
I,

I,

1

I
I
I
l
I
j ; ,
i :

J I
I i
j ;
, I

i '
I

,
;
j ,~

- ,

IEEB TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SB-12. NO.4. APRIL 1986

A Layout Algorithm for Data Flow Diagrams
CARLO BATINI, ENRICO NARDELLI, AND ROBERTO TAMASSIA

Abstract-A layout algorithm is presen~ that allows the automatic
drawing of data How diagrams, a diagrammatic representation widely
used in,the functional analysis ofinfo,rmatlon systems. A grid standard
is deftned for such diagrams, and aesthetics for a good readability are
Identl8ed. The layout algorithm receives as Input an abstract graph,
specifying connectivity relations between the elements of the diagram,
and produces as output a corresponding diagram according to the aes
thetics. The basic strategy is to build incrementally the layout; ftrst~ a
good topology Is constructed with lew crossings between edges; sub
sequently. the shape of the diagram Is determined in terms of angies -
appearing along edges; and ftnally. dimensions are given to,the graph,
obtaining a grid skeleton for the diagram.

PIJ8l1SliER ORDEIIS

Index Terms-Database design, design tools, functional analysis,
layout algorithms. '

I. INTRODUCTION

STRUCTURED methodologies for information system
design suggest wide use of diagrams as a documenta

tion tool. Such diagrams are usually produced manually,
or with a graphic editor; in both cases, the layout of the
diagram is under the responsibility of the designer. We
believe that a tool for automatic layout of information sys
tems diagrams (ISO) would be very useful for designers
in terms of the following:

• reduction of costs involved in the production and
maintenance of diagrams;

• increase in the expressive power of diagrammatic
representations, that stems from the fact that several aes
theticsmay be automatically satisfied;

• integration of the phases of conception and produc
tion of diagrams;

• automatic unified management of graphic and textual
documentation; and

• increase of the communication bandwidth between
the user and the designer.

Several layout algorithms have been developed for in
tegrated circuits [12]: their most important goal is to min
imize the circuit area. Since this gives rise to unaesthetic
crowding of connections, they are not well suited for
ISO's. Also, structural characteristics and constraints are
quite different in the two cases.

Existing results in the specific field of aesthetic layout
fall into the following cathegories.

1) Tidy Layout of Trees: In [II], [13J, [16], and [17]

Manuscripl,received October 31, 1984. This work was supported in part
by Progetlo Finalizzato Trasporti of the National Research Council (CNR),
The work of E. Nardelli was supported in part by ENIDAT A S.p.A.

The authors are with the Dipartimento di Informatica e Sistemistica.
Universita di Roma "La Sapienza," Via Buonarroti 12. 00185 Rome,
Italy.

IEEE Log Number 8607786.

Fig. 1. Example of dalll How .diagram.

~.ubiiVltr'

CONlprlment
not!

a set of aesthetics has been defined for the tidy layout of
binary trees, such as centering of {athers ()ver their sons,
minimum global width of tire tree,.and equal layout (up
to translation) of isomorphic subtrees.· The problem has
been shown NP-hard in [13], while il1 [11], [16]. and [17]
several heuristics are proposed.

2) Automatic Display oj Hierarchized Graphs: In [5]
and [3]. algorithms for layout of hierarchized graphs are
proposed. Aesthetics considered are minimization of
crossings between connections and u!lifprm density of
symbols. .

3) Automatic Layout of Entity Relationship Dia
grams: The problem of automatic layout of entity rela
tionship diagrams [4], widely used in data analysis, has
been studied in [2]: an algorithm is shown that embeds
entity relationship diagrams into a grid according to sev
eral aesthetics.

