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from r to s in G is de�ned as a path whih minimizes the sum of the lengthsof the edges along the path from r to s. The length of PG(r; s) is alledthe distane in G between r and s and will be in the following denoted asdG(r; s).The removal of an edge e 2 PG(r; s) from the graph G results in adi�erent { and perhaps longer { shortest path from r to s: dG�e(r; s) �dG(r; s), where G � e = (V;E n feg). We all PG�e(r; s) a replaementshortest path for edge e. In the past, the problem of �nding an edge inPG(r; s) whose removal from G results in the largest inrease of the distanebetween r and s has been studied. This edge is generally denoted as themost vital edge with respet to the shortest path PG(r; s). For the sake ofbrevity, we will refer to this problem in the following as to the most vital edge(MVE) problem. More preisely, the MVE problem with respet to PG(r; s)asks for �nding an edge e� 2 PG(r; s) suh that dG�e�(r; s) � dG�e(r; s), forany edge e 2 PG(r; s).The MVE problem has been solved eÆiently by Malik et al. [1℄, whogave an O(m+n logn) time algorithm to ompute all the replaement short-est paths between the soure and the destination node in the presene ofedge failures along the (original) shortest path. As a by-produt of theirsolution, the most vital edge along the path is immediately obtained.In this paper we improve the above result to O(m ��(m;n)) time, where� is the well-known funtional inverse of Akermann's funtion [4℄. The im-provement omes from the use of a linear time algorithm for the undiretedsingle soure shortest paths tree [7℄, ombined in a novel way with the useof a transmuter [6℄. Namely, we build all the replaement paths for any edgee 2 PG(r; s), and we selet the shortest by using a transmuter. Moreover,we also show that our approah allows to solve with the same time om-plexity the longest-detour (LD) problem [2℄, whih asks for �nding an edgee� = (u�; v�) 2 PG(r; s) whose removal produes a detour at node u� suhthat the length of PG�e�(u�; s) minus the length of PG(u;� s) is maximum,for any edge in PG(r; s).Solving eÆiently the MVE problem is important for dealing with tran-sient failures on a ommuniation network. Suppose in fat that the givengraph models a ommuniation network, and the shortest path we are fo-using on represents the ommuniation line between a soure and a targetof a message (the two endpoints of the path). Assume that sudden (tran-sient) failures of links (i.e., edges) are possible in suh a network. Whenthis happens along the ommuniation line between r and s and the linkjoining u and v goes down, messages should then be routed from r to s on2



a shortest path that does not use edge (u; v). Of ourse, from the networkmanagement point of view, it is important to know \a priori" both the mostvital edge and the replaing shortest paths for all the edges along the path.Our approah allows to solve eÆiently both problems.In what follows, r and s are assumed to be 2-edge onneted, so thatfor eah edge e on PG(r; s), at least one alternative path exists. Otherwise,the MVE problem an be easily solved in O(m) time by applying Tarjan'salgorithm for �nding the bridges of G [3℄. In fat, removing a bridge betweenr and s will inrease the length of any replaement shortest path to in�nity.The omputation model we use is a RAM, where the memory is dividedinto addressable words of length ! [7℄. The edge lengths are represented asoating point numbers, eah ontained in O(1) words.The paper is organized as follows: in Setion 2 we solve eÆiently theMVE problem; in Setion 3 we show how to use the same approah forsolving the LD problem; �nally, Setion 4 ontains onluding remarks andlists some open problems.2 Solving eÆiently the MVE problemLet PG(r; s) be a shortest path joining r and s in G. We start by omputingthe shortest paths trees rooted at r and s, denoted as SG(r) and SG(s),respetively. This an be done in O(m) time and spae [7℄. Let e = (u; v)be an edge on PG(r; s), with u loser to r than v. Let Mr(e) denote the setof nodes reahable in SG(r) from r without passing through edge e and letNr(e) = V nMr(e) be the remaining nodes (i.e., the subtree of SG(r) rootedat v). Figure 1 shows Nr(e) and Mr(e). Symmetrially, we de�ne the setsMs(e) and Ns(e) with respet to SG(s). Note that for the nodes in Mr(e)(Ms(e)), the distane from r (s) does not hange after deleting the edge e,while for the nodes in Nr(e) (Ns(e)) the distane from r (s) may inreaseas a onsequene of deleting e.Nr(e) and Mr(e) de�ne a ut in G, andCr(e) = f(x; y) 2 E n fegj(x 2Mr(e)) ^ (y 2 Nr(e))gis the set of edges rossing the ut (rossing edges, for short). Sine areplaement shortest path PG�e(r; s) joining r and s must ontain an edgein Cr(e), it follows that it orresponds to the set of edges whose lengthssatisfy the ondition 3
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Figure 1: Mr(e) and Nr(e).
