
Conceptions and Misconceptions about Computational
Thinking among Italian Primary School Teachers

Isabella Corradini
Themis Research Centre

Rome, Italy
isabellacorradini@themiscrime.com

Michael Lodi
University of Bologna

Dep. of Comp. Science and Eng.
Bologna, Italy

michael.lodi2@unibo.it

Enrico Nardelli
University of Roma “Tor Vergata"

Department of Mathematics
Rome, Italy

nardelli@mat.uniroma2.it

ABSTRACT
Many advanced countries are recognizing more and more the im-
portance of teaching computing, in some cases even as early as in
primary school. “Computational thinking" is the term often used
to denote the conceptual core of computer science or “the way a
computer scientist thinks", as Wing put it. Such term - given also
the lack of a widely accepted definition - has become a “buzzword"
meaning different things to different people. We investigated the
Italian primary school teachers’ conceptions about computational
thinking by analyzing the results of a survey (N=972) conducted in
the context of “Programma il Futuro" project. Teachers have been
asked to provide a definition of computational thinking and to an-
swer three additional related closed-ended questions. The analysis
shows that, while almost half of teachers (43.4%) have included
in their definitions some fundamental elements of computational
thinking, very few (10.8%) have been able to provide an acceptably
complete definition. On a more positive note, the majority is aware
that computational thinking is not characterized by coding or by
the use of information technology.

KEYWORDS
Computational thinking definition; Informatics education; Concep-
tions and misconceptions; Primary school teachers
ACM Reference format:
Isabella Corradini, Michael Lodi, and Enrico Nardelli. 2017. Conceptions
and Misconceptions about Computational Thinking among Italian Primary
School Teachers. In Proceedings of ICER ’17, Tacoma, WA, USA, August 18-20,
2017, 9 pages.
https://doi.org/10.1145/3105726.3106194

1 INTRODUCTION
1.1 Context
The wide popularity gained by the expression “computational think-
ing" (CT, from now on) after the Wing’s paper [20] risks to spoil
the original aim. More and more people are now considering CT a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER ’17, August 18-20, 2017, Tacoma, WA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4968-0/17/08. . . $15.00
https://doi.org/10.1145/3105726.3106194

new subject, somehow different or distinct from computer science
(“computing” in UK, “informatics” in Europe).

We are convinced this approach is wrong and misleading: in the
long run it will do more harm than benefit to informatics. After all,
in schools they do not teach “linguistic thinking” or “mathemat-
ical thinking”, with specific “body of knowledge” or “assessment
methods”. Others, e.g. [7], [2], and [9], share our concerns for the
dangers of such an approach.

On the other side, the concept of computational thinking, inter-
preted as “being able to think like a computer scientist and being
able to apply this competence to every field of human endeavor”
is sorely needed. In fact, it supports the goal of teaching scientific
and cultural aspects of computing in schools, focusing on princi-
ples and methods more than on systems and tools. This is required
since informatics is the science underlying the digital technology
pervading all aspects of contemporary society.

Teachers’ conceptions regarding a subject are essential for a
proper teaching of the subject itself. We therefore investigated the
Italian primary school teachers’ conceptions about computational
thinking and information technology (IT) and how they relate to
computer science concepts and principles.

We conducted our investigation in the context of “Programma
il Futuro” project1 [15], whose goal is to increase awareness of
informatics as the scientific basis of digital technologies among
teachers in Italian primary and secondary schools. The project has
adapted Code.org learning material and has introduced it to Italian
schools with the support of a dedicated web site, featuring also
an introduction to CT. Response has been enthusiastic in terms
of participation: in the first two school-years (2014-15 and 2015-
16) more than one million students have been engaged and have
completed a total of 10 million hours of informatics in schools [6].

1.2 Purpose of the study
Our research has investigated the knowledge level of CT among
Italian primary school teachers. More specifically, we addressed the
following research questions:

RQ1 which level of understanding do they have with respect to
the concept of computational thinking?

RQ2 how do they perceive the relation between technology and
computational thinking?

RQ3 how much do they feel prepared to teach computational
thinking?

1https://programmailfuturo.it

https://doi.org/10.1145/3105726.3106194
https://doi.org/10.1145/3105726.3106194

ICER ’17, August 18-20, 2017, Tacoma, WA, USA Isabella Corradini, Michael Lodi, and Enrico Nardelli

In this paper we use the term misconception. In general, the term
indicates an incorrect view based on faulty thinking or understand-
ing2. In Computer Science Education research literature, the term is
often used in the specific context of learning to program, and refers
to an inadequate understanding of fundamental programming con-
cepts (for a review see [19]). In this paper we are not referring to
such difficulties, but rather to incorrect ideas about what CT is; so
we are using the term in its general sense (like, e.g., in [8]).