In this paper. we present an algorithm for automatic
layout of dataflow diagrams [6], one of the most popular
and effective representations for functional analysis.
Problems dealt with in the paper, and solutions proposed,
are sufficiently general to cover a wide dass of applica
tions. We show in Fig. 1 an e;xample of a data flow dia
gram (DFD), taken from [61, thl:J.t represents the infor
mation system of a book seller. The meanings of symbols
are the following:

• double squares stand for inter/aces, i.e .• sources or
destinations of data, external to the system (e.g., cus
tomers);

• rounded rectangles stand for processes which trans
form flows of data;

• open-ended rectangles repre,s.ent stores of data; and
• arrows represent flows of data. '

0098-5589/86/0400~0538$OI.90 © 1986 IEEE

Do Not Distribute

http:0098-5589/86/0400~0538$OI.90

I

J ...

SATINI el at.: LAYOUT ALGORITHM FOR DATA FLOW DIAGRAMS

Fig. 2. Example of DFD drawn according to the grid standard.

The paper is organized as follows. In Section II, a
graphic standard is defined and a set of aesthetics usually
adopted by designers is identified. In Section III, a math
ematical model for the layout of DFD's is presented. In
Section IV, the layout algorithm for D FD' s is described.

II. AESTHETICS FOR DATA FLOW DIAGRAMS

Like other diagrams used in information systems de
sign, DFD's are usually drawn according to one of the
following graphic standards:

• the straight line standard, where all connections are
straight lines joining two symbols. When using this stan
dard, processes are often represented with circles. In such
a case, DFD's are also called "bubple charts," and

• the grid standard. where all-connections run along
the lines of a rectangular grid in which the diagram is
embedded.

We refer, in the following, to the grid standard that
gives rise to diagrams with high regularity and modular
ity. Tbe simplest way of embedding a DFD into the rect
angular grid is to make connections run horizontally and
vertically in the middle of grid cells (so that, except in
the case of crossings. each cell contains at most one con
nection) and place symbols into arrays of grid cells whose
perimeter grows with the number of connections (see Fig.
2). Such solution may give rise to waste of space due to
connections (see Fig. 3).

A way of solving the above problems is to use a thinner
grid where each symbol occupies at least an array of
K x K cells, where the parameter K is chosen according
to a statistics on the average degree of symbols. This al
lows one to 1) have uniform symbol dimensions, 2) draw
connections more closely, 3) compact the placement of
symbols, and, as a consequence, 4) approach the way in
which human beings tend to draw diagrams (see Fig. 4,
where the same diagram of Fig. 3 is drawn using arrays
3 x 3 for symbols).

The above standards are general guidelines, valid for a
large class of information systems diagrams. For specific
types of diagrams we need additional rules. For instance,
connections in DFD's enter store symbols only from the
North and South sides. We have found that aesthetics typ-

539

I.

Fig. 3. Example of waste of space due to connections.

I I

@ t- - h
I u I

rf-L"'I r ..L h r ~
-H r-H I-H

r \.[T ..J \.
T fJ \.

T
I ; I
"T i

I

Fig. 4. Improved grid standard.

ically adopted in DFD's used in real-life applications are
as follows:

A I: minimization of crossings between connections;
A2: minimization of the global number of bends in

connection lines;
A3: minimization of the global length of connections;
A4: minimization of the area of the smallest rectangle

covering the diagram; and
AS: placement on the external boundary of symbols

representing interfaces. .
The above aesthetics are generally not compatible;

however, none of them captures in itself the idea of a nice
DFD. A way to solve this conflict is to establish a priority
order between aesthetics. We do this in the next section,
where we show that layout features of the grid standard
induce a natural hierarchy among aesthetics.

III. A MATHEMATICAL MODEL FOR DFD's LAYOUT

The basic definitions we adopt about graphs are essen
tially those in [8]. We allow graphs to have multiple edges
and self-loops.

