
Pergamon Information Systems Vol. 19, No. 4, pp. 33{54, 1994Copyright  1994 Elsevier Siene LtdPrinted in Great Britain. All rights reserved0306-4379/94 $7.00 + 0.000306-4379(94)E0004-9AN EFFICIENT SPATIAL ACCESS METHOD FOR SPATIAL IMAGESCONTAINING MULTIPLE NON-OVERLAPPING FEATURESEnrio Nardelli1 and Guido Proietti1Dipartimento di Matematia Pura ed Appliata, Universit�a di L'Aquila, Via Vetoio, 67010 L'Aquila, Italy andIstituto di Analisi dei Sistemi e Informatia, CNR, Viale Manzoni 30, 00185 Roma, Italy.(Reeived 18 June 1993; in �nal revised form 1 November 1993)Abstrat | In this paper we propose and analyze a new spatial aess method, namely the S�-tree, for the eÆient seondary memory enoding and manipulation of images ontaining multiplenon-overlapping features (i.e., oloured images). The S�-tree is based on a non-straightforward andspae eÆient extension to oloured images of its preursor, namely the S+-tree, whih was expliitlydesigned for binary images. To assess experimentally the qualities of the S�-tree, we test it againstthe HL-quadtree, a previous spatial aess method for oloured images, whih is known to be spaeand time eÆient. Our experiments show that the S�-tree reahes up to a 75% of spae saving, andperforms onstantly less I/O aesses than the HL-quadtree in solving lassial window queries.Key words: Spatial Data, Spatial Aess Method, Bintree, Quadtree, Window Query.1. INTRODUCTIONIn this work we fous on seondary memory representations of images ontaining multiple non-overlapping spatial features, like for instane agriultural maps, themati maps, satellite viewsand many others. This is a very hot researh topi, espeially with the inreasing interest of thedatabase ommunity towards the development of eÆient spatial database management systems.Therefore, we are impliitly assuming that the underlying images have all the peuliar aspets ofimages ontaining region data, and spei�ally the most prominent one, that is the aggregation ofpixels of a given olour into pathes. This indues a ouple of observations: �rst, the number offeatures (i.e., olours) in the representing piture is limited (generally, from 8 to 64), seond, andperhaps more important, it makes sense to apply hierarhial methods of representation of theimage to save spae and time.One of the most suessful hierarhial strategy for representing images ontaining region datais based on the deomposition of the image spae into reursively nested subimages, until a ho-mogeneous pattern is obtained. The most popular deomposition tehniques are the binary de-omposition (whih splits the image into two equal parts alternating a horizontal and a vertialsubdivision) and the quaternary deomposition (whih splits the image into four equal quadrants).The orresponding main memory representations of suh split poliies are the bintree [13℄ and theregion quadtree [10℄. Both data strutures are easy to implement in main memory. On the otherhand, when a seondary memory representation is needed (whih is usually the ase, given thelarge amount of data to be stored), things beome more ompliated. The problem is that ofmapping a 2-dimensional set onto a 1-dimensional universe, while attempting to preserve as muhas possible spatial proximity properties.For images ontaining multiple non-overlapping features (for the sake of brevity, oloured im-ages in the following, even though this term ould be misleading, sine it does not onvey theonept that the underlying image is representative of region data, and therefore well-suited tobe managed by hierarhial spatial data strutures), a number of di�erent seondary memoryimplementations have been proposed. These an be subdivided into two ategories: leafode rep-resentations, obtained as a olletion of the leaf nodes in the tree (suh as, for example, the linearquadtree [5℄), and treeode representations, obtained by a preorder tree traversal of the nodes in thetree (also alled DF-expressions [6℄). The latter approah is asymptotially more ompat thanthe former one, but it has su�ered for a long time the laking of a paged version able to support33



34 Enrio Nardelli and Guido Proiettithe aess to a given element without being fored to san, in the worst ase, the entire database.This diÆulty have been overome by de Jonge et al. [3℄, who developed the S+-tree, a spatialaess method ombining the advantages of leafode and treeode representations, essentially byindexing through loational odes the spae-ompat DF-expression. However, as we shall see inthe rest of the paper, the S+-tree is tailored to binary images, and a straightforward extension ofit to oloured images has a severe spae utilization drawbak, whih a�ets in its turn the timeeÆieny in solving lassial operations that an be posed on the stored data.In this paper we present a new spatial aess method, that we named S�-tree, whih extendsin a non-trivial way the apabilities of the S+-tree to handle oloured images. We �rst showthat