
ADAMS: an Object-Oriented System
for Epidemiological Data Manipulation

Leonardo Meo-Evoli*, Enrico Nardelli+, Domenico M. Pisarx#, Fabrizio L. Ricci*

* ISRDS, Consiglio Nazionale delle Ricerche, Imly.
IASI, Consiglio Nazionale delle Rice@e, Italy.

: ITBM, Consiglio Nazionale cldle Ricesche, Italy.

Abstract

In epidemiology it is extremely useful to compare the observed
trends of various phenomena with the expected trends in order
to find out abnormal morbid phenomena: in statistical
databases (SDBS) this means performing table manipulation on
aggregated data (macro data). The table manipulation are often
implemented in different ways. since different aggregate
fimctions are used to generate different kinds of macro data (data
type) from disaggregated data. Therefore, logically similar
manipulations at macro data level need to be defined separately
and ad-hoc by the user for each data type. We propose to model
macro data using an object-oriented approach with an instsnce-
inheritance mechanism, which allows the user to manage an
SDB without having to explicitly deal with the different data
types (automatic data type management). In the paper we
describe the static and dynamic properties of our object
oriented-model; the metaschema of statistical database system
embodying such concepts (ADAMS: Aggregated DAta

Management System) and the advantages of our system are

discussed.

Keywords: human-machine interface, statistical

database, object oriented itpproach, epidemiological data

manipulation

Introduction

Throughout the world epidemiological data is recognized as
being important for an effective health care policy. In fact these
data, when correlated to geographical patterns, may evidena
local deviations from standard values and give rise to adequate
action.
Such a “unique source of readily-available health status
indicators” [11] is also of priceless value for the prevention of
diseases, a fact which has been acknowledged by the World
Health Organization (WHO) and which was ratified in the
twenty-ninth World Health Assembly. WHO recommends
member nations to properly identify and correctly tabulate the
causes of death (reported by each country on appropriate forms)

This work is partially supported by Consiglio Nszionale delle
Ricerche under MULTIDATA Prvject and by the Commission of
European Communities (EUROSTAT) under DOSES program

PamWclo tocopywithaut fac atfar partofthbmweaidbr
prc4kiedtbatthe copiraaraaa8 mada Oretifordti
co~ls&aatawtbaAC!hfcOpyrj# aetiwamt tbctitboftba
pubtirattoasad itsdab ●~r, ●nd h k gi.ea tkt mpyiag k ~

in order to identify the main trends and to effectively stress
prevention. ‘The most effective public health objective is to
prevent the precipitating cause from operating.” [28].
Epidemiological data are therefore reIevant instruments in
supporting decision-making processes in health care
management and planning. In this paper we present ADAMS, an

object oriented system for epidemiological data manipulation
whose aim is to help in the phase of exploiting statistical
tables describing a particular phenomenum.

ADAMS (Aggregated DAti3 Management System) allows a given
table (e.g.: local values) to be examined by generating the
reference table (e.g.: national values ) with the same structure
and therefore it is a vaEd tool in extracting information from
statistical tables. It can contribute to the prevention and the
detection of “sentinel event” [23].
We focus on the study of databases (SDBS) which contain
aggregated data (macro data) and which are able to support the
work of statisticians, assuming that the disaggregated data from
which they have been generated are no longer available (for
reasons of safety and efficiency).
Manipulating SDBS generally involves changing their
descriptive data (for instance, eliminating an attribute). When
the descriptive data of an SDB are modified, the macro data must
be modified in accordance with a well-defined algorithm. This
algorithm is strictly dependent on the aggregate function which
generated the macro data from disaggregated data. Users often
find difficulty in understanding the semantica of this algorithm
[10]. Our solution is to incorporate these semantics in the data
model; in this way it is possible to free the user from having to
understand or express the algorithm that is required to pxfom
the query.
The object oriented model we propose is centered around the
concept of “data type”. This model is standard enough and
essentially follows the lines &fined by Smalltalk-80 [7]. We
have added the definition of an instance inheritance mechanism.
It makes possible to share information at the instance level in a
controlled way, since it assigns only to root instances of
instamx inheritance hierarchies the responsibility for dynamic
evolution.
The paper is set out as follows: in the next section we shall
discuss issues of data type managemen~ in the following we

~rmksion of tba Anocktiee for ~ti06 hkhioay. TO -

otberwii, or to rqxrbfk~ reqrritea ● fee●dh ~ ~

ACh4-SAC~~ USA
01993 ACM O-S9791-%b~MO

652



present our object-oriented model; then the metaschema of the
statistical database system (ADAMS) embodying such concepts is
shown and finally the advantages of our system are discussed.

