
Information Sciences 176 (2006) 1321–1337

www.elsevier.com/locate/ins
Efficient unbalanced merge–sort q

Enrico Nardelli a,b, Guido Proietti b,c,*

a Dipartimento di Matematica, Università di Roma ‘‘Tor Vergata’’,

Via della Ricerca Scientifica, 00133 Roma, Italy
b Istituto di Analisi dei Sistemi ed Informatica ‘‘A. Ruberti’’,

CNR, Viale Manzoni 30, 00185 Roma, Italy
c Dipartimento di Informatica, Università dell’Aquila, Via Vetoio, 67010 L’Aquila, Italy

Received 22 April 2004; received in revised form 24 November 2004; accepted 29 April 2005
Abstract

Sorting algorithms based on successive merging of ordered subsequences are widely

used, due to their efficiency and to their intrinsically parallelizable structure. Among

them, the merge–sort algorithm emerges indisputably as the most prominent method.

In this paper we present a variant of merge–sort that proceeds through arbitrary merges

between pairs of quasi-ordered subsequences, no matter which their size may be. We

provide a detailed analysis, showing that a set of n elements can be sorted by performing

at most nblog nc key comparisons. Our method has the same optimal asymptotic time

and space complexity as compared to previous known unbalanced merge–sort algo-

rithms, but experimental results show that it behaves significantly better in practice.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Design of algorithms; Sorting; Experimental analysis; Data structures
0020-0255/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2005.04.008

q This work was partially supported by the Research Project GRID.IT, funded by the Italian

Ministry of Education, University and Research.
* Corresponding author. Address: Dipartimento di Informatica, Università dell�Aquila, Via

Vetoio, 67010 L�Aquila, Italy. Tel.: +39 0862 433727; fax: +39 0862 433057.

E-mail addresses: nardelli@mat.uniroma2.it (E. Nardelli), proietti@di.univaq.it (G. Proietti).

mailto:nardelli@mat.uniroma2.it
mailto:proietti@di.univaq.it


1322 E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337
1. Introduction

Let U be a totally ordered universe. Let S ¼ k1; k2; . . . ; knf g be a set of n ele-

ments belonging to U, with ki 6¼ kj for i 6¼ j. Sorting S in increasing order asks

for finding the unique permutation 1; 2; . . . ; nf g ! i1; i2; . . . ; inf g such that

ki1 < ki2 < � � � < kin .

Arguing about the importance of sorting is somehow redundant, and the
interested reader is therefore referred to [6] for a deeper insight on the topic.

We here just recall that as far as internal sorting is concerned (i.e., where sorting

takes place totally in main memory), which is of interest for this paper, the cur-

rently fastest deterministic and randomized sorting algorithms run on a word

RAM in Oðn log log nÞ time [4] and Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ expected time [5], respec-

tively, whereas for a state-of-the-art on external sorting we refer the reader

to [8].

Among others, the merge–sort is a sorting algorithm of primary importance,
that goes back to the early history of modern computer science. Merge–sort is

based on the divide-and-conquer approach: break the original sequence to be

sorted into two subsequences of equal size, merge–sort them recursively, and

then combine the subsolutions to eventually return the entire sorted sequence.

The first merit of merge–sort is clearly its efficiency, since it is well known that

its running time is Oðn log nÞ, which is optimal on a classic comparison-based

model. Then, it comes its theoretical cleanliness, which allows a natural and

straightforward implementation both for linked lists and for arrays. Finally,
its structure makes it suitable to parallel implementation.

Merge–sort has its weak points as well, however. First of all, both in the iter-

ative and the recursive implementation, an O(n) additional space is required,

i.e., the method is not in-place. Moreover, its practical performances are sur-

passed by other sorting algorithms, whose asymptotic analysis might even be

suboptimal (e.g., quick-sort, radix-sort, etc.). Finally, the dividing step requires

to be balanced, and therefore the intermediate sorted subsequences are ob-

tained as follows: singletons are combined in pairs, then pairs are combined
in quadruples, and so on. Merging in an arbitrary order, until only one sorted

set remains, is therefore impossible. Actually, this is a severe drawback, since it

forbids an unbalanced parallelization of the algorithm, which might be re-

quested, for instance, when input data are scattered among several machines,

or when processors having different power are at disposal. In this paper, we ex-

actly address the problem of developing an efficient algorithm implementing

such unbalanced merge–sort. More precisely, we will present a sorting algo-

rithm which proceeds through arbitrary merges among subsequences, with
the relaxation that intermediate subsequence are not totally ordered (although

they can be sorted in time proportional to their size). This can be done by

maintaining intermediate sets—of arbitrary size—using binomial search trees



E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337 1323
(BS-trees, for short) [7]. BS-trees enjoy the property of being quasi-ordered (i.e.,

a BS-tree can be sorted in time proportional to its size). Therefore, differently

from other possible approaches which might use partially ordered data struc-

tures, like those belonging to the huge heap family, BS-trees guarantee the pos-

sibility to retrieve the final sorted sequence through successive merging of

quasi-ordered subsequences of unrelated size, with the additional potentiality
that each subsequence can be sorted in fast linear time, whenever this is needed.

