene is that now s an address diretly these servers in the future. In order todesribe this new situation in the split tree of s, we delete the ars of the traversed path and add to sthe ars between s and the traversed servers. The result is a ompression of the path between s and d(see �gure 2-right).We denote with ST (s) the split tree of s whose struture has been determined by the use of LTCmessages. We denote with Ts(s0) the sub-tree of ST (s) rooted at server s0. We give some immediateproperties of split trees:Lemma 2.1 Eah request arriving to s is pertinent for a server in ST (s).Lemma 2.2 Let s0 be a server in ST (s). Let Qs(s0) be the set of servers in the sub-tree of ST0(s)rooted at s0, but for s0 itself. Let p(s0; s) be the set of servers belonging to the path in ST0(s) from s0(exluded) to s (inluded).As long as no request pertinent for a server x 2 Qs(s0) arrives to a server y 2 p(s0; s), it isST (s0) = Ts(s0).For example, by omparing �gure 2-left and �gure 2-right, you an hek that ST () does notorrespond anymore with the sub-tree Ta() of ST (a) after the request pertinent for d arrives to a andis forwarded to d.We use the split trees to takes into aount in the amortized analysis how the use of LTC messagesredues the ost of satisfying the request.
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Figure 3: The ompression (i), the splitting (ii), and the halving (iii) of a path a,b,,d,e,f .3 Amortized analysisSine the way loal trees hange during the evolution of the overall struture is similar to the struturalhanges happening in the set union problem we now �rst brie�y reall it and then analyze amortizedomplexity of operations in DRT*.3.1 The set union problemThe set union is a lassial problem that has been deeply analyzed [14, 16℄. It is the problem ofmaintaining a olletion of disjoint sets of elements under the operation of union. All algorithms for theset union problem appearing in the literature use an approah based on the anonial element. Withineah set, we distinguish an arbitrary but unique element alled the anonial element, used to representthe set. Operations de�ned in the set union problem are:� make-set(e): reate a new set ontaining the single element e, whih at the time of the operationdoes not belong to any set. The anonial element of the new set is e.� �nd(e): return the anonial element of the set ontaining element e.� union(e; f): ombine the sets whose anonial elements are e and f into a single set, and makeeither e or f the anonial element of the new set. This operation requires that e 6= f .We represent eah set by a rooted tree whose nodes are the elements of the set and the root is theanonial element. Eah node x ontains a pointer p(x) to its parent in the tree; the root points toitself. This is a ompressed tree representation [7℄.To arry out �nd(e), we follow parent pointers from e until the root, whih is then returned. Whiletraversing parent pointer, one an apply some tehniques for ompressing the path from the elementsto the root: ompression, splitting, and halving (see �gure 3).To arry out union various tehniques an be applied: naive linking, linking by rank and linking bysize. In the rest of the paper we assume that in union(e; f) with the naive linking tehnique we alwaysmake e point to f .In [16℄, Tarjan and Van Leeuwen have onduted a worst-ase analysis on the set union problem.In partiular, they have shown that naive linking oupled with any of the three above desribed pathompression tehniques gives a worst-ase running time of the set union problem of ��m log(1+m=n) n�,where m is the number of �nds and n is the number of elements, and it is assumed that m � n.3.2 Upper boundLet us onsider a request arrived at server s and pertinent for s0. This an be a searh or an insert of akey in a server s0. We an view this request as the searh of the server s0 in ST (s) and we all this view



Version 1.5.0 � Last Revision: May 10, 2000 6server-searh(s0; s). Please note that a request and its view as a server-searh in the split tree havethe same ost. Therefore, in order to alulate the ost of a sequene of requests in a DRT* we anonsider a orresponding sequene of operations in split trees, made up by server-searhes and splits,and alulate the ost of this sequene. The ost of a sequene of operations is the sum of the ost ofeah operation.Let us assume to operate in an environment where the lients work slowly. More preisely, we supposethat between two requests the involved servers have the time to omplete all updates of their loal tree.This restrition an be easily overome through the introdution of a suitable lok mehanism [5℄providing similar omplexity result.Under the previous assumption, in [6℄ we give an upper bound on the omplexity of queries on DRT*,showing an equivalene between split trees and the ompressed trees used for the set union problemsolved by means of naive linking oupled with the ompression tehnique. In the following we reallthe main results of this analysis.Theorem 3.1 Let C(m;n) be the ost in terms of number of messages of a sequene of m requestsover a DRT* starting with one empty server and with n servers at the end. We have:C(m;n) = O �m log(1+m=n) n� :Sine in DRT* there is a relation between m and n (see setion 2.1), namely n � mA , then we have:Corollary 3.2 Let C(m;n) the ost in terms of number of messages of a sequene of m requests overa DRT* starting with one