Every DFD describes a data flow schema which, how-

Do Not Distribute

S40 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE·12. NO.4. APRIL 1986

-I-~;~~;;;~:~-~~:;~--I
ICF-;:raphl

--------------~----------

l "'A"AR ."E.,~·-···-'~·· .. I
-~:-=---:-~:=:=::::=::--

----~------------------------

I ~"",u~-O"Ar "'"C'" "''''E'' "'A"" -''' I
--:::=:~-:-:-::~:::-::-::::--

----------1 L~~~~~~~ __
Fig. S. Hierarchic layout representation for DFD's.

ever, may be represented by an infinite number of DFD's,
differing only in their graphical appearance. A data flow
schema may be formally characterized as an abstract graph
called DF-graph. Since the aesthetics we are considering
are not concerned with arrow directions, we assume that
the DF-graph is llndirected. Different DFD's correspond
ing to the same DF-graph G can be viewed as different
embeddings of G in the plane. In this framework, the grid
standard allows only "rectilinear" embeddings into points
and paths of a "gridded paper."

The aesthetics we have identified for DFD's refer to
heterogeneous properties of rectilinear embeddings: Al
and A5 refer to topology, A2 to shape, A3 and A4 to met
ric. This fact suggests a hierarchic layout representation
(see also [1]), wh~re the above properties are·successively
considered (see Fig. 5).

A plane graph. is a graph such that: 1) vertices are dis
tinct points of the plane, 2) edges are simple curves con
necting their endpoint' vertices, and 3) edges do not cross
each other, but possibly at their common endpoints. A
graph is planar if it is isomorphic to some plane graph. If
a graph is not planar,.it can anyhow be related with a
plane graph by drawing it in the plane and adding ficti
tious vertices in order to represent crossings.

A plane graph divides the set of points of the plane that
do not belong to edges into topologically connected re
gions, .called faces. The unbounded region is referred to
as the external face. Let G I and G II be two plane graphs
isomorphic together with their geometric duals. If dual

I

r I-- r-+ +-I--,
I .. rt- .. . I

I " ... " " ~ " " r+ I I t-r;
it' .. '"f" f-t-,..
~ I J. I
I" it" L

I
Fig. 6. Grid graph corresponding to the DFD of Fig. 4.

vertices associated to external faces are joined by the iso
morphism, we say that G f and G II are plane equivalent.
We call planar representations the equivalence classes
established by the plane-equivalence relation between
plane graphs.

An orthogonal graph is a plane graph whose edges are
sequences of alternated horizontal and vertical segments.
Let H' and H" be two p!.ane-equivalent orthogonal
graphs. If, for every pair of corresponding paths p' in H'
and p" in H" , p' has the same number of segments of p",
and consecutive segments form equal angles in p' -and p" ,
then we say that H f and H" are shape equivalent. We call
orthogonal representations the equivalence classes estab
lished by the shape-equivalence relation between orthog
onal graphs. The orthogonal representation deals only
with the shape of the embedding, without taking into ac
count dimensions.

We define rectilinear grid the infinite orthogonal graph
where: 1) vertices are points with integer coordinates; and
2) edges are segments joining vertices at unit distance. A
grid graph is an orthogonal graph whose vertices are grid
points and whose edges run along vertex disjoint grid
paths. The layout of a DFD drawn according to the grid
standard can be described by means of a grid graph where
each symbol is associated to a rectangular skeleton. See
in Fig. 6 the grid graph corresponding to the DFD of Fig.
4.

We say that two grid graphs are grid equivalent if they
are shape equivalent and corresponding segments have
equal lengths: We. call grid representation-s the equiva
lence classes established by the grid-equivalence relation
between grid graphs.

If two grid graphs have the same grid representation,
they have also the same orthogonal representation. If two
orthogonal graphs have the same orthogonal representa
tion, they have also the same planar representation. As a
consequence, the three representations are hierarchically
related, and each representation level is a refinement of
the previous one. If we establish the same hierarchy be
tween the corresponding aesthetics, we obtain the follow
ing strategy for DFD's layout.