Moreover, as we will show, BS-trees are simple and easy-to-implement, and

their real performances are close to their expected asymptotic behavior, and

this represents a significant benefit in practice.

The initial step towards the implementation of an unbalanced merge–sort

algorithm was performed by Brown and Tarjan [2]. More specifically, in [2]

the authors developed a fast merging algorithm, that is an algorithm which,

given two sorted lists P and Q, with jP j 6 jQj, returns a list containing the
elements of P and Q in sorted linear order. The authors showed that by storing

the elements by using AVL-trees [1] and by exploiting some ordering properties

which are implicit in the structure of AVL-trees, it is possible to implement the

merging on a pointer machine in O jP j log jQjjP j

� �
time, which is optimal [2]. In

this way, an Oðn log nÞ time unbalanced merge–sort algorithm can be obtained

starting from n singletons and proceeding through n� 1 merging in any arbi-

trary order.

Although this method is asymptotically optimal, unfortunately it has two

drawbacks in real-life applications: first, it makes use of OðjP j þ jQjÞ additional

space at each merging; second, it has quite big cost factors not visible in the
asymptotic measure. This is essentially due to the fact that since AVL-trees

are used, one needs to maintain at each merging step totally ordered sets,

although this is not strictly necessary. Hence, relaxing the total order property

of the intermediate sets could result in an easier and cheaper sorting method. In

fact, the quasi-ordered structure of BS-trees allows to overcome these draw-

backs arising with AVL-trees. Notice that this peculiar feature of the BS-trees

have already been used in the past to solve efficiently a variant of the classic set-

union problem, named set-union and intersection problem [3], in which unions
are performed on two identical collections of elements, and an intersection

operation among sets from the two collections is additionally managed.

In this paper, we will show that by using BS-trees for maintaining sets, we

can execute unbalanced merge–sort optimally in an asymptotic time sense,

and better than the method presented in [2] in practice. Besides that, our data

structure is simple to implement and, as we will show, the maximum number

of key comparisons is kept equal to that of the classic merge–sort, since, as

for the traditional method, it is maintained the invariant that exactly 2i sorted
sequences of size n=2i; i ¼ 1; . . . ; blog nc, are merged. Thus, as shown by our

experiments, when the sorting has to be performed on a multiprocessor system



1324 E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337
with a non-uniform distribution of the workload among the processors,

through BS-sorting we can still maintain at minimum the total number of com-

parisons, while for the classic merge–sort, the larger the unbalancedness of the

workloads, the higher the additional number of comparisons which are needed

at the final stage to merge the sorted subsequences.

The paper is organized as follows: in Section 2 we recall the basic properties
of BS-trees. Section 3 contains a detailed worst and average case analysis of the

core operation, that is the merging of two BS-trees, while Section 4 is devoted

to the analysis of the unbalanced merge–sort algorithm. In Section 5, experi-

mental results showing the effectiveness of our method are given, while finally,

Section 6 presents conclusions and possible future developments.

2. The BS-tree data structure

We start by giving the definition of BS-trees. In the following, we assume

that with each node of a BS-tree, a unique key from a totally ordered universe

U is associated.

Definition 2.1. For any h P 0, we define the class of BS-trees of height h, say

Qh, as follows:

(a) if h ¼ 0, then any Q 2 Q0 consists of a single node;

(b) if h > 0, then any Q 2 Qh consists of: (i) a particular node, called the root;

(ii) a left subtree of the root, consisting of a complete binary search tree of

height h� 1, whose element keys are smaller than the root key; (iii) a

right subtree of the root, that either is empty or consists of a BS-tree

of height k < h, whose set of element keys has no ordering relation with

the root key.

Let jQj indicate the number of nodes of a BS-tree Q. The following can be

proved:

Proposition 2.1. Let Q 2 Qh. Then, for any h P 0; 2h
6 jQj 6 2hþ1 � 1.
Proof. By induction on h. If h = 0, then by definition jQj ¼ 1 and the proposi-

tion is true. Suppose the proposition is true for each 1 6 h 6 k � 1, and let

Q 2 Qk. Then, we have to prove that 2k
6 jQj 6 2kþ1 � 1. But the smallest

allowed BS-tree in Qk, by definition, is made up by a root and a complete binary

left subtree of height k � 1, and then jQjP 1þ ð2k � 1Þ ¼ 2k. On the other

hand, again by definition, the greatest allowed BS-tree inQk is made up by a root,

a complete binary left subtree of height k � 1 and the greatest allowed BS-tree in

Qk�1. Then, from the inductive hypothesis, jQj 6 2k þ 2k � 1 ¼ 2kþ1 � 1. h



Qo

Q
1

or

Q
2

oror or

Q
h

Bh-1

Bh 2 Bh 3

Fig. 1. Some examples of BS-trees.