Automatic Data Type Management

hlacrodata, also tailed Stalisrical Tables (STS), have a very
complex data structure. The elements that characterize a ST may
be grouped into two classes [17]:

ve DaU : i.e. the single summary rmribure
representing the phenomenon described by the ST; its
instances, summary values, are the numeric values inside
the ST; its type, data type, depends on the statistical
aggregate function used to generate the summary values
(e.g. ‘average’).

Da U: i.e. the set of category attributes (also
called variables) uniquely classifying summary values; for
each category attribute a finite set of values, the table
variable domain (generaily strings of alphanumeric
characters), is defined; the cartesian product of these
domains represents the “set of points” in the table space for
which a summary value can be defined,

An exampie of ST is shown in figure 1.

summ
category attributes

World life
expe ctancy sex

~untry 2s; 3!! ..!?2.~

80
78
52

Figure 1
A simple exampie of statistical table

(data type is “average”; source is [27]).

Users of SDBS generally perform two kinds of table processing:
- ~le ~, that is manipulation of the category

attributes and of the variable domains (e.g. summarization,
which eliminates one of the category attributes}
Data Analvsis,that is performing calculations on summary

values contained inside STS (e.g. carrying out the ~ 2 test).
The former builds up new STS from STS already existing in the
database and requires appropriate operations to allow tabie
space manipulations. The latter performs statistical analysis on
summary vaiues and requires the use of statistical packages and
programming languages, according to the analysis employed.
Here we consider oniy table management issues and focus on
probiems related to the operations to be performed on summary
values when varying descriptive data of STS (for precise and
formal definition of these operations see [22]). Table
management is extremely usefui in order to compare observed
trends of phenomena with their expected trends or with trends
which are typical of other geographical areas in order to find out

abnormal morbid phenomena (the so-tailed “sentinei
events ”[23]).
In, for exampie, the case of summarization: this operator
eliminates a category attribute. Let us take the case of a user
studying indicators on hospital recovered patients Tbe
starting tabie reports patients per ‘ward- (the tabie variabie
domain is: “anesthesioiogy”, “intensive care unit”,
“cardiology”, “pediatry”) and “type of hospital” (the table
variabie domain is: “pubiic”, “private”). If we want to know the
distribution of patients per “ward” a srsmrnarizstion has to be
performed on “type of hospital”. Let us take as a starting point
the statistical table T1 (“Number of patients recovered in

hospital in Itafy in 1990 per ward and type of hospital”), whose
data type is an absolute value. The summarization described
above gives the table T2 by eliminating the attribute “type of

hospital”

1 -- A:”*-. I AKA A

Tsbie T1
Number of hospital recovered patients in Italy in 1990

per ward and type of hospital (source is [9])

Tabie T2
Number of hospital recovered patients

in Italy in 1990 per ward (W.mX is [9])

In this case the values of T2 must be computed by summing the

corresponding values of T1 for every element of the table

variable domain associated with %irtd of hospital”, applying to
T1 the computation function:

t:=~t:,j

j

where:

ti2 is the generic instance of the summary attribute of T2
i is the generic element of the table variable “ward”

ti,j 1 is the generic instance of the summary attribute of T1

j is the generic element of the table variable “type of
hospital”.

653



If the summarization on “kind of hospital” is applied to table
T%(where the data type is m arithmetic mean), the result is
table T4. We note that this manipulation produces the same

result as the previous one at the descriptive data level (i.e., to
delete the attribute “type of hospital”).

M

Table T3
Mearr length of hospital stay (in days) in Italy in 1990

per ward and type of hospital (source is [9])

Table T4
Mean length of hospital stay (in days) in Italy in 1990

per ward (source is [9])

In this case, however, the values of T4 cannot be computed as in

the previous case: the summary values in T1 must be involved

in the computation in order to obtain the correct values in T4.