for pratial ases, the S�-tree allows to save up to 25% of spae with respet to a trivialextension of the S+-tree, while performing asymptotially the same number of disk aesses toretrieve any given subset of the represented image. Furthermore, to assess the pratial usefulnessof our method, we ompare it against the HL-quadtree [8℄, a spae and time eÆient spatial aessmethod for oloured images, whih ombines advantages of leafode and treeode representationsby using loational odes to represent all the nodes of a region quadtree. Obtained results areextremely enouraging, showing a superiority of our method both in terms of spae oupanyand time performanes. More preisely, onerning the spae oupany, we show that the S�-treeenjoys a 75% of spae saving with respet to the HL-quadtree. Regarding the time omplexity,we performed experiments over an important lass of queries, namely the window queries, whihonstitute the basis of a number of operations that an be exeuted on oloured images. Sine weare omparing time performanes of seondary memory oriented data strutures, we will use aseÆieny measure the lassial I/O omplexity, by ounting the number of aesses to the buketsstoring the data. We will show that the S�-tree performs onstantly less I/O aesses than theHL-quadtree in solving the queries, saving up to 80% of time.The paper proeeds as follows. In Setion 2 we briey reall the various pixel tree (binaryand quaternary) strutures that have been proposed in the past for managing oloured images,along with a desription of the S+-tree. In Setion 3 we �rstly present a straightforward extensionof the S+-tree to oloured images, and we then present our new spatial aess method, namelythe S�-tree. In Setion 4 we give experimental results assessing the spae and time eÆieny ofour approah, and �nally, in Setion 5 we present onsiderations for further work and onludingremarks. 2. SURVEYIn this setion we present a survey of the various pixel tree (binary and quaternary) struturesthat have been proposed in the past for managing oloured images, along with a desription of theS+-tree. Table 1 ontains main symbols used throughout the paper.Symbol De�nitionT Image spae sidem Image spae resolutionk Number of featuresw Query windown Query window sider B+-tree orderfi i-th featureTable 1: Symbol table
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Fig. 1: Multiple non-overlapping features and their quadtree (left) and bintree (right).2.1. The bintree and the quadtreeThe region quadtree is a progressive re�nement of an image that saves storage being based onregularity of the feature distribution. Assume we are given an image spae of T �T pixel elements,where T is suh that T = 2m, ontaining k non-overlapping features. We proeed in the followingway: at level 0 there is the whole image, of side length T . The deomposition proess arried outby the quadtree reursively splits a quadrant into four equal size quadrants, until eah quadrantis overed by only one feature. In the extreme, the deomposition an go on up to the pixel level,with squares of side length 1. The deomposition an be represented as a tree of outdegree 4, withthe root (at level 0) orresponding to the whole image and eah node (at level d) orresponding toa square (or blok) of side length T=2d. The sons of a node are, in preorder, labelled NW, NE, SWand SE. For a given image, nodes are then homogeneous (leaf nodes) or heterogeneous (non-leafnodes). Correspondingly, we speak of homogeneous and heterogeneous bloks. Note that thereexist several extensions of the region quadtree, even for representing set of overlapping images [15℄.The bintree is the binary version of the region quadtree: the image is progressively re�nedalternating horizontal and vertial splits, until a homogeneous pattern is reahed. Notie thatin this ase suh a pattern is not neessarily a square. Figure 1 shows an example of an imageontaining 4 non-overlapping features (note that the white bakground is treated as a feature),along with its representing quadtree and bintree.The bintree and the quadtree an be implemented either as a tree or as a list. In the former,diret aess to spei� image elements is privileged, while the latter makes sequential aesseasier and simpli�es disk-based representations, absolutely needed for large amounts of spatialdata [11, 12, 14℄.2.2. Seondary memory implementationsIt should be lear from the de�nition that bintrees and quadtrees share a lot of properties;therefore, a seondary memory implementation de�ned for a bintree, an be easily adapted tohandle a quadtree, and vie versa. There exist substantially two ategories of seondary memoryrepresentation of a pixel tree: the olletion of the leaf nodes (leafode representation), and thelinear list resulting from a preorder traversal of the tree (treeode representation).One of the most attrative approahes in the �rst ategory is the FL linear quadtree [5℄ (simplylinear quadtree in the following), introdued by Gargantini with referene to a binary image. Alinear quadtree ontains the olletion of blak leaves in the orresponding quadtree, enoded bymeans of a loational key (whose digits resemble the path in the tree from the root to the leaf) andindexed through a B+-tree [1℄. The loational key �(x) for a node x of level d in the quadtree isreursively de�ned as follows: Let the loational key for the root be an all-zero string of length m,and let x0 be the parent of x in the quadtree. We have that �(x) = �(x0) + s � 5m�d, where s = 1,2, 3 or 4 if x is the NW, NE, SW or SE hild of x0, respetively. Then, the loational key is a base