E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337 1325
Proposition 2.2. Let Q 2 Qh. Then, for any h P 0, the height of Q is Oðlog jQjÞ.
Proof. It immediately follows from Proposition 2.1 and from the fact that the

height of Q 2 Qh is exactly h by definition. h

We define the border of a BS-tree Q as the sequence of nodes on the right-

most path of Q. From Definition 2.1, it is easy to see that if x precedes y on the

border, then the height of the left subtree of x is larger than the height of the

left subtree of y. In the following, a border node and its left subtree (if any) of

height k will be called a ðk þ 1Þ-component of the BS-tree (by extension, a bor-
der node having an empty left subtree will be named a 0-component). Notice

that a k-component contains exactly 2k nodes. Fig. 1 shows some examples

of small BS-trees and the general shape of the data structure (triangles repre-

sent complete binary trees).

As for binomial heaps [9], there is a direct relation between the components

appearing in a BS-tree storing a set of elements A, and the binary representa-

tion of the size of A. More precisely, if jAj ¼
P

iP0bi2
i,with bi 2 f0; 1g then we

have that the ith component of the BS-tree exists if and only if bi = 1. Fig. 2
depicts a sample BS-tree for a set A of 13 elements. A detailed description of

how a BS-tree is built will be presented in the next section.
3. Merging two BS-trees

In this section we provide a detailed analysis of the merging operation

between two BS-trees. This is indeed the fundamental step of the sorting
algorithm. As usual, in the following we assume to obtain in constant time

the reference to the BS-trees to be merged.



121

625

157

13

18

98813821

9236

75

Fig. 2. An example of BS-tree of height 3, storing the set A ¼ f21; 36; 38; 75; 81; 92; 98; 121; 7;

13; 15; 18; 625g; since jAj ¼ ð13Þ10 ¼ ð1101Þ2, to represent A it is needed a BS-tree in Q3, made up of

a 3-, a 2- and a 0-component.

1326 E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337
3.1. Worst case analysis

Let P and Q be two BS-trees of height p and q, respectively. Suppose a

merge(P,Q) operation is required, which asks for returning a single BS-tree

containing all the elements in P and Q. Firstly, p and q are compared: if

p P q, then Q is linked to P, otherwise P is linked to Q. We now describe in

detail what it is the meaning of linking two BS-trees.

First, consider the special case in which jP j ¼ jQj ¼ 2k, that is, both BS-trees

consist of a single k-component. In this case, the resulting BS-tree consists of a

single ðk þ 1Þ-component, built up through a standard linear merging of P and
Q. We refer to this operation as a coupling [9] of order k, or, more simply, a k-cou-

pling. In Fig. 3, an example of a 2-coupling, (i.e., with jP j ¼ jQj ¼ 4) is provided.

It turns out the following:

Lemma 3.1. Two BS-trees, each of which consists of a single k-component can

be coupled in Oð2kþ1Þ time, by performing in the worst and in the average case

2kþ1 � 1 and 22kþ1

2kþ1 key comparisons, respectively.
=

429

121

11311

100

34551

90

+

P Q121

11311

100

34551

90

429

= +

12111311 100

34551 90 429

Fig. 3. Performing a coupling on two BS-tree of 4 elements.



E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337 1327
Proof. We initially dismantle the two BS-tree, by means of a preorder visit. We

thus obtain two lists of 2k elements sorted in increasing order. Then we merge

them with the classical linear merging, which requires 2kþ1 � 1 key comparisons

in the worst case. As far as the average case is concerned, it is easily seen that

the total number of comparisons needed to create the ordered list is 2kþ1 � r,

where r is the number of elements remaining in the non-empty list after all the
elements of the other list have been exhausted. For the general case in which

the two lists to be merged have length n and m, respectively, Knuth [6] have

derived r ¼ n=ðmþ 1Þ þ m=ðnþ 1Þ, which, for our special case n ¼ m ¼ 2k

returns an average number of comparisons of

2kþ1 � 2kþ1

2k þ 1
¼ 22kþ1

2k þ 1
.

Afterwards, we rebuild the BS-tree of height k + 1, consisting of a single

(k + 1)-component. Trivially, all these operations can be performed in

O(2k + 1) time. h

For treating the general case where jP j and jQj are arbitrary values, it is

convenient to use an analogy with the ordinary scheme for the binary addi-

tion of jP j and jQj. W.l.o.g., suppose that P and Q have height p and q,

respectively, with p 6 q. The merging proceeds from lower order compo-

nents of the BS-trees to higher order components. At the ith step of the

algorithm (corresponding to a merging of i-components), there are three
operands into play: two of the operands are the i-components of P and

Q, respectively, while the third operand is a carry, namely a (possibly empty)

i-component which can be generated by a merging of ði� 1Þ-components, in

a way similar to the classic binary addition, as explained in more detail in

the following.