empty server and with n servers at the end. We have:C(m;n) = O �m log(1+A) n� :Please note that for A = 103 we have log(1+A) n � 4 for n � 1012servers. We therefore an assumeto have an amortized onstant ost in real SDDSs.3.3 Lower boundWe now want to show a orrespondene between sequenes of �nds, make-sets and unions in set unionproblem, and sequenes of requests in a DRT*, in order to give a lower bound for the omplexity ofoperations on DRT*.Let � be a sequene of ms �nds, n make-sets and l unions, with l < n. For the sake of simpliitywe assume � terminates with a single ompressed tree CT (bs).The orresponding sequene � of DRT* operations is made up by two sub-sequenes �1 and �2 as itfollows. We assume the DRT* starts with one server assoiated to make-set(bs). �1 is then a sequenebuilding an n-server DRT* by means of a series of inserts produing n�1 splits and whih do not auseany address error. In this way for eah element of the set union problem we have a server in DRT*. Foreah make-set(s0), inserts in �1 are used to reate a server s0 in DRT*. Now two ases are possible: (i)union(s0; s) exists after make-set(s0), (ii) union(s0; s) does not exist in �. In the former ase we performthe minimum number of inserts over s required to obtain the server s0 as a new server from the split ofs (see �gure 4). In the latter ase there is no spei� server on whih we have to arry out insertions inorder to obtain s0 from its split: then we an freely hoose any of the existing server.After having built �1, we have �translated� all make-sets and unions of � in terms of inserts andsplits. To build �2 we now have to assoiate to eah �nd(s0) in set union problem, where s0 is in CT (s),a searh operation in the DRT* pertinent for the server s0 and arriving to the server s. We an viewthis operation as a server-searh(s0; s) over a split tree, without a�eting the resulting omplexity.At the end we obtain a sequene �1 with mi inserts without address errors and a sequene �2 of msserver-searhes.Clearly �1 is a legal sequene, from the point of view of building a DRT*, sine it is made up byjust inserts without address errors and splits. We now disuss the legality of �2.
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Figure 4: To a make-set(s0) and a following union(s0; s) in set union problem (SUP) we make toorrespond inserts in DRT* that ause the split of s, with s0 as new server.Lemma 3.3 Let us onsider a server-searh(s0; s) in � orresponding to a find(s0) in � performed overCT (s). server-searh(s0; s) is legal with respet to the DRT* built by �1 in the sense that it is orretthat a request pertinent for server s0 arrives to server s.Proof.Assume s = s0. Then server-searh(s0; s) in � orrespond to a request for s0 without address errors.This is learly a orret operation.Assume now s 6= s0. server-searh(s0; s) has been generated by a �nd(s0) that has followed a pathin CT (s). This means that in � there is union(s0; s1), union(s1; s2), .., union(sk�1; sk), where s0 = s0and sk = s. But eah of this unions orresponds to a split in the DRT* built by �. By onsidering allthese splits together it is easy to hek that s0 manages a sub-interval of the initial interval of s. Thenit is orret that a request for s0 arrives to s.To analyze equivalene between server-searhes and �nds, we proeed in two steps for larity ofpresentation. First we prove the equivalene for the �rst �nd in �. Then we generalize the result to ageneri ourrene of �nd in �.Let pCT (s0; s) = hs0 = x1; x2; : : : ; xr = si be the path onneting s0 to its anestor s in CT (s). LetpST (t0; t) = ht0 = y1; y2; : : : ; yr = ti be the path onneting t to its desendant t0 in ST (s0). We saypCT (s0; s) and pST (t0; t) are isomorphi if elements xi orresponds to server yi for i = 1; 2; :::; r.Lemma 3.4 Let �nd(s0) be the �rst �nd in �. Let pCT (s0; s) be the path followed in CT (s) by �nd(s0)and let pST (s0; s) be the path followed in ST (s) by the orresponding server-searh(s0; s). Then pCT (s0; s)and pST (s0; s) are isomorphi.Proof.Let k be the position of �nd(s0) in �. Two ases are possible: (i) only make-sets preede �nd(s0) in�, (ii) make-sets and unions preede �nd(s0) in �.Case (i). Let make-set(t) be the operation in position k � 1 in �. If s0 = t then �nd(s0) is exeutedin CT (s0) and it follows a path of zero ars. Its orresponding operation in � is server-searh(s0; s0),following as well a path of zero ars in ST (s0). If s0 6= t we an neglet the (k� 1)-th operation sine itdoes not a�et the path followed by �nd(s0) and we apply again the previous arguments to the (k�2)-thoperation until we arrive to operation make-set(s0), whih is at latest the �rst operation in �.Case (ii). The proof is by indution on the number of unions preeding �nd(s0) in �. Let us assumeonly one union(t0; t00) exists in � before �nd(s0). If the (k � 1)-th operation is a make-set, using thesame arguments as in ase (i) we either prove the thesis or apply again the analysis to the (k � 2)-thoperation. In going bakwards in � we therefore arrive sooner or later to union(t0; t00). If s0 6= t0 wean neglet union(t0; t00) sine it does not a�et the path followed by �nd(s0) and by apply again thesame arguments as above we prove the thesis. If s0 = t0, then the path pCT (t0; t00) followed by �nd(s0)is made up by one ar linking t0 to t00 in CT (t00). This is learly isomorphi to pST (t0; t00) in ST (t00) andthe thesis is proved.