This means that the following computation function has to ~
used:

~ t~,j t~j

‘:=%
j

where:

ti4 is Use generic instance of the summary attribute of T4
i is the generic element of the table variable “ward”

tj,j3 is the generic instance of the summary attribute of T3

ti,j 1 is the generic instance of the summary attribute of TI

From this example we note two critical pointa in the table
management.
The fwst is that summary values processing is strictly
dependent on the data type of the ST being manipulated: the
same kind of table space manipulation can require several

different algorithms (called resolution afgortfhms) which
depend on the data type.
A second major point is that generally it is not possible to
know ‘a priori’ which data types must be defined in a SDB. In
fact, statistical activity typically involves the identification of
new aggregate functions to generate indicators which are valid
for specific areas of investigations. Since the set of data types a
SDB is required to manage can always be enlarged when new
needs arise, a SDB has to have the possibility of being extended
to deal with new data types.

In any case, when manipulations on descriptive data have to be
performed, algorithms for computing new summary vafues must
be known at run time. Such algorithms are neither simple nor
commonplace. Therefore, the simple solution of getting the
user to specify them (as proposed by several authors [19], [12],
[26], [14] and [6]) poses some difficulties (e.g. users have to
know a programming language, similar algorithms need to be
specified again and again with slight variations ). In fact, users
often find it difficult to understand the semantics of resolution
algorithms; furthermore, once the user understands the
resolution algorithm it is complex andor lengthy to express it
in tiese query languages [10].
The approach we propose is to transfer into SDBS the
knowledge needed to achieve automatic table manipulation and
to associate this knowledge with of STS data type (automafic
dara type management). Such a solution presents the advantage
of a more flexible and compact definition of data types, since
the various manipulation operations are not defined for a
specitlc ST but for a class of STs with the same data type [18].
Various proposals have been made which follow approaches
similar to ours. The STRAND query language [10] is
inconvenient because one has to defiie ‘a priori’ the data type
management procedures for each single ST. The G-relations [25]
suggests the possibility of implementing data type
management procedures, but only for the summarization
operation. In [8] operations that work on STS use ‘hidden
information’, but it is not clear from the paper how such
information is used; moreover, these operations are not
performed if the data type of the input ST to the manipulation is
different from ‘absolute value’. The limitation [16] is that the
aPPmach is vatid only for the manipulation of the simplest data
type to be processed (i.e. absolute value). 1ss generaf all the
proposals found in the literature are rather generic, failing to
define precisely how it is possible to obtain a true automatic
data type management.

Our proposal is baaed on the use of an object-oriented approach,
which has a number of sigtilcsrrst advantages from Use database
point of view (e.g. encapsulation, inheritance, overriding: see,
for example, [2]). In particular, with our approach it is possible
for the user to specify the kind of manipulation to be executed
on a given ST independently from ita data type; in fact the
system takes care of catting the correct algorithm, depending
on the specific data type of tbe ST. In order to ensure to the user
a table management wldctt is independent from the data type
(logically independent statistical table manipuiatiorr), the
database has to know, for each data type and for eeclr particular
operation, the resahttion algorithm for calculating the output
summary values. The various algorithms for calculating the
summary values as a function of data type are presented and
discussed in [4].

654



The Concepts of Our Object-Oriented Approach

There is no general agreement on what exactly an object-
oriented model is and different authors use the basic concepts
(like class, instance, inheritance,... ) in slightly but
significantly different ways.
Our modeling of STS is based on the concepts of class, subclass,
superclass, instance, method. message, class variable, instance
variable and (simple) inheritance as they are defined in
Smalltalk-80 [7]. The rationale for our choice is the fact that
Smalltalk-80 is probably the best known object-oriented
system and one of the basic references for everyone working in
this field. At the same time, it offers a very clean and
homogeneous set of definitions for all the most important and
usedconcepts of the object oriented field.
A - defines the static structure and the dynamic behaviour of
its instances. The static structure is described by specifying the

ce var- of each instance. The dynamic behavior is
described by specifying the actions to be executed by each class
instance in response to requests to do actions (~ ) from
other instances. Instance variables may be manipulated only by
the instance which owns them. ~ can be also
defined, which are variables owned and managed directfy by the
class itself.
A class may have @ stances, that is objects which have the
structure and the behaviour specified in their class definition.
The behavior of an instance (and of all the instances belonging
to the same class) is completely defined by the set of messages
it responds to. Instances are dynamically created and deshoyed.
A ~ of a class ~ its definitions of instance
structure and behaviour and possibly specializes them (class
inheritance). In this framework, we consider only _
.,
~, that is inheritance from at most one class, called a