1) First of all, the topology of the embedding is spec
ified finding a planar representation for the conceptual
graph that respects aesthetics A 1 and A5. Do Not Distribute

http:planar,.it

,BATINI el 01.: LAYOUT ALGORITHM FOR DATA FLOW DIAGRAMS

2) Then an orthogonal shape is given to the planar rep
resentation finding an orthogonal representation (aesthet
ics A2).

3) Finally, the grid embedding is completed assigning
integer lengths to segments, according to aesthetics A3
and A4.

IV. THE LAYOUT ALGORITHM FOR DATA FLOW

DIAGRAMS

The input to the layout algorithm is a OF-graph G =
(V, E) where

• V = P +-1 + S is the set of vertices, union of pro
cesses (P), interfaces (I), and stores (S); and

• E is the set of~edges, representing flow~ of data.
The algorithm is composed of three basic steps, each

of them concerned with one of the representation levels.

A. Planarization

Step l' receives as input a OF-graph G = (V, E) and
produces a planar representation P taking into account
aesthetics A 1 and A5. The planarization problem has been
shown in [7] to be NP-hard. Hence, we adopt a heuristics.

Notice that aesthetics Al and A5 may be incompatible;
e.g., if nodes I and 4 in Fig. 7 represent interfaces, there
is no way to place them at the same time on the external
face without introducing crossings.

In our approach, the designer has to choose in advance
which aesthetics he prefers. In Fig. 8, we show the pro
cedure-in case aesthetics A 1 is chosen.

Procedure DECOMPOSE partitions graph G I into its
blocks by means of a well-known depth first search tech
nique [15]. BLOCK-PLANARIZE is based on the well
known Hopcroft and Tarjan's planarity testing algorithm
[9], which decomposes the graph into disjoint paths, and
tests planarity by embedding one path at a time. This al
gorithm can be modified to accomplish the planarization,
according to the following greedy strategy:

if a nonplanarity is detected while considering the cur
rent path P
then begin

find the edge sets involved in nonplanarity;
choose the smallest such set;
delete its edges from the graph;
resume Hopcroft and Tarjan's algorithm from

path P;
end

The complexity of the global procedure Extract-Planar
Subgraph is 0(1 ED. For a detailed analysis. see [10].

The goal of procedure FIND is to maximize the number
of interface vertices on the external face and minimize the
distance from the external face of remaining interface ver
tices, without introducing new crossings. Furthermore,
nesting of blocks is avoided when possible, to allow a
better achievement of aesthetics A2, A3, A4.

Procedure REINTRODUCE performs for each non-

·.-------------------------~7
Fig. 7. Example of incompatibility between aesthetics A I, and AS.

Step I: PLANARIZATION (G, P)

I. Extract-Planar·Subgraph (G, G*)
{ G* = (V, E*) is a planar subgraph of 0 = (V, E) l
begin

DECOMPOSE 0 in blocks (biconnected components) ;

for each block B of 0 do

BLOCK-PLANARIZE (B, B*) ;
{ Finds a planar subgraph B* of B deleting

nonplanar edges l
let 0* be the union of subgraphs B* ;

end;

2. Add·Crossings (0*, P)

begin

FIND a planar representation p* of 0* ;

for each nonplanar edge e do

REINTRODUCE e minimizing crossing vertices
so generated ;

let P be the resulting planar representation;

end;

Fig. 8. The planarization step.

54]

planar edge e = (v, w) a shortest path computation be
tween v and w in the graph Ge = (F + {v, w}, A + B),
where F is the set of faces of the current planar represen
tation, (F, A) is the corresponding dual graph, and B con
sists of edges linking v and w to faces containing them
(see Fig. 9).

If aesthetics A5 is preferred to aesthetics AI, a fictitious
vertex v* is added to the OF-graph G and connected to
all interface vertices [see Fig. lO(a)]. Then procedure
PLANARIZA TION is executed on the resulting graph:
edges incident to v* are neither deleted by BLOCK
PLANARIZE, nor intersected by REINTRODUCE [Fig.
lO(b)]. At the end, v* and all its incident edges are re
moved: this causes all interface vertices to appear on the
same face, which is selected as the external face of the
planar representation [Fig. lO(c)].