Version 1.5.0 � Last Revision: May 10, 2000 8Let us assume now that n unions preede �nd(s0) in � and that by indution the thesis holds for the�rst n�1 unions preeding �nd(s0) in �. Let union(t0; t00) be the n-th union. Moreover let union(t0; t00)be the operation preeding �nd(s0) to whih we arrive going bakwards in � on the basis of the samearguments used above (in the other ases we have the above results). If t0 is not an anestor of s0 ands0 6= t0, then union(t0; t00) does not a�et the path followed by �nd(s0) and by the indutive hypothesisthe thesis is proved. If t0 is not an anestor of s0 and s0 = t0, then we an apply the same argumentsused for the base ase of the indution. If t0 is an anestor of s0 then pCT (t0; t00) is made up by pCT (s0; t0)and the ar linking t0 to t00. By the indutive hypothesis we have pCT (t0; t00) is isomorphi to pST (t0; t00).Lemma 3.5 Let pCT (s0; s) be the path followed in CT (s) by a �nd(s0) and let pST (s0; s) be the pathfollowed in ST (s) by the orresponding server-searh(s0; s). Then pCT (s0; s) and pST (s0; s) are isomor-phi.Proof.By lemma 3.4 the thesis is true for the �rst �nd in �.Let us assume by indution the thesis holds for the �rst n �nds in �. Let �nd(s0) be the n + 1-th�nd and let k be its position in �.For the proof we have to onsider three ases.(i) The (k � 1)-th operation is a make-set(t0). If s0 = t0 we an apply the analysis of lemma 3.4. Ifs0 6= t0 we an neglet the (k� 1)-th operation and apply again the analysis to the (k� 2)-th operation.(ii) The (k�1)-th operation is a �nd(t0) exeuted in a CT (t00). If s0 = t0 by the indutive hypothesisthe thesis is true. If s0 6= t0 then we have two sub-ases:(a) s0 =2 CT (t00); then pCT (s0; s) is not hanged by the exeution of �nd(t0) and we an neglet the(k � 1)-th operation and apply again the analysis to the (k � 2)-th operation.(b) s0 2 CT (t00); In this ase it is t00 = s. Let bt be the lowest anestor of s0 lying on pCT (t0; t00). Byindutive hypothesis pCT (t0; t00) is isomorphi to pST (t0; t00) and pCT (s0;bt) is isomorphi to pST (s0;bt).After the ompression exeuted by �nd(t0), bt is a diret son of t00 both in CT (t00) and in ST (t00) (see�gure 5). Therefore the path followed by the exeution of �nd(t0) both in CT (t00) and in ST (t00) ismade up by one ar linking bt to its father t00 plus the path linking s0 to bt. By the indutive hypothesiswe therefore have pCT (s0; t00) is isomorphi to pST (s0; t00).(iii) The k � 1-st operation is union(t0; t00). If t0 is an anestor of s0 then pCT (s0; t00) is made up bypCT (s0; t0) and the ar linking t0 to t00. By the indutive hypothesis we have pCT (s0; t00) is isomorphito pST (s0; t00). In the other ases we an apply the analysis of lemma 3.4.Let Cs(ms; n) the ost of sequene � of ms �nds and n make-sets in the set union problem. LetCi be the ost of the initial mi inserts in �1 and C(m;n) be the ost of sequene � of m = ms +mirequests in the DRT*. Then:Lemma 3.6 It is: C(m;n) > Cs(ms; n) + CiProof.By onstrution the ost of � is made up by the sum of the ost of �1 and �2. The �rst term islearly Ci. For the seond term note that by the lemma 3.5 eah server-searh orresponding to a �ndhas the same ost of the �nd. In fat the ost for both operations is two times the length of the pathfollowed in the ompressed tree or in the split tree.Moreover, for eah make-set we have a split, and eah split has a ost greater than 2 messages.Therefore the total ost of splits over the ost of all make-sets and unions (with n make-set we haveat most n � 1 unions). Then the ost of the sequene of ms �nds and n make-sets and u unions hasa ost smaller than the relative ost of the orresponding ms server-searhes and n � 1 splits in theDRT*.Please note that to obtain n servers starting with one empty server, we have to arry out a sequeneof b+ 1 inserts to split the �rst server, and at least other b2 (n� 2) inserts over the servers with b2 + 1
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Figure 5: A �nd in set union problem(SUP) and a orresponding server-searh in the DRT*.keys or at most other � b2 + 1� (n� 2) inserts over the servers with b2 keys, to obtain the other splits. Intotal b2n+1 � mi � � b2 + 1�n� 1. We perform eah insert without address error, and with a ost of 2messages for eah insert, we have Ci = 2mi.Theorem 3.7 If m > 2mi, then: C(m;n) = 