MtU.@Wi
For the purposes of ST modeling, we introduce an ~
. .
~ relationship between instances. This means that
two instances which belong to two classes with a class
inheritance relationship (i.e. one class is directly a subclass of
the other) may also have an instance inheritance relationship
between them. In other words, just as every class has a
superclass from which it inherits, every instance may have a
~ from which it inherits. The superinstance of
instance A, if it exists, is necessarily an instance of the
superclass of A’s class. Also for the instance inheritance
relationship we shall consider only simple inheritance, i.e. an
instance can inherit from at most one superinstance. In such a
way a number of instance inheritance hierarchies may be built
up, which always run parallel to class inheritance hierarchy.
The instance which is the root of an instance inheritartm
hierarchy ia called ~xem~la~. In the example of figure 2, there
are two instance inheritance hierarchies, where A 1 and A2 are
the two exemplars.

The instance inheritance mechanism we have introduced is more
restrictive with respect to classical object oriented approaches,
since it imposes tighter constraints on the dynamic evolution
of instance variable values. Namely, when two instances are in
a direct instance inheritance relationship, they are bound to
have the same values for instance variables which are common
to both classes.

suppose, for example, that A is artinstance of class CA, B is so
instance of class CB, CB is a subclass of CA, and an instance
inheritance relationship between A and B has been defined.
Then, since CB is a subclass of CA, its instances have the same
structures defined in CA (and possibly additional structures
defined in CB). Moreover, instance B, besides having the same
structures as instance A, is constrained to assume the same
values.
Figure 2 shows a fragment of a class hierarchy and of an
instance inheritance hierarchy illustrating this constraint: the
dependency between instance variables is shown graphically.

rx A

b b

hararlea.vaflabla $ ALPHA

I‘, Q
b

ALPHA
=lANCE_OF

$ BRAvo
SRAvo

d------, b
$ t
L.. . ..*

$

stsectAsa_oF SWERllS_FR $

/
● .4. .

!

Ca , AL

o ~vo

‘~A::~va”* - CHARLIE = a
\.. .-. ..$

Figure 2
A fragment of a class hierarchy

and of an instance inheritance hierarchy

When an instance receives a message requiring that one of its
variables is modifkd, such a message is handled in different
ways, depending both on the initiali~tion of the variable and
on whether or not the instance has inherited that variable from a
superinstsrrce.
When the variable to be changed is an inherited one, the
receiver instance, in fac~ handles the message by delegating
the task to its superinstance, and possibly to the
superinstarrce’s superinstartce, up to the exemplar for that
s~ific INHERITS_FROM hierarchy. It is the exemplar tiat
now mmages the way in which changes really happen. If tbe
instance which originally received the message has a non-
initialized variable then the receiver instance and all its
subinstances have the variable changed in the same way.
Otherwise, there will be a superinstsrsee of the receiver instance
(called here top-instance, possibly the exemplar itself), w that
the variable is initialized and its superinstance is not. In this
case, the top instance and all its cubinstances will receive the
same change.
If the variable is not inherited, the receiver instance itself will
instead activate the appropriate method for answering the

655



message. After having executed this method, the instance
advises instances of which it is a superinstance so thist they can
update the changed variables to the same value.
In such a way, for each superinstance/subinstance chain of N

instances there always exists an index K (1 S K S N) so that each
instance from K to N has the variable assigned to the same
value, while each instance from 1 (the exemplar) to K-1 has the
non assigned (non initialized) variable.
In this way, a message may be sent to an instance for updating
one of its inherited variables. Tbe message climbs up to its top
instance to be executed and to produu Use change of the specific
variable in the top instance and in all its subinstances.
Such a mechanism makes it possible to share information at the
instance level in a controlled way, since it only assigns to
exemplars the responsibility for the dynamic evolution of the
variables they defined. The reader interested in the information
sharing mechanism in the object oriented approach using
exemplars should also consult [13], [15]. [24], [1].

