
Proceedings of the First Southern Symposium on Computing
The University of Southern Mississippi, December 4-5, 1998EFFICIENT SPATIAL DATA MANAGEMENT USING BALANCED ANDDISTRIBUTED SEARCH TREESADRIANO DI PASQUALE� AND ENRICO NARDELLIyAbstrat. In this paper we onsider the ditionary problem in a message passing distributed environment. Weintrodue a new version of an order-preserving distributed searh tree, apable to both grow and shrink as long askeys are inserted and deleted. This is the �rst distributed data struture to expliitly support both insertion anddeletion with logarithmi osts, i.e. a key an be searhed, inserted and deleted in O(log n) messages, where n is thenumber of servers.Keywords: distributed data struture, fully dynami, order preserving, message passing environment, balanedstruture.1. Introdution. With the striking advane of ommuniation tehnology it is now easy andost-e�etive to set up distributed appliations running on a network of workstations. The teh-nologial framework we make referene to is the so alled network omputing : fast ommuniationnetworks, in the order of 10-100MB/se, and many powerful and heap workstation, in the orderof 50-100 MIPS. Many organizations have this kind of omputing power: large organizations haveeasily a umulative amount of main memory in the order of tenths of GB.In this work we onsider the ditionary problem in a message passing distributed environment.Litwin, Neimat e Shneider [2℄ were the �rst to present and to disuss for this environment a datastruture paradigm alled SDDS (Salable Distribuited Data Struture). The main properties ofSDDS paradigm are:1. Keep a good performane level while the number of managed objets hanges.2. Perform operations loally.The distributed environment we make referene to is onstituted by a set of sites (proessor or nodes)onneted by a network. Every site in the network is either a server, that manages data, or a lient,that requests aess to data. Eah server manages data items belonging to some parts of the datadomain. Sites ommuniate by sending and reeiving point-to-point messages. We assume networkommuniation is free of errors. Every server an store a single blok (alled buket) of at most bdata items, for a �xed number b. The overall data organization sheme we onsider is a searh tree:servers manage both nodes ontaining data items (leaf nodes) and nodes guiding the searh proess(internal nodes).The data distribution and management poliy determines how data are distributed among theservers; there are no preonditions as to where the data an be stored. New servers an be addedas the volume of data inreases to maintain the performane level. The lients are not, in general,up-to-date with the evolution of the struture, in the sense they have some loal indexing struture,but do not know, in general, the overall status of the data struture. Di�erent lients may thereforehave di�erent and inomplete views of the data struture.The fundamental measure of the eÆieny of an operation in this distributed ontext is the numberof messages exhanged between the omputers of the network. In the literature various kinds ofSDDSs have been proposed: LH� [2℄, RP� [3℄, DRT [4℄, lazy k-d-tree [6, 8℄, RBST [7℄.All previous proposals but RBST onsidered expliitly only the semi-dynami ase, that is thease where keys are only inserted and never deleted. In this work we fous on the extensions ofbinary searh trees to the distributed ase (like DRT and RBST) and onsider a fully dynamiontext, i.e. keys an be both inserted and deleted.� Dipartimento di Matematia Pura ed Appliata, Univ. of L'Aquila, Via Vetoio, Coppito, I-67010 L'Aquila, Italia.y Dipartimento di Matematia Pura ed Appliata, Univ. of L'Aquila, Via Vetoio, Coppito, I-67010 L'Aquila,Italia, (nardelli�merlino.iasi.rm.nr.it). Istituto di Analisi dei Sistemi ed Informatia, Consiglio Nazionale delleRierhe, Viale Manzoni 30, I-00185 Roma, Italia.