2 LITERATURE OVERVIEW
2.1 Definition of CT

2.1.1 Five (of many) definitions. The term “computational think-
ing" was firstly used by Seymour Papert in his bookMindstorms [16]
and in a work on Mathematics education [17]. After this expres-
sion was revived in 2006 by Jeannette Wing [20], many definitions
emerged, mainly to support the introduction of CT in K-12 educa-
tion. In this paper we discuss five important definitions:

• the “Cuny Snyder Wing" definition of CT [22] (that builds
on the informal definition in [20] and the philosophical dis-
cussion in [21]);

• the 2011 Operational Definition from International Society
for Technology in Education (ISTE) and the Computer Sci-
ence Teachers Association (CSTA) [14];

• the definition proposed by Google in its collection of CT
resources [11];

• the definition by Brennan and Resnick [4] about CT in Scratch;
• the definition from UK project Barefoot CAS [5].

Wing informally defines CT as “thinking like computer scien-
tists" [20] and then more formally as “the thought processes involved
in formulating problems and their solutions so that the solutions
are represented in a form that can be effectively carried out by an
information-processing agent" [22]3. In her papers she also identi-
fies characteristic elements of CT. In particular she states the most
important elements are abstraction (the “mental" tool of comput-
ing) and automation (using computer, the “metal" tool of computer
scientists) - she states that “computing is the automation of our
abstractions" [21]. In [22] she recognizes important overlapping or
inclusions between CT and other types of thinking: logical thinking,
algorithmic thinking, parallel thinking, compositional reasoning,
pattern matching, procedural thinking, and recursive thinking.

ISTE and CSTA propose an operational definition, targeting
specifically K-12 educators. They define CT as “a problem-solving
process that includes (but is not limited to) the following characteris-
tics: Formulating problems in a way that enables us to use a computer
and other tools to help solve them; Logically organizing and analyzing
data; Representing data through abstractions such as models and sim-
ulations; Automating solutions through algorithmic thinking (a series
of ordered steps); Identifying, analyzing, and implementing possible
solutions with the goal of achieving the most efficient and effective
combination of steps and resources; Generalizing and transferring this

2Oxford Dictionary, https://en.oxforddictionaries.com/definition/misconception
3This definition is attributed to Jan Cuny, Larry Snyder and Jeannette M. Wing, in
an unpublished work (“Demystifying Computational Thinking for Non-Computer
Scientists”, 2010). Moreover, Wing says it was originated by a discussion with Alfred
Aho, who provided a very similar (but with a more “algorithmic thinking” flavor)
definition [1]

problem-solving process to a wide variety of problems." Moreover they
state that CT is “supported and enhanced by a number of dispositions
or attitudes" that includes “Confidence in dealing with complexity;
Persistence in working with difficult problems; Tolerance for ambi-
guity; The ability to deal with open ended problems; The ability to
communicate and work with others to achieve a common goal or solu-
tion" [14]. Finally they propose a CT vocabulary [13], listing a set of
CT terms with a brief definition/explanation: Data Collection; Data
Analysis; Data Representation; Problem Decomposition; Abstraction;
Algorithms and Procedures; Automation; Simulation; Parallelization.

Google assumes the same ISTE/CSTA definition but - instead
of a vocabulary - lists and (re)defines a series of CT concepts [11],
pointing out that they are mental processes or tangible outcomes:
Abstraction; Algorithm Design; Automation; Data Analysis; Data Col-
lection; Data Representation; Decomposition; Parallelization; Pattern
Generalization; Pattern Recognition; Simulation.

Brennan and Resnick [4] present a computational thinking frame-
work, to describe learning and development that take place when de-
signing and programming interactive media with Scratch platform.
They state CT involves three dimensions: computational concepts
designers employ as they program: sequences, loops, parallelism,
events, conditionals, operators, and data; computational practices
designers develop as they program: being incremental and iterative,
testing and debugging, reusing and remixing, and abstracting and
modularizing; computational perspectives designers form about the
world around them and about themselves: expressing, connecting,
and questioning.

CAS [5] assumes a Wing-like definition: CT is “learning to think
in ways which allow us, as humans, to solve problems more effectively
and, when appropriate, use computers to help us do so" and then
states it involves six concepts (Logic; Algorithms; Decomposition;
Patterns; Abstraction; Evaluation) and five approaches (Tinkering;
Creating; Debugging; Persevering; Collaborating).

2.1.2 Common aspects. We compared CT elements found in the
analyzed definitions, in analogy with what was done in [9].

Those who give a precise definition agree on the fact that CT is a
way of thinking (thought process) for problem solving. They all
somehow specify that it is not just problem solving: the formulation
and the solution of the problem must be expressed in a way that
allows a processing agent (a human or a machine) to carry it out.

Apart from the general statement, all definitions list some con-
stitutive elements of CT. These elements are of very different kinds
(from thinking habits to specific programming concepts) and many
authors group them in categories, but there is no common agree-
ment on the classification.

We classified all the elements in four categories. For each cate-
gory we list the elements, trying to summarize all aspects stated
in the analyzed definitions. Note that many elements are shared
between informatics and other scientific disciplines, but computing
features a unique combination of them.