At the beginning (i.e., for i = 0), the carry is empty, and we start by merging

the two 0-components of P and Q. If both the components are empty, an

empty 0-component for the result is generated, and an empty carry is propa-
gated at the next stage. If exactly one 0-component is nonempty, it constitutes

the 0-component of the result, and the carry is empty. Finally, if both the two

0-components are nonempty, they are coupled according to the procedure

described earlier, in order to constitute the carry at the next stage, while the

0-component of the result is empty.

At the ith step of the algorithm, the following cases are possible: (i) If all three

operands are empty, the i-component of the resulting BS-tree is empty, as it is

the carry propagated to the next step; (ii) If exactly one operand is nonempty,
it constitutes the i-component of the result, and the carry is empty; (iii) If two

operands are nonempty, they are coupled according to the procedure

described earlier, in order to constitute the (i + 1)th carry; the i-component of

the result is empty; (iv) Finally, when all three operands are nonempty, one



1328 E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337
of them, for example the one belonging to Q, will constitute the i-component of

the resulting BS-tree, and the remaining two operands are coupled in order to

form the (i + 1)th carry.

The procedure stops when P has been exhausted and no carry is propagated

any further. In Fig. 4, the algorithm is presented in the case jP j ¼ 5 and

jQj ¼ 7.

Theorem 3.1. Given two BS-trees P and Q of height p and q, respectively, with

p 6 q, let t be the order of the last coupling happening during the merging of P

and Q. Then, it is possible to execute a merge(P,Q) operation with at most

2tþ2 � t � 3 key comparisons and in Oðp þ 2tþ2Þ time in the worst case.
Proof. Remember that we perform a merge(P,Q) operation by firstly taking

into account the size of the involved sets, and then by stopping the procedure

as soon as P has been exhausted and no carry is propagated any further. From

this, it follows that the border of P must be entirely scanned, thus spending
O(p) time. To such a cost, we have to add the time spent in performing the cou-

plings. Since the last coupling has order t, it follows that we have to perform

OðtÞ couplings (of increasing size) of the involved components of the two

BS-trees. From Lemma 3.1, a coupling between two i-components requires

at most 2iþ1 � 1 key comparisons and Oð2iþ1Þ running time, and therefore

we have that mergeðP ;QÞ requires at most

Xt

i¼0

ð2iþ1 � 1Þ ¼ 2tþ2 � t � 3
+
87

8 583

93

57

22
=

8921

30

91

77

87

8

3

9358

57

22

89

21

30

91

77

77

φ φ

Carry φ58

φ21308991

58887

77

91 89 87

58 8

77

30 21
=

P Q

P

Q

merge(P,Q) 93 32257

87 58 877

91 89 87

58 8

77

30 21

93 32257

Fig. 4. Performing a mergeðP ;QÞ operation.



E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337 1329
key comparisons, and in the worst case has a time complexity

O p þ
Xt

i¼0

ð2iþ1Þ
 !

¼ Oðp þ 2tþ2Þ. �
3.2. Average case analysis

Theorem 3.1 shows that, in the worst case, merging two BS-trees can be

expensive, since t can be as large as q, and therefore the operation can cost

as much as the size of Q. However, as we show in this section, the expected cost
of a merging operation is optimal. Let EmergeðkÞ; k P 0 integer, denote the

probability a merge(P,Q) operation is executed in Hðp þ 2kþ1Þ time in the

worst case. We start by proving the following:

Theorem 3.2. Given two BS-trees P and Q of height p and q, respectively with

p 6 q, we have that

EmergeðkÞ ¼

1
2
� 3

4

� �p
k ¼ 0

1
8
� 3

4

� �p�k�1 � 2k�1

2kþ1 1 6 k 6 p � 1

0 k ¼ p
1
2
� 2pþ1þ2p�1

2kþ1 p þ 1 6 k 6 q� 1

0 k ¼ q
2pþ1þ2p�1

2qþ1 k ¼ qþ 1

0 k > qþ 1.

8>>>>>>>>>>>><
>>>>>>>>>>>>:
Proof. Let EcarryðkÞ denote the probability the leftmost non-empty carry hap-

pens in position k; 1 6 k 6 qþ 1. We extend the notation to the case k = 0,
to denote the fact that no carry is propagated and no coupling happens. Since

when the leftmost non-empty carry appears in position k, then the last coupling

takes place between two (k � 1)-components, from Theorem 3.1 it follows that

EcarryðkÞ ¼ EmergeðkÞ. We therefore focus our attention on EcarryðkÞ.
Looking at the merging as to the binary addition, we have to find the

probabilities that the leftmost 1 of the carry either does not appear or it

appears in position k, with k P 1. We can represent the merging with the

following schema, where the binary representations of jQj and jP j are shown,
along with the carry bits from r0 to rqþ1:

carry : rqþ1 rq rq�1 . . . rpþ1 rp rp�1 . . . r1 0

jQj : 0 1 aq�1 . . . apþ1 ap ap�1 . . . a1 a0

jP j : 0 0 0 . . . 0 1 bp�1 . . . b1 b0

The proof is by cases on k.



