
An On-Line Algorithm for theMac-Neille Completion of a Poset(Extended Abstract)Luca Forlizzi1 Enrico Nardelli1;21. Dipartimento di Matematica Pura ed Applicata, Univ. of L'Aquila, Via Vetoio, Cop-pito, I-67010 L'Aquila, Italia. E-mail: fforlizzi,nardellig@univaq.it2. Istituto di Analisi dei Sistemi ed Informatica, Consiglio Nazionale delle Ricerche, VialeManzoni 30, I-00185 Roma, Italia. AbstractIn this paper we introduce an e�cient algorithm for the on-line computation ofthe MacNeille completion of a poset. Our algorithm is polynomial in the number ofelements in the lattice completion and has a better worst-case complexity than previousproposals.1 IntroductionThe area of algorithms for partially ordered sets (i.e., posets) is a relatively new oneand is subject of many research e�orts [18, 19, 20, 22], since it has many potentialapplications in a lot of areas of computer science.In particular, the computation of the MacNeille completion (or lattice completion) ofa given poset is an interesting subject to investigate [2, 10, 24], due to the fact thatmany algorithms are more e�cient when the poset is a lattice (e.g., testing dominancein a poset is easier in a lattice [25] than in a general poset [26]) and every posetcan be embedded in a lattice: the MacNeille completion is then the smallest latticeallowing such an embedding. Lattices are also largely investigated in computer scienceas e�cient representation models [1, 5, 7, 8, 11, 13, 16, 21, 27].Also, a wide interest has recently spread about on-line algorithms, both in thegeneral algorithmic community [17] and among those more speci�cally interested toalgorithms for posets [4, 12, 15, 14]. For our purposes, on-line is intended in the sensethat only insertions of elements are allowed (i.e., no deletions).In this paper we present an e�cient algorithm to compute on-line the lattice completionof a poset. Computing on-line the lattice completion means to start with a smallsubposet whose lattice completion is computed trivially, and then inserting one afterthe other the remaining elements of the poset, building, after each insertion, the latticecompletion of the inserted elements.If one just uses the MacNeille de�nitions of lattice completion to derive an algorithm,a time exponential in the size of the input poset may be required. Moreover, thealgorithm is not on-line.In the literature, to the best of our knowledge, the �rst on-line algorithm for thecomputation of the lattice completion that is polynomial in the number of the elementsof the resulting lattice was [21]. Perry has not given in [21] a detailed computationalcomplexity analysis, and the presentation of the algorithm is at an abstract level.1



Version 3.2.5 | Last Revision: 15 April 1999 2Using standard data structures we proved [9] that her algorithm requires, for eachelement that is added to poset P , O(s3) time to compute the (transitive closure ofthe) lattice completion L of P , where n = jP j and s = jLj, starting from the latticecompletion obtained after the addition of the previous element. Note that it may bes = �(2n).Caseau presented in [5] an on-line algorithm to build the new lattice completion when anew minimal element is inserted. His algorithm is not fully detailed and it has a worstcase complexity of O(n2s4).Habib introduced in [12] the so-called Lazy MacNeille completion for representing aposet so to allow to test if the least upper bound of two elements x and y exists(in O(ns)) and, if not, to add it to the representation. Hence to compute the wholeMacNeille completion L of a poset P when a new element is inserted one has to repeat,in general, the above test for each pair of elements inserted in L. This gives a totalcomplexity of O(ns3).Our algorithm computes, for each added element, the transitive closure of the latticecompletion L of poset P in