• Mental processes: mental strategies useful to solve prob-
lems.
– Algorithmic thinking: use algorithmic thinking [14, 21, 22]
to design a sequence of ordered step (instructions) to solve
a problem, achieve a goal or perform a task [4, 5, 11, 13].

https://en.oxforddictionaries.com/definition/misconception

Conceptions and Misconceptions about Computational Thinking ICER ’17, August 18-20, 2017, Tacoma, WA, USA

– Logical thinking: use logical thinking [22] and reasoning
to make sense of things, establish and check facts [5].

– Problem Decomposition: split a complex problem in simpler
subproblems to solve it more easily [5, 11, 13]; modular-
ize [4]; use compositional reasoning [21].

– Abstraction: get rid of useless details to focus on relevant
information/ideas [4, 5, 11, 13, 22].

– Pattern recognition: discover and use regularities in data,
problems [5, 11, 22].

– Generalization: use discovered similarities to make predic-
tions or to solve more general problems [5, 11].

• Methods: operational approaches widely used by computer
scientists.
– Automation: automate the solutions [14, 21]; use a com-
puter or a machine to do repetitive tasks [11, 13].

– Data Collection, Analysis and Representation: gather in-
formation/data, make sense of them by finding patterns,
represent them properly [11, 13]; store, retrieve and update
values [4].

– Parallelization: carry out tasks simultaneously to reach a
common goal [4, 11, 13], use parallel thinking [22].

– Simulation: represent data and (real world) processes through
models [11, 14], run experiments on models [13].

– Evaluation: implement and analyze solutions [14] to judge
them [5], in particular for what concerns effectiveness,
efficiency in terms of time and resources [14].

– Programming: use some common concepts in program-
ming (eg. loops, events, conditionals, mathematical and
logical operators [4]).

• Practices: typical practices used in the implementation of
computing machinery based solutions.
– Experimenting, iterating, tinkering: in iterative and incre-
mental software development, one develops a project with
repeated iterations of a design-build-test cycle, incremen-
tally building the final result [4]; tinkering means trying
things out using a trial and error process, learning by
playing, exploring, and experimenting [5].

– Test and debug: verify that solutions work by trying them
out [4]; find and solve problems (bugs) in a solution/ pro-
gram [5].

– Reuse and remix: build your solution on existing code,
projects, ideas [4].

• Transversal skills: general ways of seeing and operating
in the world; useful life skills enhanced by thinking like a
computer scientist.
– Create: design and build things [5], use computation to be
creative and express yourself [4].

– Communicate and collaborate: connect with others and
work together to create something with a common goal
and to ensure a better solution [4, 5, 14].

– Reflect, learn, meta-reflect: use computation to reflect and
understand computational aspects of the world [4].

– Be tolerant for ambiguity: deal with non-well specified and
open-ended real-world problems [14].

– Be persistent when dealing with complex problems: be con-
fident in working with difficult or complex problems [14],
persevering, being determined, resilient and tenacious [5].

2.2 Related work
A few works investigated teachers’ conceptions about CT, comput-
ing and their relation with IT.

Yadav and colleagues conducted two experiments [23, 24] to
asses pre-service teachers’ “attitudes towards and understanding of
computational thinking” and how they changed after attending a
CT module in a course of an Education major. Both a pre and a post
questionnaire were used in these studies. The first one (N=100) did
not have a control group, that was introduced in the second study
(N = 294, 141 in the treatment group and 153 in the control group).
In both experiments, results showed such module was effective
to influence teachers’ understanding of CT and to improve their
positive attitudes toward CT and its integration into the classroom.

Bower and Falkner [3] conducted a pilot survey on 44 pre-service
teachers, investigating their awareness of CT, conceptions regard-
ing the term, use of IT and pedagogical strategies for CT develop-
ment, and confidence in teaching CT.

Duncan and colleagues [9] report the post-lesson feedbacks from
13 primary school teachers (with no previous experience in teaching
computer science) participating in an ongoing study on teaching
CT in New Zealand. They report about teacher confidence, level of
difficulty of the lessons, common themes emerged in the answers,
and teachers’ misconceptions.

3 METHODS
3.1 Instrument
Periodical surveys are conducted in “Programma il Futuro” project
by means of on-line questionnaires collecting quantitative and
qualitative data.

We investigated our research questions in this context. A ques-
tionnaire, with some additional questions relevant to the current
research, was sent in December 2016, after the CS Educational
Week, to all 24,939 teachers enrolled into the project. They filled it
out anonymously and we received 3,593 answers up to the end of
January 2017.

Teachers belong to all level of schools, from kindergarten to
higher secondary schools. Some of them participated this school-
year to the project for the first time, others for the second or third
time.