dG�e(r; s) = minf=(x;y)2Cr(e)fdG�e(r; x) + w(f) + dG�e(y; s)g:Eah individual term of the above expression is available in O(1) time for�xed (x; y), one SG(r) and SG(s) have been omputed. In fat, dG�e(r; x) =dG(r; x), sine x 2Mr(e), and then an be obtained in O(1) time by lookingat SG(r). For given f , w(f) is available in O(1) time. Conerning dG�e(y; s),the following holds:Lemma 1 Let f = (x; y) 2 Cr(e). Then, we have that y 2Ms(e).Proof. Suppose, for the sake of ontradition, that y 62 Ms(e), i.e., y 2Ns(e). Therefore, y is a desendant of u (and v) in SG(s). This means thatPG(s; y) makes use of e, and then we have (sine subpaths of shortest pathsare shortest paths) that PG(v; y) is a subpath of PG(s; y). ThereforedG(v; y) = w(e) + dG(u; y) > dG(u; y):On the other hand, sine y 2 Nr(e), we have that PG(r; y) makes use of(u; v), and then we have that PG(u; y) is a subpath of PG(r; y). HenedG(u; y) = w(e) + dG(v; y) > dG(v; y);that is, we have a ontradition. 24
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Mr(e)sFigure 2: Edge e = (u; v) 2 PG(r; s) is removed from G. Dashed lines represent rossingedges.Sine y 2Ms(e), we onlude that its distane from s remains unhangedafter deleting the edge e = (u; v), that is, dG�e(y; s) = dG(y; s), and then itan be obtained in O(1) time by looking at SG(s). Figure 2 illustrates thesituation.Therefore, it remains to establish the minimum over all the rossingedges. To do this eÆiently, we make use of a transmuter [6℄. A transmuterDG(T ) is a direted ayli graph that represents the set of fundamentalyles of a graph G with respet to a spanning tree T = (V;ET ). Thetransmuter DG(T ) ontains for eah tree edge e one soure node ve, for eahnon-tree edge f one sink node vf , and a ertain number of additional nodes.The fundamental property of a transmuter is that there is a direted pathfrom a given soure ve to a given sink vf if and only if e and f form a yle inT + f = (V;ET [ffg). It is lear that all and only edges belonging to Cr(e)form a yle with e. Therefore, we an build a transmuter having as sourenodes all the edges belonging to SG(r) and as sink nodes all the remainingedges. This an be done in O(m ��(m;n)) time and spae [6℄. Given suh atransmuter, we an solve the MVE problem by labelling in O(1) time a sinknode vf , assoiated with a non-tree edge f = (x; y), with the ost(vf ) = dG(r; x) + w(f) + dG(y; s):Afterwards, we proess the nodes of the transmuter in reverse topologialorder, labelling eah node with the minimum of the labels of its immediatesuessors. When the proess is omplete, a soure node ve, assoiated witha tree edge e 2 PG(r; s), is labelled with a ost (ve) orresponding to the5



length of a shortest path from r to s not using e. Finally, the most vitaledge e� of PG(r; s) an be easily obtained in O(n) time as the edge suh that(ve�) = maxe2PG(r;s)f(ve)g:Therefore, the following result an be stated:Theorem 1 The most vital edge on a shortest path PG(r; s) between twonodes r and s in a graph G = (V;E) with n verties and m edges, with posi-tive real edge lengths, an be determined in O(m��(m;n)) time and spae. 23 Solving eÆiently the LD problemIn this setion we illustrate how to make use of the tehnique developed inthe previous setion to solve an interesting variation of the MVE problem:the longest-detour (LD) problem [2℄, whih asks for �nding an edge e� =(u�; v�) 2 PG(r; s) whose removal produes a detour at node u� suh thatthe length of PG�e�(u�; s) minus the length of PG(u�; s) is maximum, for anyedge in PG(r; s). Suh an edge is alled a detour-ritial edge. The problem isinteresting sine in ommuniation networks, when a message is routed alongthe path PG(r; s), if a sudden (transient) failure of a link e = (u; v) in suha path ours, then the message annot ontinue on its path as intended,as the outgoing edge (u; v) to be taken is urrently not operational. Themessage should then be routed from u to s on a shortest path that does notuse edge (u; v). This problem has been solved in O(m+ n logn) time [2℄.However, by using a transmuter, we an solve the LD problem in O(m ��(m;n)) time, as follows:Theorem 2 The detour-ritial edge on a shortest path PG(r; s) betweentwo nodes r and s in a graph G = (V;E) with n verties and m edges, withpositive real edge lengths, an be determined in O(m � �(m;n)) time andspae.Proof. As for the MVE problem, we start by omputing in O(m) timeand spae the shortest paths trees rooted at r and s, denoted as SG(r)and SG(s), respetively. Maintaining the same notations as above, we nowonsider the ut Cs(e) indued by Ms(e) and Ns(e), with the orrespondingrossing edges. Sine the detour PG�e(u; s) joins u 2 Ns(e) with s 2Ms(e),6