time O(sn2 +m) where m is the number of edges in L.Hence our algorithm is always better than Perry's one but for the case of s = O(n),when it has the same complexity. As a side e�ect, also the transitive reduction of L iscomputed.Note that using the currently most e�cient data structure for the representation of(transitive reduction of) lattices [24, 25] would not be, in general, of help in this case,since such a data structure is a static one with an O(s2) building time.1.1 NotationsA partially ordered set (poset) is an algebraic structure < P;�P> where P is a set and�P is a partial order relation (namely a reexive, symmetric and transitive relation)among the elements of P . To simplify notations, we usually denote a poset < P;�P>as P . In this paper we always assume that P is �nite. Two elements x; y 2 P are saidcomparable if x �P y or y �P x. Otherwise they are said incomparable. When x �P ywe say y dominates x or x is dominated by y (in P ). If x �P y and x 6= y we writex <P y. We say that y covers x or x is covered by y and write x �P y if x <P y andthere is no z 2 P such that x <P z <P y. A subset X of P is called an antichain(resp. a chain) if it contains only pairwise incomparable (resp. comparable) elements.The height (resp. width) of P , denoted with h(P ) (resp. !(P )) is the size of a maximalchain (resp. antichain) of P .Given a subset X of P we say that z 2 P is an upper bound (resp. lower bound)of X if 8x 2 X, it is x �P z (resp. z �P x). Given X � P we denote as X�P (resp.X�P ) the set of all upper bounds (resp. lower bounds) of X. Given x 2 P we simplifythe notation writing x�P instead of fxg�P and x�P instead of fxg�P . The element z iscalled the least upper bound or join of X and is denoted as lubP (X), if z 2 X�P andz �P t for all t 2 X�P . The greatest lower bound or meet of X (denoted as glbP (X))is de�ned dually. A non-empty poset P is called a lattice if for each x; y 2 P bothlubP (fx; yg) and glbP (fx; yg) exist. When P is a lattice then for each X � P bothlubP (X) and glbP (X) exist. Given X � P and x 2 X then x is said to be a maximalelement (resp. minimal) of X if there is no z 2 X such that x <P z (resp. z <P x). Wedenote the set of all maximal (resp. minimal) elements of X as maximalP (X) (resp.minimalP (X)). Given X � P and t 2 X we say that t is the top (resp. bottom) ofX if t is the unique maximal (resp. minimal) element of X, denoted by Top(X) (resp.Bottom(X)). If L is a lattice both Top(L) and Bottom(L) exist. Given a poset P ,we de�ne its MacNeille completion (or lattice completion) as the poset < M(P );�>where M(P ) = fQ j Q � P ^ Q = (Q�P )�P g. It is well known [3, 6] that M(P ) is alattice and has the additional property of being the smallest lattice into which P can



Version 3.2.5 | Last Revision: 15 April 1999 3be embedded.When we speak of the representation of a poset we usually mean a representationof the whole order relation. When we want to refer to the transitive reduction we willspecify it explicitly.2 The Perry's algorithm for MacNeille comple-tion2.1 An informal descriptionThe algorithm of Perry builds the MacNeille completion of a given poset P by startingfrom an initial lattice L0 containing just the top and the bottom of P 1.The i-th on-line pass takes as input lattice Li�1 which is the MacNeille completionof a subposet Pi�1 of P such that jPij = i + 2, together with a new element q 2 Psuch that q 62 Pi�1. The purpose of the i-th on-line pass is to compute the MacNeillecompletion Li of subposet Pi = Pi�1 [ fqg. This will require the insertion in Li�1of new order relations and possibly new elements to obtain lattice Li. When all theelements of P have been processed the algorithm terminates.In a �rst step, all order relations of the new element q with Li�1 are determined andinserted into the representation of Li�1. For