For our research, we asked teachers to complete - if they wished
- the sentence

Q1 “In my view computational thinking is. . . "

that is we asked them to provide their definition of CT.
We also asked teachers to choose their level of agreement, on a

4-point Likert scale, with the following statements:

Q2 Being able to use technological devices means having developed
computational thinking competences

Q3 Computational thinking competences can be adequately devel-
oped in primary schools without using technological devices

ICER ’17, August 18-20, 2017, Tacoma, WA, USA Isabella Corradini, Michael Lodi, and Enrico Nardelli

We finally asked teachers to grade (4-point Likert scale)
Q4 How much do you feel prepared to develop computational

thinking in your students?

and to indicate the
Q5 Most important initiatives to improve your preparation

by choosing up to 3 answers among:
• training
• availability of technology
• organizational support
• methodological guidelines
• learning objectives and teaching content

In the current study we focus only on answers from primary
schools teachers who participated this school-year for the first time
(N=972).

3.2 Sample description
We provide here a description of the sample, 93,7% of which are
women, apparently not far from the national value (96,4%) for pri-
mary school teachers. But this implies 6,3% are men, which is almost
the double of the national value (3,6%): this appears to be a confir-
mation of the current situation where men are more attracted to
computing than women.

Figure 1 shows the distribution of teaching seniority in our sam-
ple, while figure 2 shows age distribution.

Figure 1: Teacher seniority in years.

Both of them show our sample is made, to a very large extent
(>80%), by mature and experienced teachers. This grounds our
findings on a reliable base of subjects, but on the other side indicates
most probably they have not received any formal or structured
training in informatics.

3.3 Procedures
3.3.1 Quantitative analysis. We used standard descriptive sta-

tistical methods to analyze closed-ended answers (Q2 to Q5). More
specifically, we computed the frequency distribution of these an-
swers.

3.3.2 Qualitative analysis. Among the 972 answers, we filtered
out those (116) that did not provide a definition and also those (77)
that were completely out of scope (e.g.: they answered “interesting"
or “useful").

Figure 2: Age of teachers in years.

We then proceeded to identify, by reading and discussing, the
conceptual categories present in the remaining 779 definitions.

In a first phase each of us independently analyzed the definitions
and proposed a set of conceptual categories to classify them. We
used a mixed approach: some categories were defined "a priori",
on the basis of literature overview and related work described in
section 2, others were grounded on the definitions themselves. We
then met to examine the proposed sets of categories and through
discussion we agreed to a preliminary set.

We then manually assigned each answer to one or more category,
if the statement either declared CT was of the same nature as the
category or stated CT had relations to or was useful for the category.

For this process the set of answers was split in three, and each of
us assigned answers in his/her set to one or more category. During
this process proposals for modifications to categories emerged.
Then we met again and jointly examined both these proposed
modifications and assignments. Through discussion, we came to
agree on the final set of 17 categories (described in subsection 5.1)
and the final assignment of each definition to one or more category.

3.3.3 Measuring CT knowledge. To be able to measure the level
of teachers’ knowledge about CT we used the following procedure.
We assigned a weight (see discussion in subsection 5.1) to each
category according to its relevance (in our view) for CT definition,
in the light of the main definitions known in the literature (see
subsection 2.1). Finally, the level of an answer was computed as the
sum of weights of categories it is assigned to.

4 QUANTITATIVE RESULTS
4.1 Technology and computational thinking
The distribution of agreement with the two statements (Q2, Q3)
investigating relations between computational thinking and tech-
nological devices are respectively shown in figures 3 and 4.

It is positive that almost half of the teachers disagree with Q2,
and just 17.1% agrees or strongly agrees with the statement. This
shows Italian primary schools teachers have a sufficiently clear
understanding that computing is not the same thing as using IT
devices. This is supported by the qualitative analysis results dis-
cussed in section 5. We observe the results discussed in [3, 23, 24]
appear to show a much higher level of misconceptions regarding
CT in teachers but we note that those analysis were conducted on

Conceptions and Misconceptions about Computational Thinking ICER ’17, August 18-20, 2017, Tacoma, WA, USA

Figure 3: Technological devices and CT.

Figure 4: CT without technological devices.

a different (smaller) sample (pre-service teachers) operating in a
different culture (USA or Australia).

A positive insight is also given by answers to Q3. In fact, only less
than a quarter (21.7%) of teachers thinks an adequate development
of CT requires the use of technological devices, while 38.0% agrees
or strongly agrees with Q3. It has also to be noted that spontaneous
skill transfer among domain is an unsupported claim [12, 18].

4.2 Teachers’ preparation
Self-perception of teachers with respect to their level of preparation
to develop CT competences in their students (Q4, Q5) is shown in
figure 5.

It is apparent that a large majority does not feel adequately
prepared. This is coherent with the following facts regarding Italian
schools:

• preparation of primary school teachers is not focused on
specific disciplines but has a broad scope

• there is not a specific training program in computing for
school teachers of primary and lower secondary levels

Figure 6 shows which initiatives teachers consider most impor-
tant to improve their preparation (they could choose up to 3 items).
Training is by far the most chosen one, which we feel is depending
on the nature of our sample. This choice has also a rational support

Figure 5: Teachers self-perception of their preparation.