ADAMS’ Metaschema

A prototype of the ADAMS system has been tested at Corraiglio
Nazionale delle Ricerctte, Istitrsto di Studi sulla Ricerca e la
Documentazione Scientific on a Macintosh 11x using the
MacApp environment and the Object Pascal language [5]. We
shall discuss the ADAMS system with an example: the study of
indicators on hospital recovered patients.
The model we propose has four class levels. Let us now examine
in a more detailed way the structure of each of the classes (see
also figure 5).
J&YELL T~LE-SCHEMA defines the characteristics of STS
whichare independentof data type. All the STSwhich have the
same summary attribute, the same category attributes, and the
same category attribute domains are defined by the creationof
an instance of the class TABLE_SCHEMA. That is,
TAELE_SCHEMAdefines the following instance variables:

SUM_AITR: this variable defines the semantics of data
contained in a ST, it therefore contains the name of the
examined phenomenon;
CAT_AITR: this variable defines the schema used for
classifying data contained in a ~, it therefore contains the
category attribute names, the definition domain of each of
the category attributes, the real values taken within the
definition domain by each of the category attributes (table
variable domains). It is therefore structured SS. a set of
triples <category-attribu te_name, category-attribute-
domain, table_variable_domairt>. Note that category
attributes are usually set-valued. At this level, clearly only
the names and the domains of the category attributes will
be known.

Regarding instance methods, TAELE-SCHEMA contains only
those methods used for manipulating the defined set of category
attribute names and domains.
l%e specification of category attribute domains is made by
choosing one of the following predefine domains: integer,
real, boolean, char, string, date & time, integer-interval.
In our example, a category of STs relative to employment by
sex, economic branch, and age is defined by creating the
instance OCC of the class TAELE_SCHEMA as foUows:
SUM_A’fTR: hospital recovered patients