1330 E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337
k ¼ 0: To have no carry, that is

ri ¼ 0; 1 6 i 6 qþ 1;

it must be

1. ai þ bi < 2 for i ¼ 0; 1; . . . ; p � 1, so that r1 ¼ r2 ¼ � � � ¼ rp ¼ 0; this hap-

pens with probability ð3
4
Þp;

2. rpþ1 ¼ 0, since this necessarily implies that rpþ2 ¼ rpþ3 ¼ � � � ¼ rqþ1 ¼ 0; this

happens if and only if ap ¼ 0, that is with probability 1/2.

From this it follows that

Ecarryð0Þ ¼
1

2
� 3

4

� �p

.

1 6 k 6 p� 1: To have the leftmost 1 of the carry appearing in position k,

with 1 6 k 6 p � 1, the following has to happen:

ðri ¼ 0; k þ 1 6 i 6 qþ 1Þ ^ ðrk ¼ 1Þ
and then it must be:

1. ðak�1ak�2 . . . a0Þ þ ðbk�1bk�2 . . . b0Þ > 2k, so that rk ¼ 1; since

0 6 ðak�1ak�2 . . . a0Þ þ ðbk�1bk�2 . . . b0Þ 6 2kþ1 � 2;

we have that ð2kþ1 � 1Þ values of the sum are possible. Let xi ¼ i� 1 be

the ith feasible value, 1 6 i 6 2kþ1 � 1; it is easy to see that xi and

x2kþ1�i,1 6 i 6 2k, can both be produced in i different ways, while x2k can

be produced in 2k different ways; it follows that the probability that

xi > 2k is

P2k�1

i¼1 i

2
P2k�1

i¼1 iþ 2k
¼ 2k � 1

2kþ1
.

2. ak þ bk ¼ 0, so that rkþ1 ¼ 0, and this happens with probability 1/4;

3. ai þ bi < 2 for i ¼ k þ 1; . . . ; p � 1, so that rkþ2 ¼ � � � ¼ rp ¼ 0, and this hap-

pens with probability ð3
4
Þp�k�1

;

4. rpþ1 ¼ 0, and this happens if and only if ap ¼ 0, that is with probability 1/2.

From the above analysis, it follows that for 1 6 k 6 p � 1
EcarryðkÞ ¼
1

8
.

3

4

� �p�k�1

� 2
k�1

2kþ1
.



E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337 1331
k ¼ p: To have the leftmost 1 of the carry appearing in position p, the fol-

lowing has to happen:

ðri ¼ 0; p 6 i 6 qþ 1Þ ^ ðrp ¼ 1Þ;
but this is impossible, since being bp ¼ 1, from the fact that rp ¼ 1, it should

follow that rpþ1 ¼ 1. Then, EcarryðpÞ ¼ 0.

pþ 1 6 k 6 q� 1: To have the leftmost 1 of the carry appearing in position

k, with p þ 1 6 k 6 q� 1, the following has to happen:

ðri ¼ 0; k þ 1 6 i 6 qþ 1Þ ^ ðrk ¼ 1Þ

and then it must be:

1. ðak�1ak�2 . . . a0Þ þ ð1bp�1 . . . b0ÞP 2k, so that rk ¼ 1; since

2p
6 ðak�1ak�2 . . . a0Þ þ ð1bp�1 . . . b0Þ 6 ð2k � 1Þ þ ð2pþ1 � 1Þ;

we have that ð2k þ 2p � 1Þ values of the sum are possible. Let

xi ¼ 2p þ ði� 1Þ be the ith feasible value, i ¼ 1; . . . ; ð2k þ 2p � 1Þ; then xi

can be produced in i different ways, if 1 6 i 6 2p � 1, or in ð2k þ 2p � iÞ dif-

ferent ways, if 2k þ 1 6 i 6 2k þ 2p � 1, while in all the other cases it can be

produced in 2p different ways; after some calculations, it follows that the

probability that xi P 2k isP2p�1

i¼1 iþ 22p

2
P2p�1

i¼1 iþ 2pð2k � 2p þ 1Þ
¼ 2pþ1 þ 2p � 1

2kþ1
.