Figure 6: Most important initiative to improve teachers’
preparation.

in the positive training effects noted in [23, 24]. A bit more wor-
rying, in our view, is that slightly more than half of the teachers
does not feel the need for methodological guidelines and just one
quarter considers learning objectives and teaching content important
to improve their preparation.

5 QUALITATIVE RESULTS
5.1 Categories
We now describe the 17 categories emerged from our analysis. We
present them in four classes and indicate between parentheses the
weight assigned to each category in a class for the purpose of the
procedure described in 3.3.2.
• Fundamental (+2) - these categories express elements absolutely
necessary in any definition of CT.

PSOL Problem solving: action(s) or process(es) leading to
solve a problem, to reach a goal, to face a complex
situation.

MENT Mental process or tool: a cognitive ability, a mental
competence.

ALGO Algorithmic thinking: devising an algorithm to solve
a problem; defining an effective method or strategy
or plan; solving a problem by means of a sequence of
elementary steps.

ICER ’17, August 18-20, 2017, Tacoma, WA, USA Isabella Corradini, Michael Lodi, and Enrico Nardelli

AUTO Giving instructions/automation: instructing some agent
to solve a problem; providing a procedure to an infor-
mation processing agent.

METH Using/learning informatics methods: the ability of us-
ing informatics concepts and methods; learning infor-
matics.

• Important (+1) - these categories express elements that are im-
portant for a definition of CT but are not fundamental.

DECO Problem decomposition: splitting a complex problem
in simpler subproblems to solve it more easily.

LOGI Logical thinking: logical or reasoning or analytical
skills.

ABST Abstraction: focusing on common characteristic of gen-
eral value; reusing a solution in other situations; devis-
ing a solution for a more general situation.

CODE Write programs: writing programs; coding.
• Part-of (0) - these categories express elements that are somehow
present in definitions of CT reported in the literature; in some
sense they are not necessary for a well-formed definition of CT.

MCOG Meta-cognition: reflecting about thinking or learning;
learning to learn.

TRAN Transversal competence: e.g. fourth skill, transversal
skill, life skill, useful in other fields, of general use,
useful for teaching and learning.

CREA Creative thinking: being able to find creative or original
solutions to problems; creativity.

UNIT Understanding information technology: understanding
how information technology devices work; understand-
ing science behind IT.

LANG Programming language: a language to communicate
with IT devices.

ITER Iterative development: operating by means of succes-
sive refinements, possibly based on trial and error or
testing and debugging.

• Misleading (-1) - these categories express elements whose pres-
ence in the definition of CT takes away from a correct under-
standing.

THPC “Think" like a computer: act mechanically like a ma-
chine, not behaving like a human.

UDEV Using IT: being able to use information technology
devices and programs as an end-user.

5.2 Analysis of category distribution
The distribution of assignments of definitions to categories is shown
in figure 7, where different colors code different classes (remember
each definition was classified under one or more category).

To better understand the distribution and its analysis, note that
“Programma il Futuro” website provides some introductory informa-
tion4, with a discussion on the role of computer science in the digital
society and the importance of informatics as an autonomous scien-
tific discipline, based on [10]. It also informally describes what CT
is (“Computational thinking is a mental process for problem-solving
with distinctive techniques and general intellectual practices”)5.

4https://programmailfuturo.it/progetto/perche-partecipare
5https://programmailfuturo.it/progetto/cose-il-pensiero-computazionale

Figure 7: Frequency of each category in Q1.

This may explain why two thirds of the answers identified prob-
lem solving as an element of the definition of CT.

We note that some categories have a surprisingly high frequency
relatively to their importance (in our view) for the definition of
CT: logical thinking, transversal competence, and creative thinking.
A possible motivation is that a Google query in Italian about com-
putational thinking returns these terms in the first few results.

Also, it is somewhat surprising the low frequency of use of
abstraction to characterize CT, given the very strong stance taken
byWing in respect to it. We think the conceptual difficulty inherent
with the role of abstraction in informatics may explain this outcome.

It is worth noting that writing programs has a relatively low
frequency: this shows that not so many teachers make the mistake
of equating coding and CT.

5.3 Analysis of answer values distribution
5.3.1 Approach. Since all definitions (with their constitutive

elements) of CT considered in subsection 2.1, if classified and eval-
uated with our procedure in 3.3.3, have a value of at least 8, we
decided to use this as the threshold to identify the class of “good
definitions”. We also set the “acceptable definition” threshold at 6. In
fact, to reach 6, an answer must have been labeled with categories
defined in subsection 5.1 so that it falls within one of the following
cases:

(c1) at least 3 fundamental
(c2) 2 fundamental and at least 2 important
(c3) 1 fundamental and 4 important

In other words, there is no way for an answer to be evaluated as
an “acceptable definition” if it does not have at least 1 fundamen-
tal. But 1 or 2 fundamental alone are not enough, if they are not
accompanied by a large enough number of important.