36 Enrio Nardelli and Guido Proietti5 ode of length m, and requires 3m bits to be storedy.The extension to multiple non-overlapping features of a linear quadtree is straightforward. Infat, also in this ase the olletion of leaf nodes an be stored as a sorted linear list, but eahnode now onsists of two �elds: the loational key and the feature value, storing in dlog ke bits thefeature assoiated with the node. Representing a pixel tree as an ordered list of the homogeneousnodes is eÆient sine spae oupany is redued and performanes of sequential operations areimproved.Conerning treeode representations, the DF-expression [6℄ is surely one of the most usedtehniques. The DF-expression for multiple non-overlapping features an be viewed, treating thebakground as a feature, as a string ontaining two symbols: `N', denoting non-leaf (internal)nodes, and `Li', 1 � i � k, denoting a leaf nodes ontaining the i-th feature. The representingtree is visited in preorder, and an `N' is emitted whenever an internal node is enountered, whilean `Li' is emitted whenever a leaf node ontaining the i-th feature is enountered. As an example,suppose that the four features in Figure 1 have index 1 for the white, 2 for the light gray, 3 forthe dark gray and 4 for the blak. The following string is the DF-expression for the bintree inFigure 1: NNNNNNL1L3L1L3NL2NN L4L1NL1L4L1NL2NNL4L1L1.Representing a pixel tree as a DF-expression is spae eÆient with respet to a leafode rep-resentation, but aessing spei� bloks is time-onsuming, sine indexing is not provided, andthis is a serious drawbak for window queries proessing. Therefore, while an implementationbased on B+-trees for a linear quadtree representation is straightforward, this is not the ase for aDF-expression.2.3. The S+-treeA �rst step towards the integration of leafode and treeode representations has been done byde Jonge et al. [3℄, who de�ned a seondary memory implementation of binary images namedS+-tree. This was originally desribed by using the leafodes generated by a bintree, though aquadtree ould similarly be used.The S+-tree is obtained in two phases. In the �rst phase, we apply a preorder traversal on thebintree, emitting a `0' (`1') when an internal (leaf) node is enountered. The outome will be abitstring, named linear (bin)tree. Conurrently, during this traversal we store the olours of theleaves in an additional bitstring, alled olour table, where a '0' ('1') represents a white (blak)leaf. The two bitstrings thus obtained are named S-tree. In the seond phase, the S+-tree is builtby storing the original tree into a list of data pages ontaining a segmented and augmented S-treerepresentation of the image. These data pages will be indexed by a B+-treey. This way, eah datapage onstitutes a self-ontained loal S-tree that an be searhed independently.More spei�ally, a data page onsists of a portion of the linear tree (growing from the beginningof the page) along with the orresponding portion of olour table (whih grows from the tail ofthe page). The two bitstrings �ll the page as muh as possible, under the onstraint that the lastnode stored in a page must always be a leaf (we will see later why this restrition is introdued).Therefore, due to suh onstraint, some unused spae might be left. Moreover, at the very beginningof the page, there is a linear pre�x whih an be regarded as the summary of all the data pagespreeding the atual one. This linear pre�x is de�ned in the following way: when a data pagebeomes full during the building proess, a new page is reated and a separator between the pagesis stored in the index. Suh a separator is built by enoding the path from the root of the bintreeto the �rst node stored in the next page, emitting a `0' when moving towards left, a `1' otherwise.Sine it is imposed that the last node stored in a page must be a leaf, it follows from preorder visityIn a bintree, the root is an all-zero string of length 2m, and �(x) = �(x0) + s � 32m�d, where s = 1 or 2 if x isthe left or right hild of x0, respetively. Then, the loational key is a base 3 ode of length 2m, and requires 4mbits to be stored.yNotie that in their original paper [3℄, the authors use a pre�x B-tree to index the data pages, but a B+-treeprovides similar performanes.