B. Orrhogonalization

Step 2 receives as input a planar representation P and
produces an orthogonal representation H with the mini
mum number of bends.

Do Not Distribute

. I

542 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOl. SE-12. NO.4. APRIL 1986

y

curre~t planar representation

e= \v,wl is t"e nonplanar edre to be rei..,trocucec

•

Fig. 9. Reintroduction of a nonplanar edge.

First of all, each vertex is expanded into a rectangular
structure, called, in the following, skeleton. The main
problem that arises while performing this taskis to find a
good assignment of edges entering the vertex to the four
sides of the skelton. This choice may significantly affect
the quality of the final layout (see Fig. 11).

The algorithm for this step makes use of the concept 'of
k-gonal representation. defined below, which is an exten
sion of the orthogonal representation. A k-gonal graph is
a plane graph whose edges are sequences of segments each
having slope multiple of 180lko with respect to a refer
ence axis. See Fig. 12(a) for an example of a 3-gonal
graph.

A k-gonal representation is an equivalence class estab
lished by the shape equivalence relation between k-gonal
graphs. To each edge of a k-gonal graph, we associate a
cost given by its angular deviation from the straight 1ine
(measured in multiples of 1801ko. The cost of a k-gonal
graph is the global cost of its edges [see Fig; 12(b)]. Ac
cording to the definition, for k = 2, we have orthogonal
graphs, whose cost is equal to the number of bends.

!Jf\---__ .

(a)

(b)

(c)

Fig. 10. Example of step I when aesthetics AS prevails.

In order to assign connections to the sides of skeletons,
a precomputation is performed to produce an optimal. k
gonal representation for the planar representation P, where
k > = ~ max {deg (v): v is a vertex of P}. Then, edges
are attached to skeleton sides according to their slope in
the k-gonal representation (see Fig. 13).

In [14] an algorithm that uses network flow techniques
is given for computing an optimal k-gonal representation
with complexity O(~n2), where n is the number of ver
tices of the planar representation.

The same algorithm can now be applied to find the or
thogonal representations with minimum number of bends. Do Not Distribute

1-

• I SATINI ~t 01.: LAYOUT ALGORITHM FOR DATA fLOW DIAGRAMS

Bad assi~~me~t of connections Good assi~nment

to skeleto~ sld&s

Fig. II. Assignment of edges to skeleton nodes.

I, Eda .. Cost

11 L

It
12 2

13 0
I.

(a) 14

IS 0

16 0

(b)

Fig. 12. (a) An example of 3-gonal graph; (b) costs of edges.

Fig. 13. Attaching edges to skeleton sides.

We show here a fonnulation of the bend minimization
problem by means of interger linear programming.

First of all, we assign an arbitrary direction to edges in
the planar representation P. Let F be the set of faces and

543

I,

" I.

I, 's
I.

I,
I.

Alf31 '-lS,"';17,+16'

Fig. 14. Planar representation described by edge lists.

q the external face of P. We describe P as a set of circu
larly ordered lists A(f), one for each face f List A(f)
contains the sequence of edges that are encountered when
going around the contour of f in the positive direction,
i.e., having fat one's right. Edges are marked positively
if they are traversed in their direction, negatively other
wise. Notice that the two occurrences of an edge may ap
pear in the same list (see Fig. 14).

In the following, we denote r the generic element of a
list A(f), r.e and r.S are the corresponding edge and sign.

There are two variables of the program associated to
each element r of list A(f): Xr represents the number of
90° angles in r.e encountered at one's right when going
around f in the positive direction; Yr represents the angle
(measured in multiples of 90°) that edge r.e fonns in f
with the next edge of A(f). Xr and Yr are integer variables;
Xr must be nonnegative, Yr must be positive. The global
number of variables of the linear program is thus 41 E I.