We consider all definitions whose value is 5 or less as miscon-
ceptions.

5.3.2 Outcome. Our procedure evaluates just 8 of the 779 an-
swers as “good definitions”. The number of those being acceptable

Conceptions and Misconceptions about Computational Thinking ICER ’17, August 18-20, 2017, Tacoma, WA, USA

Figure 8: Answer values distribution.

but not good are 76, resulting in a total of just about 10.8% of all an-
swers being at least acceptable. This result appears to be correlated
with the feeling of a weak preparation reported in figure 5.

Also, all of not acceptable answers with a value of 5 and 96% of
those with a value of 4 have at least 2 fundamental. This leads to a
comforting 43.4% of answers that features the presence of at least
two fundamental components for a CT definition.

The 695 not acceptable answers (i.e., the misconceptions) are
roughly evenly split among those with a value at least 3, and those
with a value less than 3: see in figure 8 the overall distribution.

Moreover, we investigated the frequency with which each couple
of categories appeared in the definition. We report in table 1 the
27 most frequent couples with at least 2% frequency. This table

Table 1: Most frequent (%) couples of categories.

MENT ALGO AUTO METH DECO LOGI CODE TRAN CREA

PSOL 17 22 8 5 5 10 2 6 8
ALGO 4 2 4 2
AUTO 2 2 2 2
METH 4 2
LOGI 2 2 2
TRAN 5
CREA 2 3 4 2

therefore shows the frequency with which (at least) both categories
have labeled answers, that is their frequency of co-occurrence. Row
and column headings appear in the same order as in subsection 5.1
and, to make the table more compact, not all categories are listed.

Note that PSOL plays a leading role, which is understandable
given two thirds of definitions have received its label. A positive
element is the relatively high frequency of co-occurrence of PSOL
with ALGO (22%): this can be interpreted as an evidence that that
about 11% of answers (22%-10.8%), even if not acceptable, are char-
acterized by a sound (even if incomplete) description of computing.

5.4 Conceptions and misconceptions regarding
CT

Examining all the answers that are at least acceptable we observe
just 29 distinct sets. Table 3 on next page shows the count, the value
according to our procedure in 3.3.3, and the constituent categories
of each set.

Table 2: Distinct sets and counts of not acceptable answers

Value Count Labels
. . .
4 88 PSOL, ALGO
4 51 PSOL, MENT
4 28 PSOL, AUTO
. . .
3 24 PSOL, LOGI
3 11 PSOL, DECO
. . .
2 80 PSOL
2 19 PSOL, CREA
2 11 MENT
. . .
1 67 LOGI
1 13 CODE
1 11 LOGI, CREA
. . .
0 26 TRAN
. . .

There is no example of a set belonging to case (c3), see 5.3.1, and
just 4 lines of the table show sets belonging to case (c2), explic-
itly indicated in the table, meaning the overwhelming majority of
acceptable answers belongs to case (c1).

Moreover, three different sets have a high count (marked with
a * in the "Case" column): {PSOL, MENT, METH}, {PSOL, MENT, ALGO},
and {PSOL, MENT, METH TRAN}. We think this is a positive result since
these answers are all instances of case (c1), even if many examples
in these sets are clearly molded after the information provided in
“Programma il Futuro” website.

The most frequent not acceptable answers are shown in table 2.
A large number of misconceptions is characterized either by

PSOL alone or by its coupling with exactly one of these categories:
MENT, LOGI, DECO, CREA (first 7 lines of the table). In all these cases
a very partial view of informatics emerges, given the absence of
categories describing the information-processing agent. A similar
situation happens for MENT and LOGI (next 2 lines). This reinforces
our concerns that considering CT as a subject somewhat distinct
from computing may give raise to misconceptions about IT.

Another misconception is shown by the relatively high count of
TRAN alone (last line), which shows the evidence of a view of CT as
an instrumental discipline, not important in itself. This is possibly
deriving from attempts to convince teacher of the importance of
CT by focusing mainly on its value for other disciplines and as a
general learning tool.

ICER ’17, August 18-20, 2017, Tacoma, WA, USA Isabella Corradini, Michael Lodi, and Enrico Nardelli

Table 3: Distinct sets and counts of acceptable answers

Value Count Case Labels
12 1 PSOL MENT ALGO AUTO METH DECO LOGI
11 1 PSOL MENT ALGO METH DECO LOGI ABST CREA
9 1 PSOL MENT ALGO METH ABST
8 3 PSOL MENT ALGO AUTO
8 1 PSOL MENT ALGO METH TRAN CREA
8 1 PSOL MENT ALGO METH
7 2 PSOL MENT ALGO DECO
7 2 PSOL ALGO AUTO LOGI
7 1 PSOL MENT METH LOGI TRAN CREA
7 1 PSOL MENT ALGO ABST TRAN
7 1 PSOL ALGO METH LOGI
7 1 PSOL ALGO AUTO ABST
6 17 * PSOL MENT METH
6 11 * PSOL MENT ALGO
6 10 * PSOL MENT METH TRAN
6 7 PSOL ALGO AUTO
6 6 PSOL MENT AUTO
6 2 c2 PSOL ALGO DECO LOGI CREA
6 2 c2 PSOL ALGO DECO LOGI
6 2 PSOL MENT ALGO TRAN CREA
6 2 PSOL MENT ALGO TRAN
6 2 PSOL MENT ALGO CREA
6 1 c2 PSOL AUTO DECO LOGI
6 1 PSOL MENT AUTO TRAN
6 1 PSOL MENT AUTO ITER
6 1 PSOL ALGO AUTO TRAN ITER
6 1 c2 PSOL ALGO LOGI ABST
6 1 PSOL ALGO METH
6 1 PSOL AUTO METH