it must ontain an edge in Cs(e). Then, it follows that it orresponds to theset of edges whose lengths satisfy the onditiondG�e(u; s) = minf=(x;y)2Cs(e)fdG�e(u; x) + w(f) + dG�e(y; s)g: (1)Any term of the above expression an be evaluated in O(1) time for �xed(x; y), one SG(r) and SG(s) have been omputed. In fat, sine x 2 Ns(e),we have dG�e(u; x) = dG(s; x) � dG(s; u), and sine y 2 Ms(e), we havedG�e(y; s) = dG(y; s).Therefore, it remains to establish the minimum over all the rossingedges. To do this eÆiently, one again we make use of a transmuter. Itis lear that all and only edges belonging to Cs(e) form a yle with e.Therefore, as for the MVE problem, to selet the edge minimizing (1), weould build a transmuter assoiating with the soure nodes all the edgesbelonging to SG(s), and with the sink nodes all the non-tree edges. However,there is a diÆulty this time in assoiating a ost with sink nodes: in fat,if vf is a sink node assoiated with a non-tree edge f = (x; y) forming ayle in SG(s) + f with e1 = (u0; u1); e2 = (u1; u2); : : : ; ek = (uk�1; uk),ei 2 PG(r; s); i = 1 : : : k, then, aording to (1), it will have di�erent ostsdepending on whih ei is onsidered. Hene, the question is: whih value(vf ) in the transmuter should be assoiated with f , suh that (vf ) isindependent of ei? To solve this problem, we assoiate with vf the followingost depending only on edge f(vf ) = dG(y; s) + w(f) + dG(s; x);and orresponding to the length of the shortest (not neessarily simple) ylein SG(s)+f starting from s and passing through f . In fat, for any rossingedge f that replaes e, we have that dG�e(u; s) = (vf ) � dG(s; u), andtherefore, a shortest yle (i.e., a yle minimizing (vf ) for any rossing edgef) is assoiated with a shortest detour, and vie-versa. Figure 3 illustratesthe situation.Afterwards, we proess the nodes of the transmuter in reverse topologialorder. When the proess is omplete, eah soure node ve assoiated withan edge e 2 PG(r; s) is labelled with a ost (ve) orresponding to the lengthof a shortest yle in SG(s) starting from s and making use of an edge inCs(e). Sine the length of the detour indued by the failure of an edgee = (u; v) 2 PG(r; s) is (ve) � dG(s; u), it follows that the distane from uto s inreases by (ve)� 2dG(s; u), and therefore the detour-ritial edge ofPG(r; s) an be obtained in O(n) time as the edge e� = (u�; v�) suh that7
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Figure 3: Edge e = (u; v) 2 PG(r; s) is removed from G. A rossing edge f = (x; y) isassoiated with a (not neessarily simple) yle starting from s and passing through f (inbold).

(ve�)� 2dG(s; u�) = maxe=(u;v)2PG(r;s)f(ve)� 2dG(s; u)g: 24 ConlusionsIn this paper we have presented a faster solution to the problems of �nd-ing the most vital edge and the detour-ritial edge along a shortest pathPG(r; s) between two nodes r and s. Our solutions run in O(m � �(m;n))time, where � is the funtional inverse of the Akermann's funtion, The bestprevious bounds known in the literature were O(m+ n log n) time [1, 2℄.Our solutions are eÆient, but lower and upper bounds still do notmath. However, a linear time algorithm is not allowed to use a transmuterover all the m edges, sine the transmuter already has size 
(m � �(m;n))[5℄, and therefore a di�erent approah is needed.Aknowledgements { The authors would like to thank the anonymous refer-ees for their suggestions, whih helped us in improving the paper.
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