CAT_ATTR: { (ward, String, - ), (type of hospital, String, -))
~~~ TAB LE_SPACE does not add instance variables, but
specifies the table variable domains for the variable
CAT_AT’fR; that is, it specifies the table space of STS. In
particular the method “New’ for this class explicitly requires the
assignment of these vsdues. The instance at this level is put
into the INHERITS_FROM relation with the instance of
TABLE_SCHEMA which represents the whole category of STs.
In the example there is an instance of TAELE_SPACE which is
an instance inheritance from exemplar OCC:
CAT_AITR: ( (ward, String, (anesthesiology y, intensive care
uni~ cardiology, pediatry} ), (type of hospital, String, {public,
private] }.
M TABLE_STRU~RE tids structures for the physical
manipulation of STS. 1ssparticular it defines the following ckss
variable:

DT this variable specifies the data type of the ST. It is not
an instance of this class but only of the subclasses of
TABLE_STRUCIT.JRE, which use it for recording data type
value.

Moreover, class TABLE-STRUCTURE adds the following
instance variable:
FUN_TAB: this variable provides a way of accessing the
object which contains the correspondence between pointa
of the table space and the corresponding value of the
summary attribute.

Regarding instance methods, TAELE_STllUCTURE adds the
specification of methods for computing, given the values of
category attributes, a virtual index to pass to the object
identified by FUN_TAE for accessing the physical structure
which contains summary attribute values (This physical
structure is stored by multidimensional matrix). As far as
instance methods are concerned, TAELE_STRUCTURE adds
methods which define the remaining basic manipulation
operations for aggregation of STS [22]; for example
Summarization. These methods are not completely specified,
since at this level it may not be possible to thoroughly defw
them (they are data type dependent). The aim of
TAELE_STRUCTURE is to provide, via variables and methods
defined at this level for the logical re~esentation of FUN-TAB,
a support for separation between the conceptual (i.e. table
structure oriented) and logical (i.e. data type oriented) kvels of
representation of FUN_TAB. Therefore, every instance of
TAELE_SPACE has one end only one subinstatrce, which ia art
instance of TABLE_STRUCKJRE, containing the methods used
for table manipulations, common to all STS with different data
types.
Our example defines an instance of TABLE_STRUCTURE
(OCC_l_T); it is put into an instance inheritance relationship
with instance OCC_l.
w. SUbCkSSSX of TABLE-STRUCTURE are the ckssea
which specify the behavior for the different data types. All
these subclasses inherit class variabk DT and assign it a value.
Moreover, they define additional structures for executing table
manipulation operations on STS; some of these additional
structures depend on the data type of the ST [4].
Each subclass of TABLE_STRUCTURE re-specifies methods
introduced by TAB LE_STRUCTURE for the basic aggregation
operations for STS.
New subclasses of TAELE_STltUCTURE may be added by the
Database Administrator in order to take into account specific

656



kinds of statistical data or for the purpose of modelling
particular statistical functions.
In our example, a specific ST is defined as an instance of a
suitably defined subclassof TABLE_sTRUCTURE which is
associated with a specific data type. Such an instance is then put
into an instance inheritance relationship with OCC_l_T.
Namely, we defined two instances (O_l. 0_2) relative to the
homogeneous set OCC_l. The instance O_l refers to the class
AVERAGE_TYPE, the instance 0_2 refers to the class
ABSOLUTE_TYPE.
The resolution algorithm for performing manipulation
ofxrations is encapsulated in the object AVERAGE_TYPE. Such
manipulation needs a ST with data type absolute value and
therefore the instance 0_2 is the reference table of the instance
o_l.

Discussion

W main tasks rserformed by an SDB user me:

The

to express-table manipulation as the transformation of the
descriptive part of ST
to set up queries. that is, to build complex queries from
elementary ones;
to browse through schema and queries;
to define subsets of tables of interest:
to dkplay and format the result.
user does not have to inserg update or delete STS; this ia the

task of the Database Administrato~.
With an example of a working session we illustrate how the
ADAMS system allows the user to perform browsing and
querying. The database schema is represented for the user by
means of the GRASS model (Graphical Approach to Statistical
Summaries) [21 ]. This formalism is used to represent STS
graphically by means of a direct acyclic graph.
ADAMS supports different manipulation paradigms following a
conversational style and tailored to different profiles of users
[5]. They are classified adopting the “user cube” approach [3].

IFltukr#lOf ctqhqwu4.z
,“p ., ~m,l (MOMrm@●r *q)

I

Ivwca&mm*nu@nru
II

Figure 3
ADAMS’ multi-window grirphical interface

Those with a good technical knowledge of applicative domain
employ a keyword language (STAQUEL*), but there also the
possibility of building incremental quieries by means of VISTA.

VISTA is based on an operation graph where each operand is a
query element. In this way a non expert user is facilitated in
builcfing complex queries. The multi-window graphical interface
