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Abstract. Formal methods based on the mathematical theory of par-
tially ordered sets (i.e., posets) have been used in the database field for
the modelling of spatial data since many years. In particular, the use of
the lattice completion (or normal completion) of a poset has been shown
by Kainz, Egenhofer and Greasley [13] to be a fundamental technique
to build meaningful representations of spatial subdivisions. In fact, they
proved that the new elements introduced by the normal completion pro-
cess can (and have to) be interpreted as being the intersection of poset
elements. This is fundamental, from a mathematical point of view, since
it means that the lattice resulting from the normal completion is the clo-
sure of the given poset with respect to the intersection operation. In this
paper we precisely clarify the limitations for the use of lattices as models
for spatial subdivisions, by proving sufficient and necessary conditions.
Our result gives therefore a sound theoretical basis for the use of lattices
built on simplicial complexes as a data model for spatial databases.

1 Introduction

A class of sets together with a set-containment relation among them models
many common situations in spatial databases. For example it may represent a
containment relation between geographical objects of the plane or a hierarchical
relation between administrative units. The set-containment relation is a partial
order relation. Formal methods based on the mathematical theory of partially
ordered sets (i.e. posets) have been used for the description of spatial relations
since many years [13,8,19].

In particular, the use of the lattice completion (or normal completion) of
a poset has been shown by Kainz, Egenhofer and Greasley [13] to be a fun-
damental technique to build meaningful representation of spatial subdivisions.
They proposed to represent by means of the elements introduced by the normal
completion operator, the set-intersection between sets of the class. Consider for
example the class of sets S containing the four sets A, B, C, and D shown in
Fig. 1.

Each set is represented with an elliptic shape filled with a different pattern.
Zones filled with more than one pattern belong to more than one set.

We can represent the class S with the poset P shown in Fig. 2 left.
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Fig. 1. A class of sets with a set containment relation
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Fig. 2. (left) A poset representation of the class of sets of Fig. 1. (right) The normal
completion of the poset in Fig. 2 (left)

Now suppose we want a representation of the closure S′ of the class S with
respect to the set intersection operator (i.e. the class obtained intersecting each
possible pair of sets taken from S). Such a closure is composed by the sets
contained in S plus the set A∩B and the empty set. The set A∩B is contained
in the sets A and B and it contains the sets C and D. The normal completion
of poset P is the lattice L, shown in Fig. 2 right. The lattice L is composed by
the elements of P plus a top and bottom element, and a new element labeled E,
which is smaller than the elements (representing the sets) A and B and greater
than those (representing the sets) C and D. Therefore, since the relation of set
with respect to other sets of S is analogous to that of the element E with respect
to other elements of L, the lattice L can represent the class of sets S′, provided
that the element E represents the set A ∩ B.

In the general case, however, using the normal completion operator to repre-
sent the set-intersection operator, may lead to incorrect results, as the following
example shows. In Fig. 3 a class S of sets with a set containment relation and
its closure S′ with respect to the set intersection operator are represented.
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Fig. 3. A class of sets with a set containment relation

The class S is composed by the sets labeled as A, B, C, D, E, D and T , where
T ≡ ⋃

x∈S x is the greatest set of the class and it is not represented in Fig. 3. As
Fig. 3 shows, the class S′ is composed by the sets contained in S plus the sets
A∩B, B∩C and A∩C ≡ A∩B∩C. A poset P representing the class S in shown
in Fig. 4 left. If we build the normal completion of P , we obtain the lattice in
Fig. 4 right. The newly created element X is the greatest lower bound of the
elements A and B, hence it shoud represent the set A∩B. However X is also the
greatest lower bound of the elements B and C, hence it should represent the set
B ∩C, but as Fig. 3 shows, A∩B and B ∩C are different sets and consequently
is incorrect to represent them by the same poset element.

Fig. 4. (left) A poset representation of the class of sets of Fig. 3. (right) The normal
completion of the poset in Fig. 4 (left)

In Fig. 5 we see a correct representation of S′. We have built poset in Fig.
5 starting from Fig. 3 (that shows the class S) and not from Fig. 4 left (the
poset representation of S). In fact the poset in Fig. 4 left does not provide
enough information: for example inspecting Fig. 3 we see that the sets A∩C and
A∩B∩C are the same set, but poset in Fig. 4 left cannot carry this information.
If A ∩ B ∩ C was strictly contained in A ∩ C, see example in Fig. 6, then the
poset in Fig. 4 left would still be, without any modification, a representation of
this different class.