2 A. DI PASQUALE AND E. NARDELLIThe theoretial study of the harateristis of salable distributed searh trees onduted byKr�oll e Widmayer [9℄ showed that if all the hypothesis used to eÆiently manage searh struturesin the single proessor ase are arried over to a distributed environment then a lower bound of
(pn) holds for the height of balaned searh trees.In the RBST [7℄ some of these hypothesis, related to the way the searh proes is exetued,are relaxed, yielding a ost of O(log2 n) messages for searh and update operations, where n is thenumber of servers in the struture.In this paper, we relax some other hypothesis, related to the kind of synhronization betweenservers and lients of the struture, and show that a distributed searh trees an be maintainedbalaned in a distributed environment so that searh and update operations an be exeuted withO(logn) messages. Hene we present the �rst balaned distributed searh struture to be fullydinami and order-preserving.2. Context. More formally, let T be a binary searh tree with n leaves (and then with n� 1internal nodes). We all f1; : : : ; fn the leaves and t1; : : : ; tn�1 the internal nodes. To eah leaf abuket apable of storing b data items is assoiated. Let s1; : : : ; sn be the n servers managing thesearh tree. We de�ne leaf assoiation the pair (f; s), meaning that the server s manages the leaff and its assoiated buket, node assoiation the pair (t; s), meaning that the server s manages theinternal node t. In an equivalent way we de�ne the two funtions:� t(sj) = ti, where (ti; sj) is a node assoiation,� f(sj) = fi, where (fi; sj) is a leaf assoiation.To eah node x, either leaf or internal one, the interval I(x) of data domain managed by x isassoiated.In the entralized ase a searh tree is a binary tree suh that every node represents an interval ofthe data domain. Moreover, the overall data organization satis�es the invariant that the intervalmanaged by a hild node lies inside the father node's interval. Hene the searh proess visit a hildnode only if the searhed key is inside the father node's interval.Kr�oll and Widmayer all this behavior the straight guiding property [9℄. They observed that itis not possible, in the distributed ase, to diretly make use of rotations for balaning a distributedsearh tree while guaranteeing the straight guiding property. They proved that a lower boundof O(pn) holds for the height of balaned searh trees if the straight guiding property has to besatis�ed.In [7℄ we devised a distributed searh tree, alled RBST (for Relaxed Balaned Searh Tree)where, by aepting a violation of the straight guiding property, the height of the tree is keptlogarithmi and all update operations have a logarithmi ost, but the upper bound on the omplexityof the searh proess is O(log2 n) .In the following we relax the requirement of the straight guiding property, but by assuming adi�erent synhronization mehanism between lients' loal indexes and servers we show how to keepa distributed binary searh tree balaned while all operations are maintained within a logarithmiupper bound.3. Basi idea. In all previous works on SDDS, whenever a lient index is introdued to improveperformanes, it is always built and managed to exatly reet the global tree struture. This meansthat both lients and servers keep trak of both node assoiations and leaf assoiations. Moreover itis assumed that the knowledge the lient has of the global tree struture is partial and almost exat,in the sense it may possibly be inomplete and at a oarser level of detail than it is in the reality. Aorretion to a lient index onsists only in adding more detailed information.If one wants to keep the overall struture balaned then rotations in the overall tree have to beused. But after a rotation in the overall tree has been performed, lient indexes do not represent anymore, in general, a portion of the global tree in an exat way. The approah of sending messagesfrom servers to all lients whenever a rotation is performed is learly not an eÆient solution.Our basi idea to obtain logarithmi osts is to relax the synhronization between lients and serverindexes. By aepting a strutural mismath between the overall index and the loal indexes wean then use rotations to maintain the overall tree balaned. The straight guiding property is

BALANCED AND DISTRIBUTED SEARCH TREES 3still violated but we are now able to keep a logarithmi upper bound on both searh and updateoperations.To be more preise, we manage in di�erent ways the two assoiations. Servers manage bothnode and leaf assoiations, while lients manage only leaf assoiations. A rotation in the overall treestruture only a�ets node assoiations, sine we never rotate leaves.The global tree is therefore kept balaned and the searh proess is bounded by logarithmiosts. On the other side, lient indexes will never have to be modi�ed due to rotations.4. The data struture. The distributed data struture we fous on is a binary searh tree,where data are stored in the leaves and internal nodes ontains only routing information. Everynode has zero or two hildren. Every server s but one, with leaf node assoiation (t; s) and leafassoiation (f; s), reords at least the following information:� An internal node t = t(s) and the assoiated interval of key's domain I(t),� The server p(s) managing the father node pn(t) of t, if t is not the root node,� The server l(s) (resp., r(s)) managing the left (resp., right) son ls(t) (resp., rs(t)) of t, andthe assoiated interval Il(t) (resp., Ir(t)),� A leaf f = f(s) and the assoiated interval of key's domain I(f),� The server pf(s) managing the father node pn(f) of f , if f is not the unique node of globaltree (initial situation).This information onstitutes the loal tree lt(s) of server s (see �gure 4.1). Sine in a global tree of