each element l of Li�1, the set of elementsof Pi dominated by both q and l is determined and then the set of the lower boundsof the upper bounds of the above set is compared against the set of elements of Pidominated by q. If the former set is contained in the latter, then l is dominated by q,while if the former contains the latter, then l dominates q. If the two sets coincide thenl = q. If neither of the two set is contained in the other one l and q are not comparable.In a second step, new elements and order relations are possibly inserted in Li�1 [ fqgto enforce the lattice property and to obtain Li. In fact it may happen that for someelement l in Li�1, the pair (l; q) lacks a join (or meet) in Li�1[fqg: then a new elementmust be added to be the required join (or meet).The search for elements l in Li�1 such that the pair (l; q) lacks a join can berestricted to a subset RU(q). Then for each element l in RU (q) a suitable function �(:)is applied to determine the join �(l) in Li�1 of the elements that dominate both l andq. If such a join is l itself and l does not dominate q then l is not the join of elementsin Li�1 [ fqg, hence a new element needs to be added. Moreover, order relations arepossibly added among the new element and elements in Li�1 or elements previouslyadded during this step.Otherwise two things may happen:1. l dominates q, then l is the required join; or2. �(l) 6= l, then we can defer the enforcement of the lattice property of Li�1 [ fqgto the visit of �(l). In fact in this case the join in Li�1 [ fqg of pair (�(l); q) isalso the join of pair (l; q).The search for elements l in Li�1 such that the pair (l; q) lacks a unique meet isdone in a dual way.2.2 A formal descriptionIn this section we give a more formal description of the generic on-line pass of thePerry's algorithm. For more details see [21]. In this and the following subsection, input(resp. output) lattice L (resp. L0) to the algorithm corresponds to the lattice indicated1If P does not contain a top or a bottom, these can be added



Version 3.2.5 | Last Revision: 15 April 1999 4as Li�1 (resp Li) in the informal description. Similarly, P corresponds to Pi�1 and P 0corresponds to Pi.If x and y are elements of poset T we use the following notations: x :=T y meaningthat x is made coincident with y in T ; x :�T y meaning that the pair (x; y) is addedto the current partial order relation of T with the semantics x �T y. Comments areenclosed between `/*' and `*/'.If an element is inserted while visiting element l 2 L (lines 19 and 28), then we letl refer to this new element as New(l).INPUT: P 0:Poset; q:new element; L:lattice;OUTPUT: L0:lattice;1 begin2 /* Step 1: Form a temporary poset T relating q with elements of L. */3 for l 2 L do4 if l 2 P5 then relate l and q in T as they are related in P 06 else if ((l�L \ P )�P 0 )�P 0 � q�P 0 then l :�T q �7 if q�P 0 � ((l�L \ P )�P 0 )�P 0 then q :�T l �8 if q�P 0 = ((l�L \ P )�P 0 )�P 0 then q :=T l � � od9 /* Step 2: Form lattice L0 adding new elements and order relations to T . */10 Set L0 := T11 /* Let coverT (q) = fx1; : : : ; xkg and cocoverT (q) = fy1; : : : ; ymg. */12 /* We use the following notation:13 �(l) = glbL(flubL((x1; l)); : : : ; lubL((xk; l))g)14 	(l) = lubL(fglbL((y1; l)); : : : ; glbL((ym; l))g) */15 /* We use the following notation:16 RU = (glbL(coverT (q)))�L n (Si fxig�L)17 RD = (lubL(cocoverT (q)))�L n (Si fyig�L) */18 for l 2 RU such that l is incomparable with q in T and �(l) = l do19 insert in L0 a new element New(l)20 l :�L0 New(l)21 q :�L0 New(l)22 for l1 2 L do23 if (l1 �L l) ^ (New(l1) exists) then New(l1) :�L0 New(l) �24 if (l �L l1) ^ (New(l1) exists) then New(l) :�L0 New(l1) �25 if l1 2 l�L [ fqg then l1 :�L0 New(l) �26 if l1 2 fl; qg�T then New(l) :�L0 l1 � od od27 for l 2 RD such that l is incomparable with q in T and 	