This fact shows that to represent set intersection operator by means of poset
operator we have to provide more information to our representation. A way to do
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Fig. 5. A representation of the closure with respect to set intersection operator of the
class of sets in Fig. 3

Fig. 6. A class of sets with a set containment relation

this is to include in the class S a spatial subdivision of the whole domain on which
S is defined. In a poset that represents such a class there is an element for each
of the atomic units of the spatial subdivision of S. We show that when a class S
includes a spatial subdivision, the normal completion of its poset representation
is a correct representation of S′. This was the case discussed by Kainz, Egenhofer
and Greasley [13] since they modeled spatial regions by means of simplicial
complexes, that include naturally a spatial subdivision.

We highlight in this paper the fundamental role played by the presence of
a spatial subdivision for a correct use of the normal completion operator. We
give necessary and sufficient conditions for a correct use of lattices as models for
spatial relations.

The use of posets as a modelling structure for realities in spatial databases
is largely widespread [2,13,8,15,19,11]. Also, a discrete basis for the sets of the
class, which is analogous to the universal partition we introduce in Sect. 2, is
commonly used in the modelling of geometrical entities [6,10]. Such a discrete
basis is indeed the starting point for many efficient data structure based on a
space-partitioning criteria, e.g. quadtree [16], grid-file [14], k-d tree [3], cell-tree
[9]. Normal completion plays a central role in posets operations [4,5]. Various stu-
dies has been conducted to develop efficient algorithms for its construction. The
most interesting, in our opinion, are [12,15,17]. Efficient representation techni-
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ques for posets have been developed in [1,18]. With reference to the use of posets
to model spatial databases, in [15] an incremental algorithm to build the normal
completion of a poset is given. But the issue of how to interpret the new elements
inserted for the completion with respect to the reality of interest is left open.

We close this section with a brief summary of the rest of this paper. In Sect.
2 we introduce formally the definitions of closure of a class of sets with a set-
containment relation with respect to set-intersection, of representation of a class
of sets and of universal partition. Section 3 is dedicated to the study of the
representation of the closure of a class with respect to set-intersection.

2 Representations and Closures

In this section we define formally what we mean by closure of a class of sets with
respect to a certain set operator, and what we mean by representation of a class
of sets with a set-containment relation by means of a poset. We also introduce in
this section the concept of universal partition of a class S with a set-containment
relation. It will be used in later sections as a tool to operate efficiently on sets
belonging to S and on sets belonging to closures of S.

We consider only finite classes, i.e. classes containing a finite number of
sets. For technical reasons it is useful to work with classes of sets with a set-
containment relation that contain a greatest set (namely a set that contains
every other set of the class) and a least set (namely a set that is contained in
every other set of the class). This is not a restriction since if a finite class of sets
has not a greatest or a least set, we can always extend it adding respectively
the set union of all the sets of the class or the empty set, and then work with
the extended class. From now on, when we speak of a class of sets with a set-
containment relation, we always refer to the extended class. All results proved
in this section are almost straightforward, hence proofs are omitted.

Definition 1. Let S be a class of sets with a set-containment relation. We define
S∩, the closure of S with respect to set-intersection operator, by the following
rules:

1. if s ∈ S then s ∈ S∩ ;
2. ∀s1, s2 ∈ S∩, s1 ∩ s2 ∈ S∩ .

To build correctly the closure of S we need to perform aggregations and
subdivisions of sets. For this aim we make use of a universal partition, a subclass
of S containing sets that act as building blocks for every other set of S (i.e. every
set of S can be obtained applying the set-union operator to a suitable collection
of sets of the universal partition).

Definition 2. Let S be a class of sets with a set-containment relation, and let
US ⊆ S. We say that US is a universal partition of S if ∀r1, r2 ∈ US, we have
r1 ∩ r2 ≡ ∅, and ∀s ∈ S there exist r1, r2 . . . rn ∈ US such that s ≡ ⋃

i ri.

To associate to each set of the class its building blocks (i.e. the collection of
sets of the universal partition that compose the set) we define a mapping.
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Definition 3. Let S be a class of sets with a set-containment relation and a
universal partition US. We define the mapping SBase : S 7→ 2US as

SBase(s) = {r ∈ US |r ⊆ s} .

The following proposition shows that for each set s of a class of sets with a
set-containment relation, there exists a unique collection of sets of the universal
partition whose set-union is equal to s, and that this collection is exactly SBase(s).