An eÆient spatial aess method for spatial images ontaining multiple non-overlapping features 37pointer pointer dummytree olourlinear pre�x + linear tree bitstring olour tablefree spae nextountFig. 2: The layout of a data page of the S+-tree.properties that the last bit of a separator is always a 1: In fat, if the last stored node is a left leaf,then the �rst node stored in the next page must be its right sibling, while if the last stored nodeis a right leaf, then the �rst node in the next page must be a right son of some of its anestors.Suh a property allows to store the separators using only 2m bits, without enoding the depth ofthe node the separator refers to whih.Consequently, the linear pre�x is built by enoding with a `0' a 0 in the separator, and witha `01' a 1 in the separator. The 0 added before the 1 atually represents a dummy leaf, stayingfor a left subtree (stored in a previous page) along the path to the node whih aused the �lling.The linear pre�x therefore provides the information needed to retrieve a node in a page, sine itresembles the whole bintree preeding the nodes in suh a page, by ondensing all the left subtreesin leaves. We should mention here that, as in all treeode representations, all nodes must berepresented in the struture. The struture of an S+-tree node an be seen in Figure 2. The treepointer points to the next available position in the linear tree stak, the olour pointer points to thenext available position in the olour table stak, next is a pointer to the next page in the sequeneset, while dummy ount indiates where the linear pre�x ends and the linear tree starts.Notie that building the S+-tree by using a quadtree deomposition instead of a bintree, leadsto a somewhat di�erent reation of the separator. The path from the root of the quadtree to thenode that aused the �lling of the page is enoded by emitting a `0' when moving towards the �rsthild (NW), and a `1', `2', or `3' when moving towards the seond (NE), third (SW) or fourth (SE)hild, respetively. Consequently, the linear pre�x is built by enoding with a `0', a `01', a `011'and a `0111' a 0, 1, 2 and 3 in the separator, respetively.This struture and the harateristis of the S+-tree, in partiular the property that eahdata page onstitutes a self-ontained loal S-tree that an be searhed independently, is its greatadvantage when used for window queries. As we have already mentioned, it provides for a veryompat representation of the data and the index, while, onurrently, it behaves like B+-trees andpermits easy sequential and random aess. As noted in [3℄, using the binary array representingthe image as input, we an onstrut the orresponding S+-tree in suh a way that the pages ofthe sequene set are generated from left to right, whih allows for almost 100% storage utilizationof these data pages. Subsequent insertions and deletions will degrade the storage utilization, butonly down to 69%, whih is the typial storage utilization of B+-trees.3. THE S�-TREEIn this setion, we �rstly present a straightforward extension of the S+-tree to oloured images,and we then present our new spatial aess method, namely the S�-tree.3.1. A straightforward extension of the S+-treeThe natural extension of the S+-tree to oloured images is the following: onerning leaf nodes,the bit olor of the olour table is replaed by a feature value of dlog ke bits, as for the orrespondingextension of the linear quadtree, while for internal nodes, we have to augment the olour table byassoiating with eah internal node a features string of k bits, one bit for eah feature, in whihthe i-th bit is set to 1 if and only if the node ontains the i-th feature. In fat, assoiating afeatures string with internal nodes greatly improves the performanes in exeuting several spatialoperations [8℄.



38 Enrio Nardelli and Guido ProiettiHowever, suh a straighforward extension has a severe drawbak in terms of spae utilization.In fat, as we desribed in the previous setion, a tight onstraint during the proess of buildingthe S+-tree is that the last node stored in a page must be a leaf. There are several onviningreasons to do that for binary images:1. Sine the last node is a leaf, by preorder visit properties it follows that the �rst node onthe next page is a right son, and therefore the separator between the pages will end witha 1. This property is important, sine it allows to store the separators using only 2m bits,without enoding the depth of the node the separator refers to whih.2. Sine for binary images no information is assoiated with internal nodes (they are simplygray), we have at most 2m�1 unused bits per page. Considering that a page size is generally1 Kbyte, and that a reasonable upper bound on m is 16, it follows that we waste in the worstase less than 1% of spae.However, the latter observation does not hold any more for oloured images. Therefore, a largeamount of information assoiated with internal nodes, that ould potentially be stored in a page,might be shifted to the next one as a onsequene of the above onstraint, thus determining a largewasting in spae. For instane, if the page size is 1 Kbyte, m = 16 and k = 64, the wasted spaeould be as large as k8 � (2m � 2) = 240 bytes (this is the ase when the next leaf that should bestored lies at the end of a path in the assoiated bintree of 2m� 2 internal nodesy that have notyet been visited), i.e., about a 25% of the page size!To make things onrete, Figure 3 provides what we should obtain from the image in Figure 1 byrepresenting it using the trivial