(l) = l do28 insert in L0 a new element New(l)29 New(l) :�L0 l30 New(l) :�L0 q31 for l1 2 L do32 if (l1 �L l) ^ (New(l1) exists) then New(l1) :�L0 New(l) �33 if (l �L l1) ^ (New(l1) exists) then New(l) :�L0 New(l1) �34 if l1 2 l�L [ fqg then New(l) :�L0 l1 �35 if l1 2 fl; qg�T then l1 :�L0 New(l) � od od36 end2.3 Complexity of Perry's algorithmDuring Step 1 the cost for each l 2 L is dominated by the cost of �nding sets q�P 0 and((l�L \ P )�P 0 )�P 0 and to check if one of them is contained in the other. To �nd q�P 0requires O(n). To �nd (l�L \P ) also requires O(n). Given a subset Q of P , �nding theset of its upper bounds (or lower bounds) requires O(n2) because we have to compareeach element of P with each element of Q. Then �nding ((l�L \ P )�P 0 )�P 0 requiresO(n2). Given Q1; Q2 � P , to check if Q1 � Q2 requires O(n2) (we have to search each



Version 3.2.5 | Last Revision: 15 April 1999 5element of Q1 in Q2). Hence the total cost of Step 1 is O(sn2).During Step 2, �nding coverT (q) and cocoverT (q) requires O(s2). In fact since a tran-sitive reduction of L is not available, one has to �nd maximal elements of a subset ofL. Finding glbL(coverT (q)) and lubL(cocoverT (q)) requires O(sjcoverT (q)j) because�nding the least upper bound of a pair of elements requires O(s). It is jcoverT (q)j =O(!(L)) and we proved [9] that for some classes of posets it is jcoverT (q)j = 
(!(P )2).To determine RU ; RD requires O(s!(L)) because we have to compare each element ofL against each element of coverT (q) (or cocoverT (q)).Then a loop through RU begins. In the loop, function �(:) is evaluated. To evaluate�(:) takes O(s!(L)) because the evaluation consists in jcoverT (q)j + 1 operations ofleast upper bound or greatest lower bound of a pair of elements. Moreover in the loopan element is compared against each element of L. Hence the whole cost of the loop isO(s2!(L) + s2). The dual loop through RD has the same cost.The total cost for the on-line pass of Perry's algorithm is therefore O(s3).3 A Better Algorithm for the Transitive Closure3.1 An informal descriptionThe basic approach is the same as in Perry's algorithm. A �rst important di�erence isthat we substitute the computation of �(:) with the (more e�cient) computation of adi�erent structure.The computation of �(l), for an l 2 Li�1, in Perry's algorithm has the purposeof checking if a new element needs to be added to enforce the lattice property. Thishappens if l = �(l).We substitute this computation with a di�erent operation. Namely, we search for anelement x in coverLi�1(l) that is dominated by every element in Li�1 which dominatesin Li�1 [fqg both l and q. If x exists then l <Li�1 x and x �Li�1 �(l), hence l 6= �(l).To e�ciently execute the above test, we build and maintain at each on-line passalso the transitive reduction of Li�1, using suitable data structures to be presented inSect. 3.5. Ths computation of 	(:) is substituted with a similar operation.An additional important di�erence from the point of view of the overall time complexityis in Step 2. We substitute the check against each element currently in the lattice(lines 22-26 and 31-35 of Perry's algorithms) with a check guided by the order relationscurrently existing in the lattice.Finally, a minor di�erence with Perry's algorithm is in Step 1. We use a di�erentmethod to check, given an element l of Li�1 whether l has to dominate new element q,or to be identi�ed with it, or to be dominated by it (lines 6-8 of the Perry's algorithm).This also provides more e�ciency, even if does not a�ect the overall time complexity.3.2 A formal descriptionIn this section we give a more formal description of the generic on-line pass of ouralgorithm. We �rst give the general schema and then details the internal procedures.We omit the operations dealing with the data structure maintaining the transitive re-duction, that will be described in Sect. 3.5. Discussion about correctness is in Sect. 3.3.INPUT: P 0:Poset; q:new element; L:lattice;OUTPUT: L0:lattice;1 begin2 /* Step 1: Form a temporary poset T relating q with elements of L */:3 for l 2 L do4 if l 2 P5 then relate l and q in T as they are related in P 0