Two kinds of constraints must be imposed in order to
obtain an orthogonal representation from the values of the
variables.

I) The sum of angles around any vertex must be equal
to 360°, that is,

~ avrYr = 4
a1lr

for every vertex v

where aur = 1 if both edge r.e and the next edge in the
list of r are incident to vertex v, aur = 0 otherwise.

2) Each face must have the shape of a rectilinear poly
gon whose sides are either horizontal or vertical. This is
equivalent to impose that, denoted N9O(f), N270(f), and
N360(f), the numbers of angles, respectively, of 900

,

270°, and 360° internal to face f, the following fonnula
holds:

N9O(f) - N270(f) - 2 * N360(f)

if f = q (external face)

otherwise.

-
"."'r'-~'.-.~-., .• ,-... <';:, .• :'.~ ;.'.w :'_'_':~"":Y;·' ... ~r,_,' ""

Do Not Distribute

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12. NO.4. APRIL 1986

Step 2: ORTHOGONALlZATION (P. H)

I. Precomputation (P. Ht)

Produces a k-gonal representation Ht for P with minimum
cost. k must be at least! max deg (v); assuming a larger
value allows more freedom in further phases of the algorithm.

2. Expansion (Ht • P')

Each vertex is expanded into a skeleton. first approximation
of the final shape of the symbol. Edges are assigned to
skeleton sides according to their slope in Ht .

3. Normalization (P'. H)

Transforms the expanded graph P' into an orthogonal graph H
with minimum number of bends. The algorithm for the
Precomputation step is applied with the following.
assumptions:

a. k = 2
b. edges of skeleton are not allowed to be bent
c. in skeletons. comer nodes have internal angles of 90 degrees and

remaining node angles of 180 degrees.

Fig. 15. The orthogonalization step.

3) Skeletons of symbols must be transfonned into rect
angles. That is,

• Xr = 0 for each element r such that r_ e is on the con
tour of the skeleton of some symbol;

• Yr = 1 for each corner angle of a symbol skeleton;
and

• Yr = 2 for each non corner angle of a symbol skele
ton.

The goal is to minimize the number of bends, that is,

minimize z = ~ Xr -
a1lr

Fig. 15 summarizes the orthogonalization step_ Notice that
the parameter k in the precomputation step can be choosen
by the designer depending on the structure of the diagram
and the required density of connections in the drawing.
We show in Fig_ 16 the behavior of the algorithm for three
different choices of k.

c. ' Compaction

Step 3 receives as input an orthogonal representation H
and produces a grid representation Q with minimum con
nections length.

The orthogonal representation is dimensionless: it de
fines the reciprocal disposition of a- set of horizontal and
yertical segments. In order to find a grid embedding, we
have to compute the lengths of such segments. The fol
lowing three constraints must be satisfied:

1) all segments are positive integers;
2) every circuit of the graph is mapped into a rectilin

ear polygon; and
3) two segments intersect each other only at their com

mon e~dpoints.
A first description of the step is shown in Fig. 17. For

further theoretical issues, see [14].
In order to build a normalized orthogonal representa

tion, we perfonn a straightforward decomposition of faces

©
K .2 K = 4 K = 8

C§ ~ ~
~ ~ ~

I

Lg9- cSNJ ICW
L-l

Fig. 16. Behavior of the algorithm for different choices of k.

Step 3: COMPACTION (H. Q)

I. Symbolic-Decomposition

Construct a normalized orthogonal representation H'
decomposing each face of H into rectangles by means of
fictitious vertices and edges.

2. Segment-Length-Computation

Assign an integer length to segments of H' • producing a grid representation
Q for the diagram.

Fig. 17. The compaction step.

-----'---- -----

Fig. 18. Basic patterns of decomposition.

into rectangles: a rectangle is separated from a face each
time one of the basic patterns shown in Fig. 18 is found.
By iterating this procedure, we obtain a planar represen
tation H' .where each internal face is a rectangle, and the
external face is the complement of a rectangle.