extension of the S+-tree just desribed. For the sake of simpliity,we set to 36 bits the size of the bitstring; moreover, to improve readability, the linear tree hasbeen underlined, and unused bits have been depited with an `x'. The length of a separator (i.e., akey in the B+-tree index) is exatly 2m = 6 bits. The features string of an internal node onsistsof k = 4 bits, orresponding, from left to right, to white, light gray, dark gray and blak olour,respetively. On the other hand, with any external node, a feature value of dlog ke = 2 bits isassoiated: we enoded the white feature with `00', the light gray with `01', the dark grey with`10' and the blak with `11'. Notie that the third page had enough spae to store an additionalinternal node (i.e., the internal node orresponding to the rightmost nephew of the root), but dueto the above onstraint, we have to shift it to the next page, thus wasting 5 bits.3.2. A spae eÆient extension of the S+-tree: the S�-treeFrom the above disussion, it is lear that for oloured images we have to abandon the onstraintthat the last node stored in a page must be a leaf node. The question is: an this be done withoutmodifying the separators, i.e., without augmenting the spae used for the index? The answer isyes, on ondition that a small overhead is paid in terms of the time spent when a searh to agiven node is performed. In fat, a problem arises letting the last node stored inside a page tobe internal: It fails the statement that the last bit of a separator is always a 1. This is beausethe node whih aused the �lling ould be a left son, and iteratively its parent ould be a left son,and so on. Therefore, in the separator, after the rightmost 1, there ould be some meaningful 0s(atually, as many as 2m � 2), i.e., 0s that e�etively lead to the node whih aused the �lling.Does this a�et the searh of a given node through the struture? Only to a small extent, as thefollowing theorem states:Theorem 1 Let ` = 2m be the length of the index keys in the B+-tree storing the S�-tree, andlet �(x) = f0; 1gt with t � `, be the path from the root to a node x to be retrieved in the S�-tree.Then, as soon as eah page in the B+-tree ontains at least ` nodes of the bintree, it follows thatat most two ontiguous pages in the B+-tree must be visited to retrieve x.yRemember that if the image resolution is m, then the height of the assoiated bintree is 2m, where it is assumedthat a single node is a tree of height 1.
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page 2page 1 00000011 10 00 1010 1010 1010 1111 1111 1111000001 11010011 00 11 1001 1001 01 1101 10 00 69 8 0
10 22 40101 00111 xxxxxxxxxxxxx 00 00 11 1001 1001page 4page 3 00010101 011101 xxxxxx 01 1101 00 11 00 1001 15 20 8

000010 001110
15 14

page 1 page 2 page 3 page 4110000

Fig. 3: The B+-tree storing the image in Figure 1, as obtained by the trivial extension of the S+-tree.Proof. We start by noting that the assumption that eah node in the B+-tree ontains at least `nodes of the bintree is not restritive in appliative ases: for example, for m = 16 and k = 64, itsuÆes to �x the page size of the B+-tree to 256 bytes.Let �i 2 f0; 1g, i � ` be the i-th bit of �(x) and let �r be the rightmost 1 of �(x). We antherefore write �(x) = �1 : : : �r�r+1 : : : �t, with �r+1 = : : : = �t = 0. To retrieve x, we will searhin the B+-tree for the key kx = �1 : : : : : : �r�r+1 : : : �`, with �r+1 = : : : = �` = 0. Let ka be the keyin the B+-tree reahed by searhing kx, and let P1; P2 be the two pages separated by ka. Withoutloss of generality, let us assume that ka � kx. We will show that x must be either in P1 or in P2.Notie that ka represents a separator, i.e., a node in the assoiated bintree, say a, having a path�(a) from the root. Of ourse, �(a) � ka. Two ases are possible: ka < kx or ka = kx.The former ase is trivial. In fat, if ka < kx, then in a preorder visit, a preedes x (we writeit as a � x), from whih it follows that x must be in P2.Let us now analyze the latter ase, i.e., ka = kx. Remember that �(a) is the path to the �rstnode stored in P2. To establish the thesis, we have to prove that x annot be stored in any pagepreeding P1. We start by noting that kx does not only represent the sequene �(x), but also allthe sequenes of the following set:S = f� 2 f0; 1gsj� = �1 : : : �r�r+1 : : : �s; �r = 1; �r+1 = : : : = �s = 0; r � s � `g:Notie that jSj = `� r � ` and that �(a); �(x) 2 S. If x is stored in a page preeding P1, thenfor any node y stored in P1, it will be x � y � a, from whih it follows that �(y) 2 S. This means,all the nodes in P1 have a path belonging to S. But this is a ontradition, sine P1 ontains atleast ` nodes and jS n fxgj � `� 1. 2The above result guarantees that the only ritial ase to be managed is when the key returnedfrom the searhing in the B+-tree equals the key we are looking for. In this ase, we will load inmain memory both the pages pointed by suh a key, thus performing an extra aess on seondarymemory. This senario is quite unlikely to happen, and therefore we onlude that our approahworks well for all pratial purposes.We �nally remark that we hoose in our design of the S�-tree to eliminate the linear pre�x fromthe pages, sine it an easily be reomputed from the separators in the B+-tree. This will add asmall overhead in terms of CPU time, but, on the other hand, will redue the spae oupany



40 Enrio Nardelli and Guido Proiettilinear tree bitstring pointer pointertree olour length nextfree spae olour tableFig. 4: Layout of a page of the S�-tree.