2. ak ¼ 0, so that rkþ1 ¼ 0, and this happens with probability 1/2. From this it
follows that for p þ 1 6 k 6 q� 1
EcarryðkÞ ¼
1

2
.
2pþ1 þ 2p � 1

2kþ1
.

k ¼ q: To have the leftmost 1 of the carry appearing in position q, the

following has to happen:

ðrqþ1 ¼ 0Þ ^ ðrq ¼ 1Þ;
but this is impossible, since being aq ¼ 1, from the fact that rq ¼ 1, it should

follow rqþ1 ¼ 1. Then, EcarryðqÞ ¼ 0.

k ¼ qþ 1: To have the leftmost 1 of the carry appearing in position qþ 1, it
must be

ð1aq�1 . . . a0Þ þ ð1bp�1 . . . b0ÞP 2qþ1



1332 E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337
and since

2p þ 2q
6 ð1aq�1 . . . a0Þ þ ð1bq�1 . . . b0Þ 6 ð2qþ1 � 1Þ þ ð2pþ1 � 1Þ;

we have that ð2q þ 2p � 1Þ values of the sum are possible. Let xi ¼ 2p þ ði� 1Þ
be the ith feasible value, i ¼ 1; . . . ; ð2q þ 2p � 1Þ; then xi can be produced in i

different ways, if 1 6 i 6 2p � 1, or in ð2q þ 2p � iÞ different ways if

2q þ 1 6 i 6 2q þ 2p � 1, while in all the other cases it can be produced in 2p

different ways; after some calculations, it follows that the probability that

xi P 2qþ1 is P2p�1

i¼1 iþ 22p

2
P2p�1

i¼1 iþ 2pð2q � 2p þ 1Þ
¼ 2pþ1 þ 2p � 1

2qþ1
.

k > qþ 1: Finally, the leftmost carry cannot appear after the ðqþ 1Þth
position, and therefore EcarryðkÞ ¼ 0 for k > qþ 1. h

From the above theorem it immediately descends the following result:

Corollary 3.1. Given two BS-trees P and Q, with jP j 6 jQj, the expected cost

T (merge(P,Q)) of their merging is O jP j log jQjjP j

� �
time.
Proof. Let p and q denote the height of P and Q, respectively. Then, we have

�T ðmergeðP ;QÞÞ ¼ O p þ
Xqþ1

k¼0

EmergeðkÞ � 2kþ1

 !

¼ O p þ 3

4

� �p

þ 1

4

Xp�1

k¼1

3

4

� �p�k�1

ð2k � 1Þ
 

þ
Xq�1

k¼pþ1

ð2pþ1 þ 2p � 1Þ þ 2ð2pþ1 þ 2p � 1Þ
!

¼ O p þ 3

4

� �p

þ 2p � 3

8

� �p

þ 2pþ1ðq� pÞ
� �

¼ O jP j log
jQj
jP j

� �
. �
4. The sorting algorithm

Let S ¼ fk1; k2; . . . ; kng be a set of n elements, belonging to a totally ordered

universe, with ki 6¼ kj for i 6¼ j. To sort S, we initially associate with each ki a



E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337 1333
BS-tree, say Qi. Then, the algorithm proceeds by extracting at each step an

arbitrary couple of BS-trees, which are then merged into a single BS-tree

(which replaces the merged ones). Thus, n� 1 merging operations are per-

formed (between BS-trees of unrelated sizes), until a single BS-tree Q remains.

Such BS-tree consists of a set of k components, whose size depends on the bin-

ary representation of n. More precisely, if n ¼ 2i1 þ 2i2 þ � � � þ 2ik , with
0 6 i1 < i2 < � � � < ik, then Q 2 Qk consists of the union of ij-components,

j ¼ 1; . . . ; k. The final step will therefore sort Q, by means of successive (sorted)

merges of the constituting components, starting from the smallest ones.

Next theorem provides the running time analysis for the above sketched BS-

sorting algorithm:

Theorem 4.1. A set S ¼ fk1; k2; . . . ; kng of n ¼ 2i1 þ 2i2 þ � � � þ 2ik distinct

elements, with 0 6 i1 < i2 < � � � < ik, can be sorted through BS-sorting in
Oðn log nÞ time, by performing at most 1� 2i1 þ

Pk
j¼12ijðk � jþ ijÞ key

comparisons.
Proof. Let Q be the BS-tree obtained as a consequence of the n� 1 successive
merging operations described above. We start by analyzing the number of key

comparisons required to build Q.

Let us focus our attention on any ij-component of Q. We now show that,

whichever the sequence of merging operations during the sorting may be, such

a component gave rise to a set of 2h couplings of ðij � h� 1Þ-components,

h ¼ 0; 1; . . . ij � 1. This can be easily proved by induction on h. Indeed, there

will be a single coupling of two ðij � 1Þ-components to produce the ij-

component constituting Q, and thus the claim is true for h ¼ 0. Suppose now
that there are exactly 2t couplings of ðij � t � 1Þ-components. Of course, each

of these components takes part in only one ðij � t � 1Þ-coupling. Moreover, it

is created as a consequence of a ðij � t � 2Þ-coupling. Thus, it follows that to

each ðij � t � 1Þ-coupling, correspond exactly 2 couplings of ðij � t � 2Þ-
components, and from this it follows that we have exactly 2tþ1 couplings of

ðij � t � 2Þ-components. Therefore, from Lemma 3.1, we have that the number

of key comparisons is at mostXij�1

h¼0

2h 2ij�h � 1
� �

¼
Xij�1

h¼0

2ij � 2h� �
¼ 2ij ij � 1

� �
þ 1.