Then the segments of the orthogonal representation Hi
are partitioned into horizontal (set X) and vertical (set Y).
'For each face f of H', segments on the contour of fare
then partitioned into sets N(f), E(f), S(f), and W(f),

Do Not Distribute

I
. I SATINI ('(al.: LAYOUT ALGORITHM FOR DATA FLOW DIAGRAMS

containing, respectively, segments on side North, East,
South, and West of f.

Assigning lengths to segments can be expressed by
means of integer linear programming as follows.

Let Xj and Yj be the lengths of segments i e X and j e Y;
since we want a grid representation we have the con
straints

Xi > = I, integer for each i eX

Yj > = 1, integer for each j e Y.

For each face (rectangle) of H', we impose that opposite
sides have the same length

~ ai/x; = 0
I

for each face f

L: buy· = 0 • J for each face f
J

where

au=H
if i e N(f)

if i e S(f)

otherwise

b
ff = H if} e E(f)

if} e W(f)

otherwise.

The objective function to minimize is, for aesthetic A3,

LENGTH = L: x· + L: y.
i I j J

and, for aesthetic A4,

AREA = L: Xi + L: Yj
ieN(q) je£(q)

where q is the external face.
The structure of the constraints allows the decomposi

tion of the above linear program into two independent
programs, one for the Xi variables and the other for the Yj
variables, i.e., compaction can be performed indepen
dently in the two directions. This fact explains also why
area minimization is equivalent to perimeter minimization
of the external face, the latter value appearing in the ob
jective function for aesthetic A4.

The above programs can be solved in polynomial time
since the total unimodularity property holds for both ma
trix {aif} and {bjf}. In [14] an algorithm is given forthis
step that makes use of network flow techniques. Its com
plexity is O(n2

) for aesthetics A3 and O(n) for aesthetics
A4, where n is the number of vertices in the orthogonal
representation H.

After a grid representation has been found, the diagram
can be easily drawn by a plotting routine.

While describing the layout algorithm, we have not

545

mentioned how we guarantee that no arrow enters a store
symbol from the East or West side (see Section II). The
trick is to impose that skeletons of store symbols have an
horizontal band whose East and West sides are free of
connections. A simple linear constraint is sufficient for
this in the compaction step. The store symbol is drawn
inside this band, and cOhnections entering the skeleton
from the vertical sides are bended.

V. CONCLUSIONS

We have shown an algorithm for the automatic layout
of data flow diagrams that takesjnto account several aes
thetics. Its basic strategy consists of computing succes
sively lhe topology, the shape, and the dimensions of the
diagram, according to a hierarchic layout model. As we
have shown in Section IV, the computational complexity
of the various st~ps is agreeable. A previous version of
the algorithm (described in [2]) is presently operating on
an IBM PC. The algorithm discussed in this paper is un
der implementation in Pascal on the same computer.

Furture research on the subject will be focused on the
following topics.

1) Categorization of information systems diagrams with
respect to their underlying graph structure and to the aes
thetics usually followed for them.

2) Development of a parametric algorithm that can be
interactively tailored to specific cathegories of ISO's.

3) Development of a tool for computer-aided layout of
general lSD's. It should allow the designer to have the
best advantage from the -capabilities of both a sophisti
cated graphics editor and an automatic layout algorithm.

In this framework, an effective interaction scheme be
tween the designer and the system will be investigated, in
order to

1) establish a dialog during layout activities that allows
effective exchange of information useful for a fast con
vergence of the algorithm;

2) provide the designer a large variety of controls, al
lowing him an incremental tuning of the system to his
own aesthetics; and

3) make the system learn from previous experience.

REFERENCES

[11 C. Batini. E. Nardelli. M. Talamo. and R~ Tamassia. "A graph the
oretic appro,ach to aesthetic layout of information systems diagrams ...
in Proc. 10th 1m. Workshop Graphlheoretic Concepts in Comput. Sci ..
Berlin. Germany. 1984. pp. 125-137.