Fig. 4.1. The loal tree of server s.n nodes there are n� 1 internal nodes, there is one server s0 managing only a leaf assoiation, henelt(s0) is made up by only the two last piees of information in the above list.We say a server s is pertinent for a key k, if s manages the buket to whih k belongs. In our ase ifk 2 I(f(s)). Moreover we say a server s is logially pertinent for a key k, if k is in the key intervalof the internal node assoiated to s, that is if k 2 I(n(s)). Note that the server managing the rootis logially pertinent for eah key.When a server sends a message, it always adds its loal tree to it. This is useful to inreasethe knowledge about the global struture in the lient reeiving the message. As soon as a lientreeives an answer from a server, it uses the reeived loal tree to update its loal index, where onlyleaf assoiations are stored. A lient uses its loal index to better address its queries.5. The searh proess. We now desribe how to searh in our struture, alled BDST forBalaned and Distributed Searh Tree. We examine whih events an our and algorithms to treatthem.Event 1. A query from a new lient.. A new lient is a lient that never issued a query to thestruture and then has no knowledge about it. Suh a lient, say , always send the request of akey k to the root r of global tree. If r is the pertinent server for k, then r manages the request andanswers to , else it hooses between the servers l(r) and r(r) managing its left and right sons thepertinent or logially pertinent one for k and sends it the request. Note that one of two has to beat least logially pertinent. The proess ontinues until the request arrives to the pertinent servers0 for k. s0 manages the request and answers to , see �gure 5.1 (left).

4 A. DI PASQUALE AND E. NARDELLI
Fig. 5.1. Searhing queries from a new lient (left) and from a lient with addressing error (enter and right).Event 2. A query from a lient without addressing error.. A lient sends the request for a keyk to a server s whih is the pertinent server for k. s manages the request and answers to .Event 3 A query from a lient with addressing error.. A lient sends the request for a key kto a server s, but s is not the pertinent server for k.If s is logially pertinent for k then s hooses between the servers l(s) and r(s) managing leftand right sons the pertinent or logially pertinent one for k and sends it the request. Note that oneof two has to be at least logially pertinent. The proess ontinues until the request arrives to thepertinent server s0 for k. s0 manages the request and answers to , see �gure 5.1 (enter).If s is not logially pertinent for k then s sends the request to p(s), i.e. the server managingthe father of t(s). From p(s) the searh may proeed further upwards. There is ertainly a nodet00 in the path between t(s) and the root suh that its managing server s00 is pertinent or logiallypertinent for k. If s00 is pertinent then it behaves like s0. If s00 is only logially pertinent then ithooses between the servers managing left and right sons and ontinues as in previous ase, see�gure 5.1 (right).Theorem 5.1. Let T be a BDST and let h denote its height. Searhing for a given key requiresin the worst ase O(h) messages.Proof. If event 1 happens a hain of messages departs from the root and arrives to a leaf. Inthe worst ase, the hain is omposed by h messages. Counting also request and answer messages,h+ 2 messages are needed.If event 2 happens only O(1) messages are needed (namely, the request and answer message).If event 3 happens, then we distinguish two ases. In the �rst ase, s is logially pertinent, andh+ 2 messages are needed. In the seond one, s is not logially pertinent, hene we must go up inthe global tree to found the logially pertinent server. In the worst ase we depart from a leaf atheight h and arrive to the root, then we go down again to another leaf of height h (see �gure 5.2).In total we need 2h+2 messages.

Fig. 5.2. The worst ase for searhing.Now, if we keep the global tree balaned during updates by using rotations, the height h alwaysremain bounded by O(logn) and the ost of searh proess too.