6 CONCLUSIONS AND FURTHERWORK
Outcome of our work shows the vast majority of Italian primary
school teachers has not a sound and complete conception about CT
(RQ1).

This negative finding is somewhat balanced by the evidence
regarding teachers in relation to information technology (IT). In
fact, it is sufficiently clear to them that (1) computer science and the
use of IT are two distinct fields, and (2) IT devices are not absolutely
needed to develop CT competences in students (RQ2).

Finally, teachers feel themselves not enough prepared to develop
CT competences in their students and identify in specific training
the most important initiative (RQ3).

What we reported in this paper is only a first analysis of the
situation in Italy regarding CT in schools in relation to “Programma
il Futuro”. We plan to complete the analysis by considering also
answers from teachers at all school levels, and by investigating
possible differences between teachers newly came to the project
and those involved since the beginning.

ACKNOWLEDGMENTS
We greatly thank teachers and students involved in Programma il
Futuro project (coordinated by EN andGiorgio Ventre) and Code.org
for its cooperation.

We acknowledge the financial support of TIM; Engineering; CA
Technologies, Cisco, De Agostini Scuola; SeeWeb. Other companies
have financially supported the project during the first two school-
years only: Samsung Italia; Microsoft Italia; Hewlett-Packard; Ora-
cle; Facebook.

Rai Cultura, the culture department of Italian national public
broadcasting company, is a media partner of the project since Feb-
ruary 2017.

ML greatly thanks University of Bologna for funding his research
and his Ph.D. advisor, Simone Martini, for fruitful discussions and
support.

We greatly thank anonymous referees for insightful comments
and suggestions.

Conceptions and Misconceptions about Computational Thinking ICER ’17, August 18-20, 2017, Tacoma, WA, USA

REFERENCES
[1] Alfred V. Aho. 2011. Ubiquity Symposium: Computation and Computational

Thinking. Ubiquity 2011, January, Article 1 (Jan. 2011). https://doi.org/10.1145/
1922681.1922682

[2] Michal Armoni. 2016. COMPUTING IN SCHOOLS: Computer Science, Com-
putational Thinking, Programming, Coding: The Anomalies of Transitivity
in K-12 Computer Science Education. ACM Inroads 7, 4 (Nov. 2016), 24–27.
https://doi.org/10.1145/3011071

[3] Matt Bower and Katrina Falkner. 2015. Computational Thinking, the Notional
Machine, Pre-service Teachers, and Research Opportunities. In Proceedings of the
17th Australasian Computing Education Conference (ACE 2015), Vol. 27. 30.

[4] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research Association, Vancouver,
Canada. 1–25.

[5] Barefoot CAS. 2014. Computational Thinking. (2014). Retrieved
April 4, 2017 from http://barefootcas.org.uk/wp-content/uploads/2014/10/
Computational-thinking-Barefoot-Computing.pdf

[6] Isabella Corradini, Michael Lodi, and Enrico Nardelli. 2017. Computational
Thinking in Italian Schools: Quantitative Data and Teachers’ Sentiment Analysis
after Two Years of "Programma il Futuro" Project. In Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’17). ACM, New York, NY, USA. https://doi.org/10.1145/3059009.3059040

[7] Peter J. Denning. 2009. The Profession of IT: Beyond Computational Thinking.
Commun. ACM 52, 6 (June 2009), 28–30. https://doi.org/10.1145/1516046.1516054

[8] Peter J. Denning, Matti Tedre, and Pat Yongpradit. 2017. Misconceptions About
Computer Science. Commun. ACM 60, 3 (Feb. 2017), 31–33. https://doi.org/10.
1145/3041047

[9] Caitlin Duncan, Tim Bell, and James Atlas. 2017. What Do the Teachers Think?:
Introducing Computational Thinking in the Primary School Curriculum. In
Proceedings of the Nineteenth Australasian Computing Education Conference (ACE
’17). ACM, New York, NY, USA, 65–74. https://doi.org/10.1145/3013499.3013506

[10] Informatics Europe and ACMEurope. 2013. Informatics education: Europe cannot
afford to miss the boat. (2013). Retrieved April 4, 2017 from http://europe.acm.
org/iereport/ACMandIEreport.pdf

[11] Google. 2017. Exploring Computational Thinking. (2017). Retrieved April 4, 2017
from http://g.co/exploringct

[12] Mark Guzdial. 2015. Learner-Centered Design of Computing Education: Research
on Computing for Everyone. Morgan & Claypool Publishers. http://dx.doi.org/10.