�m log(1+m=n) n� :Proof.From [16℄ we have that if it is ms > n, then we have Cs(ms; n) = 
�ms log(1+ms=n) n�. From thehypothesis, sine m = ms +mi, we have ms > m2 . Given the result in lemma 3.6, we have:C(m;n) > Cs(ms; n) + Ci > Cs(ms; n) = 
�ms log(1+ms=n) n� :Note that log(1+ms=n) n > log(1+m=n) n, beause ms < m. Then:C(m;n) = 
�ms log(1+m=n) n�. Sine ms > m2 , we have: C(m;n) = 
�m log(1+m=n) n�From theorem 3.1 and theorem 3.7, we diretly obtain:Corollary 3.8 If m > 2mi, then: C(m;n) = ��m log(1+m=n) n� :Note that the hypothesis m > 2mi means that eah key inserted into the DRT* should be searhedon the average at least one.



Version 1.5.0 � Last Revision: May 10, 2000 104 Extension to the multi-dimensional aseIn the multi-dimensional ase we use as indexing struture a distributed version of k -d tree alled lazyk-d tree, introdued in [11℄ and extensively analyzed in [12, 13℄, with index on lients and servers. Theloal tree is also a lazy k-d tree.Therefore for the multi-dimensional ase we modify the searh proess of lazy k-d trees as in the aseof DRT*. More preisely, with referene to the �gure 1, when a request generates a hain of addresserror, the pertinent server builds up the orretion tree C and sends it within the LTC messages toeah server in the hain. In this ase C is a onneted portion of the overall k-d tree. It ontains thewhole path from the node assoiated to s0 to the one assoiated to sk. A server simply adjusts its loaltree adding the unknown portion of the tree. The analysis of previous setion exatly applies to themulti-dimensional ase.5 ExtensionsThe set union study suggests other heuristis to manage a DRT* other than the Compression ommonlyused in the DRT and lazy k -d tree. For example the Splitting heuristi is easily implementable in thesearh proess of a DRT*. In the searh proess orresponds to the following protool:Let us assume that a searh operation has to follow a path from the servers s1; ::; sk. When a servers2 reeives a routing message from a server s1, it routes to s3 and sends to s1 the message with its loaltree. The same is performed by the other servers. No loal tree LT is built by the �nal pertinent serversk. The splitting heuristi keeps the same omplexity of the ompression one in the DRT*, but it ismore indiated for example in an high onurrent system. In fat in this ase our requirement on thetime between two onseutive requests arriving at the same server beome TR � 2D, in fat, the answerto a server that has routed a request arrives just from the server destination of the routing message.Therefore the lok time of a server drastially dereases.An analogous DRT* extension ould be performed for the Halving heuristi.6 ConlusionsWe have introdued and analyzed a variant, alled DRT*, of the addressing method for SDDSs used inDRT [8℄. Our variant, DRT*, has a very good behavior in the amortized ase, lose to the optimality.The method is also extendible to the multi-dimensional ase, applying the same variation to thelazy k-d tree [11, 13℄.In partiular for a real SDDS (made up by hundreds or thousands of servers) we an assume to havean almost onstant amortized ost for the insert and searh operations.To prove the result we used a strutural analogy between DRT* and ompressed trees used in theset union problem [14, 16℄. A deeper analysis of this analogy might suggest other protools, possiblymore e�ient, for the management of distributed data.In the k-dimensional ase only worst ase analysis was previously onsidered and the almost onstantost for the general k-dimensional ase appears to be very promising in the light of well known di�ultiesin proving optimal worst ase bounds for suh a ase.Referenes[1℄ F. Barillari, E. Nardelli, M. Pepe: Fully Dinami Distribuited Searh Trees Can Be Balaned inO(log2N) Time, Tehnial Report 146, Dipartimento di Matematia Pura ed Appliata, Universita'di L'Aquila, July 1997, submitted for publiation.
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