BALANCED AND DISTRIBUTED SEARCH TREES 56. Insertion and deletion. We now desribe how to perform insertion and deletion in aBDST. Please note that in a distributed environment insertion and deletion refers, respetively, tothe reation of a new server that reeives part of the keys previously managed by an existing serverthat is now in overow and to release of an existing server that is now in underow and sends allits keys to an existing server. Insertion and deletion of data items that do not ause, respetively,overow and underow, do not require any rebalaning ation, and their omplexity analysis is thesame of searhing data items. When overows and underows our, we must perform some ationsto keep the struture balaned and a binary searh tree (i.e. eah node has either zero or twohildren).The balane ations must a�et only internal nodes and never hange the leaves, sine rotatingthe leaves would fore to transfer the whole buket ontent to another server and this is not eÆient.This means that during balaning only node assoiations hange while leaf assoiations remains thesame. Therefore a leaf an hange its father, but an never beome an internal node. It is possibleto use any balaning tehnique whih satis�es these assumptions and keeps the osts logarithmi.In the desription of algorithms for insertion and deletion we assume that a server is able to performa funtion, alled balane bdst, whih performs the ation that may be needed to keep the BDSTbalaned after an update. We assume balane bdst uses at most O(logn) messages, where n is thenumber of servers managing the BDST, and that before the exeution of the algorithms desribedbelow the BDST is already balaned, i.e. h, the height of BDST, is bounded by O(logn).6.1. Algorithm for insertion.Step 1: Insert {. We searh for the leaf where the new key has to be inserted and insert it. Weassume that this insert generates an overow, that is the key to be inserted is the (b + 1)-th keyassigned to that buket.Step 2: Manage the overow {. Leaf f , managed by server s, goes in overow. In this ases must perform a funtion alled split. This funtion is similar to the synonimous one desribedin [2, 4℄. Leaf f splits in two new leaves f1 and f2. A new internal node tn+1 replaes f in thetree. A new server sn+1 is alled to manage the new internal node and one of the new leaf. Servers releases the old leaf f and manages the other new leaf.In onlusion we delete leaf assoiation (f; s) and add two leaf assoiations (f1; s) and (f2; sn+1)and one node assoiation (tn+1; sn+1) (see �gure 6.1). The old interval I(f) is divided in the newintervals I(f1) and I(f2), suh that I(f1) [I(f2) = I(f).
Fig. 6.1. Insertion of an element in an overowing buketStep 3: Balane the BDST {. Perform the balane bdst funtion starting from tn+1.Theorem 6.1. Insertion in a BDST onstituted by n servers osts in the worst ase O(logn)messages.Proof. From the algorithm above we have in the worst-ase the following osts for the varioussteps:Step 1: From theorem 5.1 this osts O(logn) messages.Step 2: A onstant number of messages is needed to perform the split funtion (see [2, 4℄).Step 3: From the assumptions above we have a ost of O(logn) messages.6.2. Algorithm for deletion.

6 A. DI PASQUALE AND E. NARDELLIStep 1: Delete {. We searh for the leaf where the key has to be deleted and delete it. Weassume that this generates an underow, that is by deleting that key the buket has less than b2keys.Step 2: Manage the underow {. The leaf f , managed by server s, goes in underow. In thisase the server s must perform a funtion alled merge. We assume b is the server suh that t(b) isthe father node of f(s) and is the server suh that t() is the father node of t(b). This funtion isonstituted by the following sub-steps (see also �gure 6.2):
Fig. 6.2. Deletion of an element from an underowing buket1. Release server s and delete leaf f = f(s).2. Sine node t(b) has now one son, then delete t(b) and replae it with t(a) as the son of t().3. If s managed an internal node t = t(s), then from now on t is managed by server b (notethat b has just released its internal node t(b)).The new value of interval I(t(a)) beomes the union of the value of I(t(a)) before the deletion andof the value of I(f).There are two speial ases: in the �rst ase f is the root, the BDST is omposed by one nodeand then no ations are performed. In the seond ase, the BDST is omposed by the root r andtwo leaves f and x, hene there are only two servers s and s0. Then s is released and after theommuniation to s0 and the deletion of r and that x beome the root of BDST.Step 3: Balane the BDST {. Perform the balane bdst funtion starting from t().In the next lemma we prove that every message needed to perform the merge funtion an atually besent, i.e. every server searhing in the loal tree eventually �nds the servers destination of messages.Lemma 6.2. The merge funtion is orret with respet to the loal tree of the servers involved.Proof. In step 2 server s has to notify to b that it has to release its internal node t(b). This anbe done sine b is the father of f = f(s) and then is in the loal tree of s. Server b has to notify toservers a and the hange of, respetively, the father of t(a) and the son of t(). This an be donesine we an �nd a and in the loal tree of b. In step 3, if s managed an internal node t, then s hasto notify to b the new internal node t to manage (this an also be performed in previous messagesfrom s to b) and whih are the father and the sons of t. Then this hange has to be noti�ed to theservers managing the father and the sons of t. All the required information is in the loal tree of s.Lemma 6.3. The merge funtion osts O(1) messages in the worst ase.Proof. From lemma 6.2 we an see that step 2 needs one message from s to b, one from b to a,and one from b to .If s was not managing an internal node t then step 3 needs zero messages, else it needs onemessage from s to b, one from s to the server managing the father of t (zero if n is the root), andtwo from s to the servers managing the sons of t. This makes a total of 6 messages.If b oinides with s then only two messages are needed. In the two speial ases we have,respetively, zero and one messages.Theorem 6.4. Deletion in a BDST onstituted by n server osts in the worst ase O(logn)messages.Proof. From the algorithm above we have the following worst ase osts for the various steps:Step 1: From theorem 5.1 this osts O(logn) messages.