Proposition 1. If S is a class of sets with a set-containment relation and a
universal partition US, there exists a unique set {r1, r2 . . . rn} ∈ 2US such that
s ≡ ⋃

i ri. Also ∀s ∈ S, s ≡ ⋃
r∈SBase(s) r.

The universal partition US of a class S of sets with a set-containment relation
is also a universal partition of S∩.

Corollary 1. Let S be a class of sets with a set-containment relation and a
universal partition US. Then US is a universal partition of S∩.

Thanks to the corollary above, we can apply Definition 3 also to S∩.
Now we define formally what is a representation by means of a poset of a

class of sets with a set-containment relation.

Definition 4. Let S be a class of sets with a set-containment relation and let
< P,≤> be a poset. We say that P is a representation of S if there exists an
isomorphism between S and P .

In the rest of this paper, every time we deal with a representation P of a class
S of sets with a set-containment relation, we refer the isomorphism between S
and P as Rep : S 7→ P . Of course there exists Rep−1 : P 7→ S. Note that since
the classes of sets with a set-containment relation we consider have a greatest
and a least set, their representations have a greatest and a least element.

In a representation of a class of sets with a set-containment relation and
a universal partition, we need to identify the representants of the sets of the
universal partition.

Definition 5. Let S be a class of sets with a set-containment relation and a
universal partition US, and let P be a representation of S. We define universal
partition on P the set UP = {x ∈ P |x = Rep(r) and r ∈ US}.

Also in the representation we need to refer to representants of the sets of
the universal partition whose set-union is a given set. Therefore we introduce
the mapping PBase(.) from elements in P to subsets of the universal partition
defined on P .

Definition 6. Let S be a class of sets with a set-containment relation and a
universal partition US, and let P be a representation of S. For each p ∈ P , we
define the mapping PBase : P 7→ 2UP as

PBase(p) = {x ∈ P |x = Rep(r) and r ∈ SBase(Rep−1(p))} .
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In a class of sets with a set-containment relation and a universal partition,
a set is ’composed’ by sets of the universal partition by means of the set-union
operator. In the representation of the class an analogous ’composition’ is obtai-
ned by means of the lub(.) operator that assign to each subset of a poset its least
upper bound, as the following theorem shows.

Theorem 1. Let S be a class of sets with a set-containment relation and a
universal partition. If P is a representation of S then for each s ∈ S we have:

Rep(s) = lub({y|y = Rep(r) and r ∈ SBase(s)}) .

If one thinks to PBase(.) as a mapping between the posets < P,≤> and
< 2UP ,⊆>, previous proposition translates into the following corollary:

Corollary 2. The mapping PBase(.) is an order embedding from the poset <
P,≤> to the poset < 2UP ,⊆>.

3 Representation of Set-Intersection Closure

3.1 Introduction

In this section, given a class S of sets with a set-containment relation and its
representation P , we study how to derive from P a representation of S∩, the
closure of S with respect to the set-intersection operator. Before we proceed with
formal investigations on this subject, let us see how the existence of a universal
partition modifies the example presented in Fig. 2. In Fig. 7 we show a class S of
sets containing five sets A, B, C, D, E which have exactly the same containment
relations as the regions in Fig. 2. But the class also contains a universal partition,
whose elements coincide with the unit squares of the grid. Sets A, B, C, D, E are
shown as aggregations of unit squares identified by different patterns.

A poset representation P for this class of sets is shown in Fig. 8 (the top and
the bottom of the poset have been omitted for clarity). We want to construct a
representation of S∩, namely a representation which contains also elements that
represent sets A ∩ B, B ∩ C and A ∩ B ∩ C.

Comparing P with the poset in Fig. 4 left we can see that the universal
partition provides informations on the class S that were missing in the poset
in Fig. 4 left. For example elements 1d, 2d and 3d represent regions contained
in both sets A and B but not in set C. This fact means that A ∩ B and A ∩
B ∩ C are different sets. Figure 9 shows the normal completion M(P ) of poset
P (in Fig. 9 also, the top and the bottom of the lattice have been omitted for
clarity). Inspecting Fig. 9 (and recalling Fig. 5) we can see that M(P ) is a
correct representation of class S∩, since elements labeled X, Y and Z represent
respectively sets A ∩B, B ∩C and A ∩B ∩C. This is a general fact, as we show
formally in the following subsection.
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Fig. 7. A class of sets with a set containment relation

Fig. 8. A poset representation of the class of sets of Fig. 7

3.2 Sufficient Conditions for Representation of Set-Intersection
Closure

Proofs of results in this section have been omitted since they are either almost
straightforward or rather technical. They can be found in the extended version
[7]. The following theorem tells us that given a representation with a universal
partition, the greatest lower bound of the representants of two sets represents,
if exists, the intersection between the two sets.