Then, the number of key comparisons to build Q is at most

k þ
Xk

j¼1

2ijðij � 1Þ. ð1Þ

We now turn our attention to the number of key comparisons for the last phase

of the algorithm, that is the sorting of Q. Let Qij denote the ij-component of Q.



1334 E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337
As sketched above, we proceed in the following way: at the first step, we con-

sider the smallest two components, i.e., Qi1 and Qi2 . We visit them in-order, by

producing two sorted lists (of size 2i1 and 2i2 , respectively) which are then

melded through the standard sorted merging algorithm. This costs, in the worst

case, 2i1 þ 2i2 � 1 key comparisons. At the next step, the obtained sorted list is

then melded with Qi3 , and so on, up to the last merging, involving Qik , which
eventually returns the output sequence (i.e., the set S in sorted order).

From the above algorithm, it is therefore clear that the number of key

comparisons for the last phase of the BS-sorting is at most

Xk

h¼2

Xh

j¼1

ð2ij � 1Þ ¼
Xk

j¼1

½2ijðk � jþ 1Þ� � ð2i1 þ k � 1Þ. ð2Þ

Therefore, from (1) and (2), the total number of key comparisons of the BS-

sorting is at most

1� 2i1 þ
Xk

j¼1

2ijðk � jþ ijÞ. ð3Þ

It is easy to see that in the worst case, n ¼ 2m � 1, and the number of key

comparisons is at most nblog nc, while in the best case n ¼ 2m, and the number

of key comparisons is at most nðlog n� 1Þ þ 1. Therefore, the number of key

comparisons is bounded by nblog nc. Clearly, key comparison is the dominant

operation, from which it follows that the running time of the BS-sorting is

Oðn log nÞ. h
5. Experimental results

Our sorting algorithm has been implemented on a PC with a 500 MHz
Pentium III processor and 128 MB of RAM. To verify the efficiency of our

method, we have tested it into two different scenarios. In the former, we have

assumed a classic framework in which a single-processor machine is used, and

we have compared our method as opposed to the algorithm provided by Brown

and Tarjan [2]. In the latter, we have simulated a multiprocessor machine,

and we have compared our method as opposed to the classic merge–sort

algorithm.

5.1. Single-processor machine

In the first setting, the experiments have been conducted in the following

way: for n ¼ 10i; i ¼ 1; . . . ; 5, we randomly generated 100 input sequences,

and then we computed both the average number of comparisons and the



Table 1

Number of comparisons and running time for the algorithm by Brown and Tarjan (BT), as

opposed to our proposed one (NP)

Input size Number of comparisons CPU time

BT NP BT NP

10 10.96 26.05 0.0037 0.00001

102 444.25 564.03 0.0963 0.0001

103 9664.25 9726.52 1.5399 0.0011

104 161,304.7 123,685.6 21.098 0.032

105 3,179,202 1,566,551 399.256 0.3366

E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337 1335
average CPU time (in seconds) for the two approaches. Table 1 shows the re-

sults, which confirm the theoretical analysis. Indeed, as far as our approach is

concerned, the number of comparisons is dominated by the merging procedure,

which in its turn is performed through successive couplings. As shown in The-

orem 4.1, the total number of couplings is constant, once n is fixed, and more-

over, the expected number of comparisons at each coupling of k-components is

just at most 2 units less than in the worst case [6], where 2kþ1 � 1 comparisons

are required (see Lemma 3.1). Thus, in our approach the worst and the average
case tend to coincide, and both admit a unitary coefficient (in terms of number

of comparisons). Concerning the algorithm of Brown and Tarjan (BT algo-

rithm, for short), we observe that in this case the multiplicative factor tends

to 2, since at each merging of a pair of AVL-trees, it turns out that compari-

sons are performed twice, once when descending and the other one when climb-

ing up the resulting tree. Notice also that from the running time point of view,

our algorithm clearly outperforms the other one. This is partially explained

from the fact that the BT algorithm is implemented in a recursive fashion.
Moreover, apart from the comparisons which are needed to establish the rela-

tive order between elements, the BT algorithm also needs several additional

expensive operations to correctly manage the underlying AVL-trees.
5.2. Multiprocessor machine

In the second setting, we have adapted our method to perform the so-called

parallel internal sorting (PIS). In general, PIS works on multi-processors sys-
tems, and is composed of two phases: the local sort (which runs on subse-

quences spread among different, parallel processors sharing a common

memory), and the final merge, in which the sorted subsequences are collected,

and a central-possibly more powerful-processor proceeds to the final merging

(notice that the merging phase can be pipelined, through a hierarchy of proces-

sors, but we do not investigate this more complicated architecture). Following

the cost model suggested in the paper by Taniar and Rahayu [8], we assume



1336 E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337
that the workload of the various processors is modelled by a non-uniform dis-

tribution law, which characterizes the degree of data skewness. Our method is

compared to the classic merge–sort, under the assumption that (1) the merge–

sort runs the local sort in the classic, recursive way, while as far as the final

merge is concerned, this is executed through a sequence of linear merging be-

tween pairs of sorted subsequences chosen in a random way (this simulates the
asynchronicity of the parallel processors, which complete their job at an unpre-

dictable time); (2) the BS-sorting is executed through arbitrary BS-merging,

both during the local sort and the final merge.