Version 3.2.5 | Last Revision: 15 April 1999 66 else if (l has to be dominated by q)^:(l has to dominate q)7 then l :�L0 q �8 if :(l has to be dominated by q)^(l has to dominate q)9 then q :�L0 l �10 if (l has to be dominated by q)^(l has to dominate q)11 then q :=T l12 L0 := T13 stop � � od14 /* Step 2: Form lattice L0 adding new elements to T . */15 Set L0 := T16 for l 2 (glbL(coverP (q)))�L and such that l is incomparable with q in T do17 if a new element needs to be inserted for l18 then19 insert in L0 a new element New(l)20 l :�L0 New(l)21 q :�L0 New(l)22 for l1 2 l�L do23 if q �T l1 then New(l) :�L0 l1 �24 if (New(l1) exists) then New(l) :�L0 New(l1) � od25 for l1 2 l�L do26 l1 :�L0 New(l)27 if (New(l1) exists) then New(l1) :�L0 New(l) � od �28 /* Insert here operations on the data structure29 representing the transitive reduction. */30 od31 /* Update the data structure representing transitive reduction of L032 considering new elements inserted in L0 during the above for cycle. */33 for l 2 (lubL(cocoverP (q)))�L and such that l is incomparable with q in T do34 if a new element needs to be inserted for l35 then36 insert in L0 a new element New(l)37 New(l) :�L0 l38 New(l) :�L0 q39 for l1 2 l�L do40 New(l) :�L0 l141 if (New(l1) exists) then New(l) :�L0 New(l1) � od42 for l1 2 l�L do43 if l1 �T q then l1 :�L0 New(l) �44 if (New(l1) exists) then New(l1) :�L0 New(l) � od �45 /* Insert here operations on the data structure46 representing the transitive reduction. */47 od48 /* Update the data structure representing transitive reduction of L049 considering new elements inserted in L0 during the above for cycle. */50 endTo test whether l has to be dominated by q (lines 6, 8,10) we use a boolean function(LessThan) presented below. If LessThan returns true then l has to be dominated byq. To test whether l has to dominate q (lines 6, 8,10) we use a dual boolean function(GreaterThan).BOOLEAN FUNCTION LessThanINPUT: l:element;OUTPUT: result:boolean;1 begin



Version 3.2.5 | Last Revision: 15 April 1999 72 result := true3 for x 2 P do4 if x �L l ^ x �P 0 q then result := false � od5 return result6 endTo test whether it is necessary to create a new element in the visit of (lubL(cocoverP (q)))�Lwe use a boolean function (NewDown) presented below. If NewDown returns true thena new element has to be inserted.To test whether it is necessary to create a new element in the visit of (glbL(coverP (q)))�Lwe use a dual boolean function (NewUp).BOOLEAN FUNCTION NewDownINPUT: l:elementOUTPUT: result:boolean1 begin2 Compute l�L \ q�P 03 result := true4 for y 2 cocoverL(l) do5 if 8x 2 (l�L \ q�P 0 ); x �L y6 then result := false7 store y � od8 return result9 endIn the above function we need cocoverL(l), which is not e�ciently provided by therepresentation of L. Hence we use a supplementary data structure (see Sect. 3.5)representing the transitive reduction of L.Note that to be able to answer test x �L y in O(1) we represent partial orderrelations in L with a boolean adjacency matrix that is suitably enlarged during on-line passes. Note also we want to search in l�L and l�L without necessarily searchingthrough L. This can be achieved by threading non zero entries of the matrix (whichcorrespond to l�L and l�L).3.3 CorrectnessWe here give correctness proofs for our algorithm. We assume correctness of Perry'salgorithm (see [21]) and we show our algorithm produces the same results.In Step 1 we substitute comparisons of lines 6-8 in Perry's algorithm with functionsLessThan and