2200/S00684ED1V01Y201511HCI033
[13] ISTE and CSTA. 2011. Computational Thinking teacher resources. (2011).

Retrieved April 4, 2017 from https://c.ymcdn.com/sites/www.csteachers.org/
resource/resmgr/472.11CTTeacherResources_2ed.pdf

[14] ISTE and CSTA. 2011. Operational Definition of Computational Thinking for
K-12 Education. (2011). Retrieved April 4, 2017 from https://c.ymcdn.com/sites/
www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf

[15] Enrico Nardelli and Giorgio Ventre. 2015. Introducing Computational Thinking
in Italian Schools: A First Report on “Programma Il Futuro” Project. In INTED2015
Proceedings (9th International Technology, Education and Development Conference).
IATED, 7414–7421.

[16] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY, USA.

[17] Seymour Papert. 1996. An exploration in the space of mathematics educations.
International Journal of Computers for Mathematical Learning 1, 1 (1996), 95–123.
https://doi.org/10.1007/BF00191473

[18] Roy D. Pea and D.Midian Kurland. 1984. On the cognitive effects of learning
computer programming. New Ideas in Psychology 2, 2 (1984), 137 – 168. https:
//doi.org/10.1016/0732-118X(84)90018-7

[19] Juha Sorva. 2013. Notional Machines and Introductory Programming Education.
Trans. Comput. Educ. 13, 2, Article 8 (July 2013), 31 pages. https://doi.org/10.1145/
2483710.2483713

[20] Jeannette M. Wing. 2006. Computational Thinking. Commun. ACM 49, 3 (March
2006), 33–35. https://doi.org/10.1145/1118178.1118215

[21] Jeannette M. Wing. 2008. Computational thinking and thinking about computing.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 366, 1881 (Oct 2008), 3717–3725. https://doi.org/10.1098/
rsta.2008.0118

[22] Jeannette M. Wing. 2010. Computational Thinking: What and Why? Link
Magazine (2010).

[23] Aman Yadav, Chris Mayfield, Ninger Zhou, Susanne Hambrusch, and John T.
Korb. 2014. Computational Thinking in Elementary and Secondary Teacher
Education. Trans. Comput. Educ. 14, 1, Article 5 (March 2014), 16 pages. https:
//doi.org/10.1145/2576872

[24] Aman Yadav, Ninger Zhou, Chris Mayfield, Susanne Hambrusch, and John T. Korb.
2011. Introducing Computational Thinking in Education Courses. In Proceedings
of the 42Nd ACM Technical Symposium on Computer Science Education (SIGCSE
’11). ACM, New York, NY, USA, 465–470. https://doi.org/10.1145/1953163.1953297

https://doi.org/10.1145/1922681.1922682
https://doi.org/10.1145/1922681.1922682
https://doi.org/10.1145/3011071
http://barefootcas.org.uk/wp-content/uploads/2014/10/Computational-thinking-Barefoot-Computing.pdf
http://barefootcas.org.uk/wp-content/uploads/2014/10/Computational-thinking-Barefoot-Computing.pdf
https://doi.org/10.1145/3059009.3059040
https://doi.org/10.1145/1516046.1516054
https://doi.org/10.1145/3041047
https://doi.org/10.1145/3041047
https://doi.org/10.1145/3013499.3013506
http://europe.acm.org/iereport/ACMandIEreport.pdf
http://europe.acm.org/iereport/ACMandIEreport.pdf
http://g.co/exploringct
http://dx.doi.org/10.2200/S00684ED1V01Y201511HCI033
http://dx.doi.org/10.2200/S00684ED1V01Y201511HCI033
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/472.11CTTeacherResources_2ed.pdf
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/472.11CTTeacherResources_2ed.pdf
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/CompThinkingFlyer.pdf
https://doi.org/10.1007/BF00191473
https://doi.org/10.1016/0732-118X(84)90018-7
https://doi.org/10.1016/0732-118X(84)90018-7
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/2483710.2483713
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1145/2576872
https://doi.org/10.1145/2576872
https://doi.org/10.1145/1953163.1953297

	Abstract
	1 Introduction
	1.1 Context
	1.2 Purpose of the study

	2 Literature Overview
	2.1 Definition of CT
	2.2 Related work

	3 methods
	3.1 Instrument
	3.2 Sample description
	3.3 Procedures

	4 Quantitative results
	4.1 Technology and computational thinking
	4.2 Teachers' preparation

	5 Qualitative results
	5.1 Categories
	5.2 Analysis of category distribution
	5.3 Analysis of answer values distribution
	5.4 Conceptions and misconceptions regarding CT

	6 conclusions and further work
	Acknowledgments
	References