BALANCED AND DISTRIBUTED SEARCH TREES 7Step 2: From lemma 6.3 this osts O(1) messages.Step 3: From the assumptions above we have a ost of O(logn) messages.7. The lient index. Every lient manages an index to redue addressing errors. This is aolletion, in general inomplete, of leaf assoiations. Sine our omplexity measure is the numberof messages on the network, then it is not important whih is the struture used to store theassoiations. It an be a list or a searh tree. If it is a searh tree, its struture is, in general,di�erent from the struture of the global tree.A lient uses its index to individuate the server s whih should answer to a query so to issue apoint-to-point message to s. If this server is not individuated, then the lient must send the queryto the server managing the root of the global tree. This is true, in partiular, for a new lient, whoseindex is empty.When a lient issues a query, it reeives in the answer message a ertain number of servers'sloal trees (owned by the servers involved in the searh proess). It uses these loal trees to improveinformation reorded in its index: for a server s of a leaf assoiation present in its index, the lientknows that s manages an interval I(f(s)). In the reality it may be that either s has been releaseddue to an underow or s is managing a sub-interval of I(f(s)).8. Rotations in a distributed environment. Rotations in a distributed environment areperformed via message exhanges between servers. Sine we are in a onurreny framework, in thesense that various lients independently manipulate the struture, eah rotation must be preeededby a lok of the servers involved. Then some messages are needed to reate the lok, others toommuniate the modi�ations and others to release the lok. Eah rotation has therefore a ostin terms of messages. We an show that is a onstant ost and then if a balaning strategy uses alogarithmi number of rotations for operation, then the overall ost is kept logarithmi.We show by means of an example how to realize a rotation in a distributed environment. Withoutloss generality, let us onsider �gure 8.1 (top-left), and suppose that node a must rotate with nodeb: 1. a sends messages to (lient) nodes A, B and to (server) node b, to notify that a lok mustbe reated. After having reeived these messages, nodes A, B, and b stop routing messagestowards a and send a lok aknowledgement to a.2. b sends messages to (lient) node C and to (server) node , to notify that a lok must bereated and that aknowledgement must be sent to a. After this message, nodes C and stop routing messages towards b.3. Every server answers to a, see �gure 8.1 (top-enter), to aknowledge the lok state.4. a noti�es to all servers involved in the rotation whih modi�ations are needed and after allhave been on�rmed a releases all loks, see �gure 8.1 (top-right).5. When loks are released the situation is shown in �gure 8.1 (bottom) and all servers restartto route messages.It is simple to prove that the example is orret with respet to the loal tree of a server. We used15 messages and 5 servers are involved. We note that in eah rotation exists a server that does notneed to be informed of the rotation, and then is not involved in the lok. In the disussed examplethis server is C. We an therefore improve the proedure and use only 12 messages (with 4 serverinvolved).Eah lok, in a ertain sense, redues the degree of onurreny and this is a drawbak in a distributedenvironment. It is then important to keep the number of loks low.Although any balaning strategy with a logarithmi number of messages is good for the generalobjetive, we must fous on those minimizing the number of rotations and then the number of loks.For example the splay tree [10℄ uses a great number of rotations.It is more onvenient to use a data struture like a red-blak-tree, whih has a onstant numberof rotations both for deletion and insertion operations.Muh work has been done about reduing the number of rotations while balaning a onurrentsearh tree [1, 5℄, but this regards the onurrent, shared-memory ase.