[21 C. Batini. M. Talamo, and R. Tamassia. "Computer aided layout of
conceptual diagrams," J. Syst. Software, vol. 4, no. I. pp. 163-173.
1984.

[3] M. Carpano, "Automatic display of hierarchized graphs for computer
aided decision analysis." IEEE Trans. S),SI .• Man, Cybern., vol.
SMC-IO. pp. 705-715. Nov. 1980.

\4] p" Chen, "The entity relationship model: Toward a unified view of
data," ACM Trans. Data Base Sysl., vol. I. no. I, pp. 9-36, Mar.
1976.

IS] M. Delarche, "Quelques outils infographiqucs pour \'analyse struc
turelle des systemes," Doctoral dissertation, Univ. Grenoble. Gre
noble, France, 1979.

Do Not Distribute

546 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. SE-12. NO.4. APRIL 1986

16] C. Gane and T. Sarson, Structured System Analysis. Englewood
Cliffs, NJ: Prentice-Hall. 1979.

[7] D. Johnson. "The NP-completeness column: An ongoing guide." J.
Algorithms, vol. 3. no. I, pp. 215-218. 1982.

18) F. Harary. Graph Theory. Reading, MA: Addison-Wesley, 1979.
19) 1. Hopcroft and R. Taljan, "Efficient planarity testing," J. ACM,

vol. 21, no. 4, pp. 549-568, 1974.
110) E. Nardelli and M. Talamo, "Fast algorithm for planarization of

sparse diagram," Istituto per l'Analisi dei Sistemi e I'lnfonnatica,
CNR, Tech. Rep. R105. 1984.

(II) E. Reingold and 1. Tilford. "Tidier drawing of trees." IEEE Trans.
Software Eng .• vol. SE-7. no. 2, pp. 223-228. 1981.

(12) 1. Soukup, "Cireuit layout," Proc. IEEE, vol. 69, no. 10, pp. 197-
213. 1972.

113) K. Supowit and E. Reingold, "The complexity of drawing trees
nicely," Acta Inform .• vol. 18. pp. 377-392. 1983.

\14] R. Tamassia, "On embedding a graph in the grid with the minimum
number of bends," Dip. Infonnatica e Sistemistica, Univ. Rome,
Tech. Rep. 09.84, 1984.

[IS) R. Taljan, "Depth first search and linear graph algorithms," SIAM
J. Compul., vol. I, no. 2, pp. 146-159, 1982.

116) J. Vaucher, "Pretty printing of trees." Soflware Practice and Expe
rience, vol. 10, pp. 553-561, 1980.

[17J C. Wetherell and A. Shannon, "Tidy drawing of trees," IEEE Trans.
Software Eng., vol. SE-5, pp. 514-520, 1979.

Carlo Batlni has been an Associate Professor in the Department of Com
puter and System Sciences at the University of Rome "La Sapienza" since
1983. From 1975 to 1983 he served as an Assistant Professor at the Uni
versity of Rome. His current research interests include methodologies and
tools for conceptual design of databases.

Enrico Nardelli gra~uated in electrical engineering from the University of
Rome, Rome, Italy, in 1983.

He is now a Research Associate in the Department of Computer and
System Sciences at the University of Rome "La Sapienza." His current
research interests include computer-aided design of infonnation systems
and layout algorithms. He is a consultant to Enidata SpA.

Roberto Tamalsia graduated in electrical engineering from the University
of Rome, Rome, Italy, in 1984.

He is now a Research Associate in the Department of Computer and
System Sciences at the University of Rome "La Sapienza." His current
research interests include computer-aided design of infonnation systems,
layout algorithms, and VLSI theory. During 1985 he visited the Coordi
nated Science Laboratory at the University of Illinois at Urbana-Cham
paign, supported by a Fulbright grant.

Mr. Tamassia is a member of the IEEE Computer Society.

J..

'\
l

Do Not Distribute