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Fig. 5: The B+-tree storing the S�-tree assoiated with the image in Figure 1.and simplify the standard B+-tree merging operation: In fat, when two pages of the B+-tree aremerged together as a onsequene of an underow, the separator in the B+-tree must be hanged,and so for the linear pre�x inside the page. This an produe a time expensive shifting of all thebits inside the page. Eliminating the linear pre�x will eliminate this problem. The atual layoutof a page of the S�-tree is given in Figure 4. Note that the free spae will be at most k bits (i.e.,the length of a features string). Notie that the spae oupied by the �eld dummy ount in theS+-tree has been replaed by the �eld length, whih stores the length of the separator assoiatedwith the page.Figure 5 provides the S�-tree representing the image in Figure 1, by maintaining the samenotation as for the trivial extension of the S+-tree of Figure 3. It is worth noting that the seondpage is now ompletely �lled, thanks to the fat that an internal node an be the last stored one (i.e.,the internal node orresponding to the path `00111'). This allows us (along with the removal of thelinear pre�x) to store the image by using only 3 pages, instead of the 4 pages previously needed.Notie that the two separators of the resulting three pages are 00001 and 001110, respetively.Thus, the seond separator will be ambiguous, sine its last digit is a 0. For example, looking forthe node 00111 will retrieve the key 001110 from the B+-tree. As proved above, in this ase wewill visit not only the page following the retrieved key; instead, we will preliminarily visit the pagepreeding the key: we ompute the linear pre�x by using the key 000010 and the length 5 storedin the page (thus the separator will be 00001 and the linear pre�x will be 000001, sine we odifya `0' with a `0' and a `1' with a `01'). Using the linear pre�x, we are then able to retrieve the node00111 as the last one of the seond page (see [3℄ for details on this latter operation).4. EXPERIMENTAL RESULTSIn this setion we present detailed experiments omparing the S�-tree with the hybrid linearquadtree (shortly, HL-quadtree), whih has been shown to be very eÆient with respet to other
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Fig. 6: A sample 512�512 meteorologial image (North Ameria) ontaining 64 features.linear quadtree based representations of oloured images [8℄.We reall that the main idea of the HL-quadtree is to represent both non-leaf and leaf nodesof the quadtree (like in the DF-expression), by oding them using a loational key (like in thelinear quadtree). The result is a linear list ontaining all the nodes in the quadtree, whih is thenindexed through a B+-tree. As for the S�-tree, in the HL-quadtree we distinguish between reordsassoiated with non-leaf and leaf nodes. This is beause a non-leaf node an ontain more thanone feature, and then it needs to store several features indexes. Then, we assoiate with suh areord, along with the loational key de�ned as in the ase of the linear quadtree, a features stringof size k. Conerning reords assoiated with leaf nodes, they have the same struture as for thelinear quadtree, onsisting of the two �elds loational key and feature value. Finally, to distinguishbetween reords assoiated with non-leaf and with leaf nodes, an additional bit�eld alled leaf bitis provided, whose value is 1 if and only if the assoiated node is a leaf.We exeuted the window queries on a set of images ontaining multiple non-overlapping features,ranging from satellite views to landuse maps. More spei�ally we experimented with 3 groupsof data. The �rst group of images, of size 256�256, was downloaded from the GRASS site, apubli domain geographial information systemy, while the seond and third group of images, ofsize 512�512 and 1024�1024, respetively, were meteorologial satellite views of European, Asianand North Amerian regions. Spei�ally, the seond group was from the Meteosat Imagery sitez,while the third was from the weather foreasts setion of the CNN sitex. Figure 6 shows a sampleimage.Both the strutures were implemented in C++ programming language under Windows NT, andthe experiments run on a Pentium II workstation.4.1. Window QueriesWe onsidered the following window queries, of primary importane for multiple non-overlappingfeatures [7℄:� exist(w; fi1 ; fi2 ; : : : ; fih): hek whether or not at least one of the features fi1 ; fi2 ; : : : ; fih ,1 � ij � k; j = 1; : : : ; h, exists inside the window w.� report(w): report all the features that are found inside the window w.� selet(w; fi1 ; fi2 ; : : : ; fih): selet all homogeneous bloks inside the window w ontaining thefeatures fi1 ; fi2 ; : : : ; fih ; 1 � ij � k; j = 1; : : : ; h.yAvailable at http://moon.eer.army.mil.zAvailable at http://www.nottingham.a.uk/�zsteve/graphif.shtml.xAvailable at http://nn.om/WEATHER/images.html.