is depicted in figure 3.
In our approach, which ensures the user a Table Management
independent from the data type (i. e., logically independent
statistical table manipulation). the database has to know, for
each data type and for each particular operation, the resolution
algoritbrtr for calculating the output summary values. It is
possible because there is the class AVERAGE_TYPE, where the
method summarization is specified. We note that such classes
may define the following instance variable: REF_TAB refers to
a reference ST, that is to an instance of other subclasses of
TABLE_STRUCTURE, whose ST is necessary for the execution
of table manipulations (in the example tie object 0_2).
Note also the query displayed in text format by STAQUEL*

language and the GRASS view of the Logical Schema rationalized
after the automatic layout command has been given.

Using simple visual interaction with the icons representing
objects of the ADAMS system, the user can activate the relevant
methods, such as the ‘GET_STR UCITJRE appfied to a query type
object resulting in the display of its structure.
The query languages which result from this object oriented
system enable table management to be carried out without
having to take into account of summary values and data types.
This means that table management refers only to the elements
which form the schema of the database.
In the following, we compare two statistical query languages:
STAQUEL* and Summary_Table_by_Exarrrple [20]. Our aim is to
show, by means of a typicaf user query, that languages based on
this object oriental system are easier to use for the end user than
the traditional query languages where the user must specify the
resolution algorithm.
Let us take the case of a user studying the distribution of
patients recovered in hospital (tables T1 and T2). Tbe user
performs the query (expressed by Summary _Table_by
_ExampIe) of figure 4 to eliminate the category attribute “type
of hospital”
If the user employs the query language STAQUEL*, the query is
the following one:

~ ty~_of_hospita] (patients_remvered).
The query expressed by STAQUEL* is both simpler and more
compact than one expressed by Summary _Table_by_Example.
as well as closer to the statistician’s way of operating.
The above example shows that, with the traditional query
languages. the usuaf simple queries for the table manipulation
(the summarization) is expressed in an extremely complex way,
while an important characteristic for a user friendly interface is
the simplicity of use. Our approach easily permits the
expression of usual statistical queries.
It can be seen that the user does not have to:

1) express the formula for the calculation of the new
summary value;

2) know the existence of other data, even though they are
necessary to calculate the new summary values.

657



Root

~w l–!ward SUM(R.2)/SUM(S,2)
I

s
~w

l-l
ward mnnkr

I

~ ward lypa.of_hOaplrsi nlmber

ward n+
-

R

-

l-!
ward mrmkr*rocarl

I

f

ward type_of_hoapllat _ Dunk
b 4

I
knslrl-d-aay ward ~-OfJlcnp$at -

ward *_Of_hapuat ~
~

Figure 4
An example of application of the statistical query language

Summary_Table_by_Example [20]

In fac~ the user manipulates, by STAQUEL*, the STs at metadata
level; for example: he/she- performs the summarization
operation to specify only the category attribute (an element of
the intentional aspect of metadata). But the system hats to
know, for each data type and for each affected operator, the
resolution algorithm for calculating the output summary values.
An apparent limitation of the automatic data type management
approach is that it only considers the data type defined ‘a priori’
by the DBA. However, the limitation is not as strong as it
might seem in tha~
1) the data type generaUy defined in the SDB and of which the

resolution algoritms are kown, cover afmost all the data
types made available to the users;

2) in planning the SDB, the DBA already knows beforehand
the resolution afgoritms which have to be provided in order
to enable the stored STS to be manipulated.

conclusions

ADAMS allows to define and manage ST. The system uses
context-driven editors and represents operations and metadata
by means of the icon-graphical paradigm. Three alternative
interaction modalities are provided. An editor using visual

languages is available to the novice/casual users (the user
defines. mathematical links between statistical tables).
Interaction may also be performed using the direct manipulation
approach (the user specifies directly on the GRASS ● graph
her/his manipulation), whereas. for expert users, a key word
language is implemented. Independently from the approach
adopted by user for querying SDB, the system displays aU the
three different query representations. Therefore the user is able
to verify the system’s interpretation of his query.
The object-oriented model for ST representation allows the user
to integrate with the “closed world” of databases the features of
the “open world” of statistics. Even if this model is not diredy
utilizable by the user, it allows him to express his table
management queries without having to worry about the
algorithms to compute the summary values.
This model represents a starting point to capture statistical
knowledge in such a way as to sitnpfify user interaction with the
system because his attention is directed towards the semantics