GreaterThan. These functions implement an equivalent (but computa-tionally less expensive) test, as shown by the following theorem.Theorem 1 It is:((l�L \ P )�P 0 )�P 0 � q�P 0 () 8x 2 (l�L \ P ); x �P 0 qand q�P 0 � ((l�L \ P )�P 0 )�P 0 () 8x 2 (l�L \ P ); q �P 0 x 2Note also that if during Step 1 for an l 2 L we identify l and q then obviously L = L0,hence we can exit from the algorithm (line 13 of our algorithm).In Step 2, Perry's algorithm performs a loop on each element of RU and a similar oneon each element of RD. In our algorithm we have instead a loop on (glbL(coverP (q)))�L



Version 3.2.5 | Last Revision: 15 April 1999 8and a similar one on (lubL(cocoverP (q)))�L . Our loops perform the same operationsas Perry's ones.In fact glbL(coverT (q)) = glbL(coverP (q)) hence RU � (glbL(coverP (q)))�L . More-over 8x 2 ((glbL(coverP (q)))�L n RU ) we have q �T x hence our algorithm takes noactions when it examines elements of this kind because of the condition at line 16. Thesame happens with respect to RD and (lubL(cocoverP (q)))�L .Then our algorithm performs the tests implemented by procedure NewUp(l) andNewDown(l) instead of evaluating functions �(l) and 	(l). The following theoremproves that this is correct:Theorem 2 We have:�(l) = l () @y 2 coverL(l) j 8x 2 (l�L \ q�P 0 ); y �L xand 	(l) = l () @y 2 cocoverL(l) j 8x 2 (l�L \ q�P 0 ); x �L y 2Finally note that we have substituted instructions in lines 22-26 (resp., lines 31-35) ofPerry's algorithm, executing a loop through whole L, with instructions in lines 22-27(resp., lines 39-44), in our algorithm, executing a loop through l�L (resp., through l�L).The correctness of these substitutions above can be easily seen checking that con-ditions in lines 22-26 of Perry's algorithm imply that, for each l1 that is incomparablewith l, neither l1 nor the possibly existing New(l1) have to be related with New(l).Dually for conditions in lines 31-35.3.4 Complexity of Our AlgorithmIn order to analyze computational complexity of our algorithm we need the followingresults:Theorem 3 Let L be the MacNeille completion of P . Then 8l 2 L, we have jcoverL(l)j =O(!(P )) and jcocoverL(l)j = O(!(P )). 2Corollary 4 Let L be the MacNeille completion of P . Then the number of orderrelations in the transitive reduction representation of L is O(s!(P )). 2Note that Theorem 3 can not be used to show that the computational complexity ofthe evaluation of functions �(l) and 	(l) is O(s!(P )). In fact it does not apply tojcoverT (q)j because the intermediate working poset T is not the normal completion ofP . It can be shown [9] that for some classes of posets jcoverT (q)j = 
(!(P )2), but itis not known if posets exist such that jcoverT (q)j = 
(!(L)).We are now ready to discuss time complexity.In Step 1, for each l 2 L the cost of the step is dominated by the cost of functionsLessThan and GreaterThan which is O(n). Hence the total cost of Step 1 is O(sn).In Step 2, �nding glbL(coverP (q)) and lubL(cocoverP (q)) requires O(sjcoverP (q)j)because �nding the least upper bound of a pair of elements requires O(s), hence the costis O(s!(P )). In the subsequent loops (each iterated O(s) times) function NewUp (orNewDown) is evaluated. The cost of NewDown is O(n!(P )), because jl�L\q�P 0 j = O(n)and jcocoverL(l)j = O(!(P )). The cost of NewUp is the same. Moreover in each loopany new element New(l) is compared against each element of l�L and l�L . Note thatPl2L jl�L j+ jl�L j = O(m), where m is the number of order relations of the transitiveclosure. Obviously in the worst case m = O(s2). Hence the whole cost of Step 2 isO(sn!(P ) +m).Finally note that each update to the structure described at the end of Sect. 3.2allowing to test x �L y in constant time can be executed in constant time duringStep 1 and Step 2.The total cost for an on-line pass is O(sn2 +m).