Experiments have been executed for different numbers of multiprocessors.

More precisely, for an input sequence of size 2k � 2; k ¼ 10; . . . ; 19, we have

assumed to work on a machine with k � 1 processors, where the ith processor,

i ¼ 1; . . . ; k � 1, handled a subsequence of size 2i. Notice that these sizes have

been chosen to make the comparisons between the two methods as fair as pos-
sible: indeed, differently from our method, the classic merge–sort takes advan-

tage from the fact that the input size is a power of 2. For each considered

number of parallel processors, we randomly generated 100 input sequences,

and then we computed the average number of comparisons, along with the cor-

responding average and maximum percent saving. The results are summarized

in Table 2. By looking at the results, it emerges that our method is always more

competitive than traditional merge–sort. Moreover, the longer is the size of the

input sequence, the larger is the improvement. This depends on the fact that
during the final phase, the merge–sort algorithm proceeds by merging pairs

of sequences of possibly very different size, and since the average cost of each

merging is dominated by the length of the longest sequence, this eventually

generates a large number of comparisons. Hence, the more unbalanced are

the sequences to merge, the larger is the cost of the final phase. On the
Table 2

Number of comparisons for the merge–sort algorithm (MS), as opposed to our proposed one (NP),

along with the corresponding maximum and average percent saving

Input size Number of comparisons % Saving

MS NP Max (%) Avg (%)

210–2 11,420 9616 21.9 13.8

211–2 23,547 20,480 23.1 15.0

212–2 52,219 45,056 24.1 15.9

213–2 114,682 98,304 25.0 16.7

214–2 249,850 212,992 25.7 17.3

215–2 540,665 458,752 26.3 17.9

216–2 1,163,257 983,040 26.8 18.3

217–2 2,490,360 2,097,152 27.3 18.7

218–2 5,308,408 4,456,448 27.7 19.1

219–2 11,272,183 9,437,184 28.0 19.4



E. Nardelli, G. Proietti / Information Sciences 176 (2006) 1321–1337 1337
contrary, our method is basically not influenced by the size of the merged

sequences. Observe also that in the extreme case, our method can save up to

almost a 30% of comparisons.
6. Conclusions

In this paper we have proposed a new unbalanced merge–sort algorithm,

based on BS-trees, whose overall performance is in practice significantly better

than the currently best known sorting method of the same type.

Concerning future work, we plan to compare our algorithm with other sort-

ing algorithms. Moreover, we expect that several interesting applications other

than sorting can take advantage from using BS-trees (for example, dictionaries

in which a low number of searching and deleting operations are requested, or
heaps in which searching must be supported).
References

[1] G.M. Adel�son-Vel�skii, E.M. Landis, An algorithm for the organization of the information,

Dokl. Akad. Nauk. USSR 146 (1962) 263–266.

[2] M.R. Brown, R.E. Tarjan, A fast merging algorithm, J. ACM 26 (2) (1979) 211–226.

[3] C. Gaibisso, E. Nardelli, G. Proietti, Intersection reporting on two collections of disjoint sets,

Inform. Sci. 114 (1–4) (1999) 41–52.

[4] Y. Han, Deterministic sorting in Oðn log log nÞ time and linear space, in: Proceedings of the 34th

ACM Symposium on Theory of Computing (STOC�02), ACM Press, NY, pp. 602–608.

[5] Y. Han, M. Thorup, Integer sorting in Oðn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log log n

p
Þ expected time and linear space, in:

Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS�02), IEEE

Computer Society, pp. 135–144.

[6] D.E. Knuth, The Art of Computer Programming, Sorting and Searching, vol. 3, Addison-

Wesley, Reading, MA, 1973.

[7] E. Nardelli, G. Proietti, Binomial search trees, unpublished manuscript.

[8] D. Taniar, J.W. Rahayu, Parallel database sorting, Inform. Sci. 146 (1–4) (2002) 171–219.

[9] J. Vuillemin, A data structure for manipulating priority queues, Comm. ACM 21 (1978) 309–

314.


	Efficient unbalanced merge - sort
	Introduction
	The BS-tree data structure
	Merging two BS-trees
	Worst case analysis
	Average case analysis

	The sorting algorithm
	Experimental results
	Single-processor machine
	Multiprocessor machine

	Conclusions
	References