42 Enrio Nardelli and Guido ProiettiThe basi approah for answering the queries is that of deomposing the window query intoa sequene of smaller queries, where eah smaller query omprises a maximal blok of the imagespae inside the window [2℄. Without loss of generality, let us assume that the window w is asquare of side n. We solve the query by initially deomposing in optimal time the window intoits onstituting maximal bloks [9℄, with respet to both a bintree and a quadtree deompositionproess, and we assoiate with eah maximal blok x its respetive node path �(x) and loationalkey �(x), for the bintree and the quadtree deomposition, respetively. The list of node paths(loational keys) thus obtained is then used for searhing in the S�-tree (HL-quadtree) to solvethe queries. In the following, it is explained how these queries proeed aording to the proposedmethods.Exist Query:Consider a query over a spei�ed window, where a searh for existene of features fi1 ; fi2 ; : : : ; fihhas to be performed. For eah maximal blok x in w, orresponding to a node path �(x) (loationalkey �(x)) in the representing S�-tree (HL-quadtree), searhing starts from the root of the assoiatedB+-trees, and stops only when the leaf level is reahed.Conerning the HL-quadtree, it is ertain that either x or a homogeneous anestor of it will beloated, sine all quadrants are stored. Hene, we an proess the maximal blok by simply lookingto the ontent of the orresponding feature �eld, with at most an additional aess on the previouspage to loate the anestor, if needed. Regarding the S�-tree, the situation is similar. In this ase,reahing the leaf level means that we reahed one of the S�-tree pages, namely we reahed part ofthe orresponding bintree. Three situations might arise for the searhed maximal blok:1. it is a leaf in the orresponding bintree, and therefore we an immediately �nd its olourfrom the olour table;2. it is ontained in a leaf, and therefore we an �nd its olour by looking to its anestor, withat most an additional aess on the previous page;3. it is an internal (i.e., non-homogeneous) node, and therefore we an immediately �nd all theontained features from the olour table.Notie that in both the ases, the query ends either as soon as one of the queried features isfound in w, in whih ase the answer is positive, or when all the maximal bloks in w have beenexamined and none of the queried features appeared, in whih ase the answer is negative. Sinethe number of maximal bloks inside w is O(n) [4℄, it follows that by applying the above proedures,the exist query an be answered, both for the S�-tree and the HL-quadtree, in O(n logr T ) I/Otime, where r is the order of the B+-tree [8℄.Report Query:In a report query, the user asks for all the features omprised by the queried window. Thequery is answered similarly to the exist query in both the methods, but now the query ends onlyafter all the maximal bloks in w have been examined, and the answer is a (possibly empty) setof features. Therefore, the report query an be answered in O(n logr T ) I/O time as well [8℄, bothfor the S�-tree and the HL-quadtree.Selet Query:The last window query is the selet query, where the user asks for the bloks of the map insidethe queried window whih are homogeneous with respet to the queried features. As in the ase ofthe exist query, for eah maximal blok, searhing starts by examining the entries at the B+-treeroot, and proeeds similarly in the S�-tree and in the HL-quadtree. One the leaf level is reahed,we searh for the urrent maximal blok. As desribed for the exist query, if this searhing isnot suessful, then we try to see if a homogeneous anestor exists in the B+-tree (in suh a asewe output the searhed maximal blok if the anestor is homogeneous with respet to one of thequeried features). On the ontrary, if the searh is suessful, two ases are possible:



An eÆient spatial aess method for spatial images ontaining multiple non-overlapping features 431. the maximal blok is a leaf: in this ase, if it is homogeneous with respet to one of thequeried features, we return it;2. the maximal blok is an internal node: in this ase we look to all its desendants, returningthose that are homogeneous with respet to one of the queried features.Notie that the query ends only after all the maximal bloks in w have been examined. It an beshown that by applying the above proedure, the selet query an be answered in O(n logr T+n2=r)I/O time [8℄, both for the S�-tree and the HL-quadtree.4.2. Spae oupanyIn the �rst set of experiments we measured the spae usage that was involved in the twomethods. More preisely, for eah lass of images (i.e., for eah image size), we averaged thenumber of pages used. Figure 7 shows the results. From the drawing, it emerges that the S�-treeuses about 1/4 of the spae used by the HL-quadtree. Therefore, the improving is substantial.This will positively inuene time performanes for solving the queries, as we shall see in the nextsetion.