Version 3.2.5 | Last Revision: 15 April 1999 93.5 Maintaining the transitive reductionWe now describe a data structure that for each element l 2 L, where L is the inputlattice of our algorithm, stores coverL(l) and cocoverL(l). Suppose we have such astructure for L before executing a generic pass of our algorithm. Then during Step 2of our algorithm we need to update the data structure according to the new latticeL0. We here below discuss explicitly only how to perform changes due to those newelements inserted by our algorithm during the visit of (lubL(cocoverP (q)))�L in lines 33-47. Changes caused by the visit in lines 16-30 can performed in a dual way.3.5.1 Informal DescriptionWe use a queueM , cleared at the beginning of the generic pass, where we store elementsof L whose visit during the current pass has determined the insertion of a new element.To implement function New(�) we use also an array A that for each element of L storesa boolean ag and an element of L0.Moreover we have to do some extra work (to be inserted at lines 45-46) of ouralgorithm, after each call to function NewDown.First of all, we set A(l):f lag := NewDown(l). If NewDown(l) returns true a newelement New(l) has been created. Then we enqueue l in M , and store New(l) inA(l):element. Note that M maintains elements in their topological order.Otherwise there exists y 2 cocoverL(l) such that 8x 2 (l�L \ q�P 0 ); x �L y. Such yhas been found and stored by function NewDown(l). Then we store y in A(l):element.All this extra work can be done in O(1) hence the complexity of our algorithm isnot a�ected.We now describe the procedure to be inserted at lines 48-49 to update the represen-tation of the transitive reduction of L0. This procedure visits elements of M andfor each visited element l �rst computes cocoverL0(A(l):element) and then updatescocoverL0(y) and coverL0(y) of other elements y 2 L0, by deleting transitive rela-tions, to provide a correct representation of the transitive reduction of L0. Note thatcoverL0(A(l):element) has been computed as a consequence of the updates performedduring the visit of elements x preceding l in M .3.5.2 A formal description and correctnessThe procedure updating the transitive reduction of L0 is the following:PROCEDURE BuildAllINPUT: M :list of elements;1 begin2 �l := lubL(cocoverP (q))3 if M = ;4 then cocoverL0(q) := f�lg5 coverL0(�l) := coverL0(�l) [ fqg6 stop7 else /* Note that �l is the �rst element in M . */8 cocoverL0(q) := fA(�l):elementg9 coverL0(A(�l):element) := fqg10 repeat dequeue l from M11 coverL0(A(l):element) := coverL0(A(l):element) [ flg12 cocoverL0(l) := cocoverL0(l) [ fA(l):elementg13 compute cocoverL0(A(l):element)14 for y 2 cocoverL0(A(l):element) do15 for z 2 coverL0(y) do16 if A(l):element <L0 z17 then coverL0(y) := coverL0(y) n fzg



Version 3.2.5 | Last Revision: 15 April 1999 1018 cocoverL0(z) := cocoverL0(z) n fyg � od19 coverL0(y) := coverL0(y) [ fA(l):elementg od20 until M = ;21 �22 endNote that cocover(�) and cover(�) are implemented as lists where deletions can bedone in constant time, since the operation is executed while visiting the element to bedeleted.We now describe the procedure that given an element l computes cocoverL0(A(l):element).This set of elements is built by generating for each element of cocoverL(l) a candidateand then checking if such a candidate needs to be inserted into cocoverL0(A(l):element)or not.We �rst de�ne a function (FindCandidate) that provides for an input element y acandidate for the insertion in cocoverL0(A(l):element). Let x be the least upper boundof the sets of elements of L dominated by both y and q. If x is dominated by both yand q (remember that it may be x = y) then FindCandidate returns x. Otherwise itreturns A(x):element. The formal description of such a function is:FUNCTION FindCandidateINPUT: y:elementOUTPUT: element1 begin2 if y �L0 q3 then return y4 else if A(y):f lag5 then return A(y):element6 else /* Remember that when A(y):f lag =false then7 A(y):element is an upper bound of (y�L \ q�P 0 ). */8 FindCandidate(A(y):element) � �9 endWe are now ready to give a procedure (Build) checking if candidates have to be includedin cocoverL0(A(l):element) and inserting them in the positive case. If a candidatedominates a previously found candidate z then z has not to be included. If a candidatey is dominated by a previously found candidate then y has not to be included. Theformal description of the procedure is:PROCEDURE BuildINPUT: l:element;1 begin2 S := ;3 for y1 2 cocoverL(l) do4 y2 := FindCandidate(y1)5 for z 2 S do if z <L0 y2 then S := S n fzg � od6 insert := true7 for z 2 S do8 if y2 <L0 z then insert := false � od9 if insert then S := S [ fy2g � od10 cocoverL0(A(l):element) := S11 endCorrectness of procedure Build is given by following theorems.
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