8 A. DI PASQUALE AND E. NARDELLI

Fig. 8.1. Loking messages during a rotationThere is a big di�erene between this kind of work and the distributed tree studied here. In [1, 5℄every update operation an unbalane the struture, while in our ase a great number of updateoperations do not ause an unbalane to the struture.This is due to the fat that data are managed in bukets of size b. If a server s start with anempty buket, b insert operations addressed to s do not ause an overow and do not hange thedistributed tree's struture. More in general if we have k insert operations in a struture where eahserver manages b2 keys (i.e. every server has just performed a split), then the number of overows(and then of splits) is bounded by d 2kb e (the bound holds when all k inserts are in the same server).Then if b is large, we have a low number of overows. An analogous situation holds for underows.9. Conlusions. We have presented an approah to keep balaned a distributed binary searhtree, enabling it to manage both insertion and deletion of data items in a message-passing distributedenvironment.Hene we have shown that a fully-dynami and order preserving distributed searh struture,that is a struture that is able to grow and shrink as long as data items are inserted and deleted, anbe implement in a message-passing distributed environment as eÆiently, namely with a O(logn)worst ase bound, as in the single proessor ase.Aknowledgments. This researh was partially supported by the European Union TMRprojet \Chorohronos". REFERENCES[1℄ J. Ekerle, O. Nurmi, Tehnial Report Aug17-7, Tehnial University of Munih, 1994.[2℄ W. Litwin, M.A. Neimat, D.A. Shneider LH*-Linear hashing for distributed �les, ACM SIGMOD Int. Conf.on Management of Data, Washington, D. C., 1993.[3℄ W. Litwin, M.A. Neimat, D.A. Shneider RP* - A family of order-preserving salable distributed data stru-ture, in 20th Conf. on Very Large Data Bases, Santiago, Chile, 1994.[4℄ B. Kr�oll, P. Widmayer Distributing a searh tree among a growing number of proessor, in ACM SIGMODInt. Conf. on Management of Data, pp 265-276 Minneapolis, MN, 1994.[5℄ K. Larsen, E. Soisalon-Soininen, P. Widmayer. Relaxed balane through standard rotations, in Workshopon Algorithms and Data Strutures, Halifax, Nova Sotia, Canada, August 1997.[6℄ E. Nardelli Distribuited k-d trees, in XVI Int. Conf. of the Chilean Computer Sienze Soiety (SCCC'96),Valdivia, Chile, November 1996.[7℄ F. Barillari, E. Nardelli, M. Pepe. Fully Dinami Distribuited Searh Trees Can Be Balaned in O(log2N)Time, Tehnial Report 146, Dipartimento di Matematia Pura ed Appliata, Universita' di L'Aquila, July1997, submitted for publiation.

BALANCED AND DISTRIBUTED SEARCH TREES 9[8℄ E. Nardelli, F.Barillari, M. Pepe. Distributed Searhing of Multi-Dimensional Data: a Performane Evalu-ation Study, Journal of Parallel and Distributed Computation, 1998.[9℄ B. Kr�oll, P. Widmayer. Balaned distributed searh trees do not exists, in 4th Int. Workshop on Algorithmsand Data Strutures (WADS'95), Kingston, Canada, (S. Akl et al., Eds.), Leture Notes in ComputerSiene, Vol. 955, pp. 50-61, Springer-Verlag, Berlin/New York, August 1995.[10℄ D.D. Sleator, R.E. Tarjan. Self-Adjusting Binary Searh Trees, JACM 32(3):652-686, 1985.