Theorem 2. Let S be a class of sets with a set-containment relation and let P be
its representation. Assume P has a universal partition UP . For every x1, x2 ∈ P ,

Fig. 9. The normal completion of the poset in Fig. 8
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if there exists xo = glb(x1, x2), then

Rep−1(x1) ∩ Rep−1(x2) = Rep−1(xo) .

Previous theorem suggests that given a class S of sets with a set-containment
relation, in order to provide a representation for the intersection of every subclass
of S (i.e. to provide a representation for S∩), we need to extend the represen-
tation of S to a poset that has a glb for every subset of its elements, namely
a lattice. Since the MacNeille completion of a poset to a lattice is the most
common way to realize such an extension (and indeed the resulting lattice has
interesting properties) we investigate the possibility of representing S∩ by me-
ans of M(P ), the MacNeille completion of P . We prove in the following that if
a universal partition of S exists, M(P ) is a representation of S∩. Afterwards we
discuss what happens if a universal partition does not exist.

In Theorem 3 we will build an isomorphism between the closure of the class
S with respect to the set-intersection operation and the normal completion of
its representation.

Theorem 3. Let S be a class of sets with a set-containment relation, a universal
partition US, and a representation P . The mapping IRep : S∩ 7→ M(P ) defined
as

IRep(s) = ({g ∈ P |g = Rep(r), r ∈ SBase}∗)∗

is an isomorphism. Hence M(P ) is a representation of S∩.

The result of Theorem 3, in the restricted formulation for simplicial com-
plexes, where a universal partition always exists, was proved by Kainz, Egenho-
fer and Greasley [13]. An obvious consequence of Theorem 3 is that ∀s1, s2 ∈
S, IRep(s1 ∩ s2) = glb(IRep(s1), IRep(s2)), namely the representant of the in-
tersection of two sets is the glb of the representants of the sets, as we conjectured
in Sect. 1.

3.3 Necessary Conditions for Representation of Set-Intersection
Closure

Theorem 3 tells us that given a class S of sets with a set-containment relation
and its representation P , the existence of a universal partition is a sufficient
condition for the isomorphism between the posets < S∩,⊆> and < M(P ),≤>.
Such a condition is not necessary, however, as the example presented in Figs.
2 and 3 shows. In fact in that example, even though there is not a universal
partition, we can build the isomorphism by representing the intersection of the
sets A and B with the new element (E) introduced in the poset by the MacNeille
completion. To find a necessary condition for the isomorphism between the posets
< S∩,⊆> and < M(P ),≤>, we can proceed in two ways. Either we have to
carry out further investigations about the links between the posets < S∩,⊆>
and < M(P ),≤> or we have to find additional conditions for the class S. We
now investigate both alternatives. The following definition introduce a mapping
Z : M(P ) 7→ S∩ which we use to show further results for the first alternative.
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Definition 7. Let S be a class of sets with a set-containment relation and let
P be a representation of S. We define the mapping Z : M(P ) 7→ S∩ as

Z(x) =
⋂

y∈(↑x)ϕ(P )

Rep−1(ϕ−1(y)) .

The following lemma shows that the mapping Z(.) is an order embedding.

Lemma 1. The mapping Z : M(P ) 7→ S∩ is an order embedding between the
posets < S∩,⊆> and < M(P ),≤>.

From previous lemma an important result follows immediately.

Lemma 2. Let S be a class of sets with a set-containment relation and a repre-
sentation P . We have |M(P )| ≤ |S∩|, where M(P ) is the MacNeille Completion
of P .

Given the above lemma, a way to find a necessary condition for the existence
of an isomorphism between the posets < S∩,⊆> and < M(P ),≤> is to find a
necessary condition for the sets S∩ and M(P ) to have the same cardinality. We
achieve this result by means of the mapping Z(.). The following theorem states
a necessary condition for the isomorphism between the posets < S∩,⊆> and
< M(P ),≤>.