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Fig. 7: Spae oupany omparison between the two methods.4.3. Time performanesTo analyze the time performanes of the HL-quadtree and the S�-tree, we used the lassialmeasure of I/O omplexity, that is, the number of disk aesses on seondary memory. The CPUtime is indeed negligible with respet to the time spent in retrieving a page on seondary memory.In the following, we make the standard assumption that eah seondary memory aess transmitsone page of data (a buket), and we ount this as one operation. The window queries were performedon images of size 256�256, 512�512 and 1024�1024, ontaining 8, 16 and 64 features. The querywindows sides were 1, 5, 10 and 25% of the image width. We randomly generated the anhor ofthe query windows, \wrapping around" the image spae whenever a window extended beyond theborders of the image. The page size used was 1K for smaller images and 2K for larger ones, leadingto a fanout of 84 and 169 entries, respetively. For eah image, 50 queries were performed for thefour di�erent window sizes and the results were averaged. To eliminate the repeated traversal ofB+-tree nodes, we kept in main memory the root of the B+-tree and we made use of bu�eringtehniques. Due to spae limitations, we only show the results for the 1024�1024 images ontaining64 features, sine the results are similar for all ases.The seletion of the queried features for the exist and the selet query was based on theirfrequenies. Suppose that h features are to be seleted out of k ones. First, we sort the featuresaording to dereasing frequeny and, then, we selet the �rst, the � kh�-th, the � 2kh �-th, : : :, andthe j (h�1)kh k-th feature. For instane, if h=4 and k=64, then we selet the �rst, the 16th, the32nd and the 48th feature.
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Fig. 8: Exist query where 2 features were queried, image size 1024�1024, 64 features: (left) averaged results, (right)normalized results.
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Fig. 9: Exist query where 5 features were queried, image size 1024�1024, 64 features: (left) averaged results, (right)normalized results.4.3.1. Exist QueryIn the experiments performed, we searhed for the existene of a varying number of features.More spei�ally, we initially queried for 2, 5 and 10 features, and results an be seen in Figures8, 9 and 10. The left side of eah �gure provides the obtained values, while the right side depitsthe normalized results with respet to the worst method. From these �gures it is easy to realizethat the S�-tree outperforms the HL-quadtree, showing almost a onstant behavior independentof the number of features searhed, while on the ontrary the HL-quadtree degrades as soon asthis number dereases. Our interpretation of these results is that the S�-tree, apart from possiblyreating a shallower B+-tree, also takes advantage from the bu�ering tehniques we have used,sine eah page ontains muh more bloks than a page of the HL-quadtree, and then it an beused several times during the query proessing, without additional aesses on seondary memory.Notie that, despite of the worst ase theoretial analysis, both methods do not su�er of the windowenlargement, sine the response to the query is generally positive, and the searhed features arefound rapidly in the window.Afterwards, we experimented by �xing the window side (i.e., 100), while inreasing the numberof queried features. The results depited in Figure 11 show that in this ase the methods exhibitroughly the same performanes, and both of them tend to answer the query in a single desent ofthe B+-tree, as soon as the number of queried features inreases.
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Fig. 10: Exist query where 10 features were queried, image size 1024�1024, 64 features: (left) averaged results,(right) normalized results.
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Fig. 11: Exist query for a varying number of queried features, image size 1024�1024, 64 features, query window100�100: (left) averaged results, (right) normalized results.
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Fig. 12: Report query on images of 1024�1024 size ontaining 64 features: (left) averaged results, (right) normalizedaveraged results.
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Fig. 13: Selet query where 2 features were queried, image size 1024�1024, 64 features: (left) averaged results,(right) normalized results.4.3.2. Report QueryConerning the report query, results an be seen in Figure 12, where the left side reports in alog-linear diagram the obtained disk aesses for the two methods, while the right side ontainsresults after normalization. From this �gure it is easy to realize that the S�-tree outperforms theHL-quadtree. Notie that for both methods, the number of aesses is proportional to the windowside, as expeted from the theoretial analysis, but one again the S�-tree takes advantage of itsspae ompatness.4.3.3. Selet QueryRegarding the selet query, in the �rst set of experiments, as for the exist query, we queriedwith 2, 5 and 10 features. This time, however, the number of aesses almost does not hangewhen the number of features inreases: in fat, sine all the bloks homogeneous with respet to thequeried features must be returned, it follows that the overall number of aesses will be dominatedby the number of aesses performed for seleting with respet to the most frequent feature. Thisphenomena an be observed in Figures 13, 14 and 15. Again, on the right side of the graphs thenormalized results with respet to the worst method are depited. Notie that one again, theS�-tree shows onstantly the best behavior.Finally, we experimented by �xing the window side (i.e., 100), while inreasing the numberof queried features. Notie that the number of aesses does not hange when the number of
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Fig. 14: Selet query where 5 features were queried, image size 1024�1024, 64 features: (left) averaged results,(right) normalized results.
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Fig. 15: Selet query where 10 features were queried, image size 1024�1024, 64 features: (left) averaged results,(right) normalized results.
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