of the statisticrd operation and not towards the procedures for
implementing it.
In addition, it SUOWSto express table management operations
at table space level. If, for instance, summarization is
concerned, one has only to indicate the category attribute to be
eliminated.
This implies that it is possible studying table management
operators properties and relative algebra (completeness,
reachability,... ) independently from the data type. These
properties are the formaf groundwork for defining an interface
based on logical independence that is aimed at simplifying
man-machine interaction [18].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

J. Almarode, “Rule-baaed delegation of prototypes”,
Proc. 00PSLA’89, Ott.1989.
F.Bancilbon, ‘Object-oriented database systems-, Proc.
VII ACM SIGACT/SIGMOD/SIGART symposium on
PODS, 1988.
W.W.Cotterman, K.Kumar, “User Cube: A Taxonomy of
End Users”, Communications of the ACM, 32,11, 1989.
G. Falcitelli, L. Meo Evoli, E. Nardelli, F.L.Ricci, “The

Mefisto” model: an object oriented representation for
statistical data management”, Proceed. of the Data
Analysis and Learning Symbolic and Numeric
Knowledge, 1989.
F. Fern, P. Grifoni, L. Meo-EvoL F.L. Ricci, “ADAMS
so aggregate data management system with multiple
interaction techniques”, Database and expert systems
applications, proceed. of the DEXA 91, Sprirtger-Verlag,
1991.
S. P. Ghosh, “Statistical relational tables for statistical
database management”, IBM Res. Lab., San Jose, CA
Tech.Rep. RJ 4394, 1984.
A.Goldberg, D.Robsotr, “SmaUtalk 80 The language and
its implementation”, Addiaon-Wesley, 1983.
H. Ikeda, Y. Kobayashi, “Additional facilities of a
conventional DBMS to support interactive statistical
analysis”, Proceed. of the 1° Intern. Workshop on
Statistical Database Management, Menlo Park,
California, December 1981.

658



[9]

[10]

[12]

[11]

[13]

[14]

Istituto Internaziormle per gli Sudi e llnformazione
Sanitaria, “Statistiche Sanitaria”, 1992 (in Italian).
R.R. Johnson, “Modelling summary data”, Proceed. of

the International Conference on Management of Data,
ACM-SIGMOD, Arm Arbor, Michigan, April-May 1981.
A.Khrg, ‘Equivalence of relational algebra and relational
calculus query language having aggregate functions”,
Journal of the ACM, VOI.29, N.3, July 1982.
J. C. Kleinman, “The Continued Vitality of Vital
Statistics”, editorial, American Journal of Public Health,
72 (2), 1982.
W.R.LaLonde, D.A.Thomas, J.R.Pugh, “An exemplar
based Smalltalk-, Proc. of 1986 Conf. on Object
Oriented Programming Systems, Languages and
Applications, 19g6.
L. Lakhrd,R. Cicchetti, S. Miranda, “RTL: a relational
and table language for statistical databases”, Proceed. of
the 2° symposium on mathematical fundamentals of
database sytems, Lecture Notes in Computer Science,
364, Springer-Verlag, 1989.

[1s]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

H.Liebermtm, “Using prototypical objects to implement
shared behaviour in object oriented systems”, Proc. of
00PSLA g6, 19g6.
F. M. Malvestuto, “Answering queries in categorical data
base”, proceed. of A.C.M. PODS Conference, 1987.
L. Meo-Evoli, M. Rafanelli. F. L. Ricci. “The relational
model and the statistical tables”, 7th Statistical Software
Newsletter. vol. 18, N. 3, December 1990.
L. Meo-Evoli, F.L. Ricci. A.Shosharri, “On the semantic
completeness of macro-data operators for statistical
aggregation”, Proceed. of the VIIO Intern. Working
Conference on Scientific and Statistical Database
Management, 1992.
G. Ozsoyoglu, Z. M. Ozsoyoglu, V. Mates, “Extending
relational algebra and relational calculus with set-valued
attributes and aggregate hmctions” ACM Trans. Database
Systems, 12, 4, 1987.
G. Ozsoyoglu. V.Mates, Z.M.Ozsoyoglu, “Query
processing techniques in the Summary-Table-by -
Example database query language”, ACM trans. Database
Systems, 14, 4, 1989.
M. RafaneUi, F.L.Ricci, “Proposal of a logical model for
statistical data base”, Proceed. of the 11° Internat.
Workshop on Statistical Database Management, 1983.
M. Rafanelfi, F.L.Ricci, “Mefisto: a functional model for
statistical entities”, IEEE Trans. on Knowledge snd Data
Engineering, October 1993 (in press).
D. D. Rutstein, R. J. Mullan, T. M. Frazier, W. E. Halperin.
J. M. Melius, J. P. Sestito, “Sentinel Health Events
(Occupational): A Basis for Physician Recognition and
Public Health Surveillance”, American Journal of Public
Health, 1983.
L. A. Stein, “Delegation is inheritance”, Proc. of 1987
Conf. on Object Oriented Programming Systems,
L=snguages and Applications, 1987.
S.Y. W.SU, “SAM* : a semantic association model for
corporate and scientific-statistical databases”,
Information Sciences, VO1.29, N.2 and 3, May and June
1983.
A. U. Tansel , M. E. Arkun , G. Ozsoyoglu, “Time-by-
Example query Ianguage for historical databases”, IEEE
Transactions on Software Engineering, VO1.SE- 15, N.4,
April 1989.
J. A.Toolley, L. A. Carle, U.S. News & World Report,
March 1989.
World Health Organization, International Classification
of Diseases. Manual of the International Statistical
Classitlcation of Diseases, Injuries, and Causes of Death,
Voll. I and 2, 9tb Revision, Geneva, 1977.

3 – ~ ‘- ~ ‘“I !:.;
Address requests for reprints and extended version of this paper

Figure 5 to F.L. Ricci, ISRDS-CNR, V. C. de LoUis 12, 00185 Rome,
ADAMS’ Metaschema Italy (fax: +396 4463836; e-mail: isrd@vm.cnuce.cnr. it)

659