Theorem 4. Let S be a class of sets with a set-containment relation and a
representation P . If S∩ is isomorphic to M(P ), then ∀so, s1, s2 ∈ S, if Rep(so) =
glbP(Rep(s1), Rep(s2)) then s1 ∩ s2 = so.

Theorem 4 gives a necessary condition for the isomorphism between the
posets < S∩,⊆> and < M(P ),≤>, namely the fact that ∀so, s1, s2 ∈ S, if
Rep(so) = glbP(Rep(s1), Rep(s2)) then s1 ∩ s2 = so. Note that this condition is
not sufficent, as the example of Fig. 3 discussed in Sect. 1 shows. Inspecting Figs.
3 and 4 left we see that ∀so, s1, s2 ∈ S, if Rep(so) = glbP(Rep(s1), Rep(s2)) then
s1 ∩ s2 = so. However posets < S∩,⊆> and < M(P ),≤> are not isomorphic
since sets S∩ and M(P ) have different cardinalities.

From Theorem 4 the following corollaries follows.

Corollary 3. Let S be a class of sets with a set-containment relation and a
representation P . If S∩ is isomorphic to the Normal Completion of P , then
for each s1 ∈ So and for each s ∈ S it is s1 ∩ s = s1 or s1 ∩ s = ∅, where
So = {s ∈ S|∀x ∈ S, if x ⊂ s then x = ∅}.

Corollary 4. Let S be a class of sets with a set-containment relation and a
representation P . If S∩ is isomorphic to the Normal Completion of P , then for
every s1, s2 ∈ So, s1 ∩ s2 = ∅, where So = {s ∈ S|∀x ∈ S, if x ⊂ s then x = ∅}.

As discussed earlier, the existence of a universal partition is a sufficient, but
not necessary condition for the isomorphism between the closure of a class S
of sets with respect to the set-intersection operator and the MacNeille comple-
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tion of a representation P of S. This means that the converse of Theorem 4
is not true, namely if there exists an isomorphism between S∩ and M(P ) not
necessarily a universal partition of S exists (see again the example in Figs. 1
and 2). However, thanks to Corollaries 3 and 4, we can effectively pursue the
other alternative towards defining necessary conditions for the isomorphism, na-
mely imposing additional constraints to class S. For this aim we introduce the
following definition.

Definition 8. Let S be a class of sets with a set-containment relation, and let sT
be its greatest set. We say that S is consistent with respect to the set-containment
relation if

⋃
x∈So

x ≡ sT, where So = {s ∈ S|∀x ∈ S, if x ⊂ s then x = ∅}.
The assumption of a class of sets to be consistent, is reasonable in many

cases, since it means that if a set contains strictly another set, then the difference
between the two sets is an ’entity’ which has to be represented in the class S.
For example in a spatial database where a land is represented together with a
city contained in it, it seems reasonable that the part of the land outside the
city is also identified as an entity.

We can show that for a consistent class S the isomorphism between S∩ and
M(P ), implies the existence of a universal partition of S.

Theorem 5. Let S be a class of sets with a set-containment relation and a
representation P . If S∩ is isomorphic to the Normal Completion of P and S is
consistent, then there exists a universal partition on S.

Putting together Theorem 5 and Theorem 3, we obtain the following corollary
that shows how strictly the existence of an isomorphism between S∩ and M(P )
is connected with that of a universal partition on S.

Corollary 5. Let S be a class of sets with a set-containment relation and a
representation P . Let S be consistent. Then S∩ is isomorphic to the Normal
Completion of P iff there exists a universal partition on S.

This result means that in a spatial database that works with poset represen-
tations of consistent classes of sets, the only way to perform spatial intersections
among sets by means of the normal completion operator, is to provide the da-
tabase with a universal partition.

4 Conclusions and Future Works

Partially ordered sets (posets) are widely used to represent classes of sets with a
set containment relation. In this paper we have addressed the problem of how to
perform natural set manipulations on a class by means of a poset representation
of the class. Concerning set intersection we have stated sufficent and necessary
conditions for the correct use of the normal completion operator as a representant
of set intersection operator. Moreover, for classes of sets satisfying a little more
restrictive condition, we found a condition that is both necessary and sufficient.
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Our results give further motivations to the use of posets to represent clas-
ses of sets with a set containment relation, that was first advocated by Kainz,
Egenhofer and Greasley in [13], where proved the importance of normal comple-
tion as a formal tool in modelling data for spatial databases. Future work will
concentrate on characterizing also the set-union operator.
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