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The University of Southern Mississippi, December 4-5, 1998ALGORITHMIC ISSUES IN NODE MANAGEMENT POLICIES FORDISTRIBUTED R+-TREESANSELMO COCCHI� AND ENRICO NARDELLIyAbstrat. In this paper we address algorithmi issues arising in onsidering the extension to a distributedframework of data strutures for spatial data.1. Framework. The newer appliations that are being developed require more and more aneÆient representation and aess to multi-dimensional objets. One approah to gain eÆieny isto use the omputing power that is olletively available in organizations over the network.The tehnologial framework we make referene to is the so-alled Network Computing [9℄,haraterized by fast ommuniation networks, i.e. �ber-opti networks delivering 100Mbits perseond that are now heaper and heaper, and powerwul and heap workstations (onsider that for10K dollars you an now have very fast mahines).With these ingredients it is easily possible to aumulate a very large omputing power. Com-muniation between mahines takes the form, at a logial point of view, of point-to-point messages,whih is the standard assumption.The objetive of our paper is to de�ne a distributed data struture able to manage eÆiently k-dimensional points. The approah we take to his aim is to extend to the onsidered distributedframework eÆient data strutures already developed for the ase of a single mahine.In this kind of distributed environment the key requirements to obtain eÆieny, introdued byLitwin et al. [8℄, are:� no entralized ontrol, otherwise bottleneks may derive with the inrease of the size of thedata set,� salability, that is apability of the struture to adapt itself to a growing number of points,so that advantage an be obtained from a distributed ontext, where one an �nd additionalomputing power.For what regard queries, the basi requirements for every multidimensional data struture are:� exat math, where the query is looking for a point whose all oordinates are given,� range, looking for all points lying in a given k-dimensional interval.We assume the distributed data struture is used by a variable number of mahines, alled lients,whih query the mahines managing the k-dimensional spae and storing the k-dimensional points,alled servers. Clients have di�erent and variable behaviour, hene it annot be antiipated if andwhen they are onneted to the network to be kept up-to-date with the evolution of the struture.This means that, in general, some adaptable indexing mehanism have to be set up to avoid that,for eah query, a lient is disturbing all servers [10℄.The performane measure we onsider are hene geared at evaluating how well the struture isbehaving from a distributed point of view. Hene our measure is the overall number of messagestraveling over the network for a given query. For more details on issues regarding distributed datastruture in the desribed framework see [9℄.
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2 A. COCCHI AND E. NARDELLI2. The data struture. The distributed data struture we have de�ned in this work is anextension to the distributed framework of the R+-tree [1℄, a well known and widely used datastruture to manage spatial data of the lass of R-trees [3℄.More preisely, our distributed data struture an be onsidered, from a a oneptual point view,as a unique R+-tree. From a physial point of view, this unique R+-tree is ut in various piees, eahone managed by a di�erent mahine. To be more preise, eah leaf of the R+-tree stores one buketof data, and eah buket is managed by its own server. Eah server also manages one of the internalnodes of the R+-tree, that are used to guide the searh proess. This shema was introdued, withreferene to binary (but not balaned) searh trees by Kr�oll and Widmayer [7℄.The behaviour of the struture is determined by the lients, that add k-d points. A new k-dpoint is added to the pertinent buket, that is to the buket overing the part of the k-d spae wherethe objet lies. When a buket overows, due to the insertion of a new element, we split it followingthe usual rules for R+-tree.Before proeeding further we now briey reall the de�nition and the behaviour of R-trees, for thease of a single mahine. R-trees an be onsidered as an extension of a B-tree to the multidimen-sional ase. For more details see [3℄.Namely, an R-tree is a m-ary tree to index 2-dimensional points or 2-dimensional extendedobjets. For ease of desription in the following we desribe it in the ase it manages 2-dimensionalpoints. An R-tree has the following harateristis (see also �gure 2.1):

Fig. 2.1. Example of an R-tree� Eah leaf nodes stores a set of reords of type (B, id), where B is the smallest retangleontaining the set of points referred to by pointer id;� Eah internal nodes stores a sets of reords of type (B, id), where id points to a hild andB is the smallest retangle ontaining all retangles assoiated the hild node;� Eah node has thus assoiated a minimum bounding retangle (MBR) that is the smallestretangle ontaining all retangles B stored in the node;� Eah node but the root has a degree less than or equal m and greater than or equal m=2.The root has degree � 2 and � m;� All paths from the root to a leaf have the same lenght. This means that all leaves are atthe same level, hene all the searh paths have the same upper bound on their length.The last two items above are similar to the analogous onstraints for B-tree.Searh in an R-tree is exeuted by a top-down traversal, by looking for the desired element in allnodes suh that their assoiated MBRs interset the query element.Example. In the R-tree shown in �gure 2.1 there are three leaf nodes, A, B, and C. Nodes A andB overlap. Retangle G is present only in node A, but has to be searhed also in node B, sine node



ALGORITHMIC ISSUES IN DISTRIBUTED R+-TREES 3B is overlapping part of the spae where G is, and, before searhing, one annot say if G is in A orin B.Insertion is done by arrying out a searh and then inserting the point in a leaf node, hosen bymeans of some suitable heuristis.The MBR of the leaf node whih takes are of the just inserted element may be enlarged inonsequene of the insertion. Possibly, also parents of suh a leaf node may be enlarged.If it is needed to maintain the onstraint on node degree, nodes are split during the insertionproess, and this is managed like in B-trees, by letting the R-tree grows towards the root.Many variant of R-trees have been de�ned. The one we are interested to is alled R+-tree [1℄. Itsdistintive harateristi is that to avoid multiple searh paths, in R+-trees MBRs are split duringthe insertion proess so that, at eah level of the tree, MBRs assoiated to nodes never interset (seealso �gure 2.2).

Fig. 2.2. Example of an R+-treeExample. In the R+-tree shown in �gure 2.2 the requirement of having non overlapping nodes issatis�ed by the insertion of a new node, named P, whih stores H and part of G. In fat sine G isanyway overlapping both nodes A and P, retangle G is split and stored twie, one in A and onein P.The drawbak is that the maintenane of the non-overlapping onstraints between MBR may ausethe rearrangement of the assignment to nodes of the already existing points.A further problem is that when, during insertion, a node is fored to split, the maintenane ofthe non-overlapping onstraints may ause some node to have less than m=2 hildren. In this asea restruturing of the tree (or of some subset of it) is required.3. The deadlok problem. When a new point is inserted it might happen that no server anenlarge its MBR to take are of the new point withour interseting other servers.Example. A deadlok is shown in �gure 3.1. There are four servers, namely A , B, C, and D. TheMBR of the four servers is the retangle named N, that is the MBR of the parent in the R+-tree ofthe four nodes managed by the four servers. The shaded area in the �gure is a deadlok zone: if apoint is inserted in it, any of the servers that enlarges its MBR is going to inserset another server.In the distributed version a reorganization of the tree is too ostly in terms of messages, sinesuh a reorganization an involve, in the worst ase, all node of the tree, hene an require to sendmessages to all servers.



4 A. COCCHI AND E. NARDELLI

Fig. 3.1. A deadlok on�gurationThe only tehnique to avoid deadlok is to prevent it by suitably hoosing, at eah insertion, thenode to be expanded. We now show how this is modeled from an algorithmi point of view.To avoid deadlok we introdue the Coverage Problem, whose de�nition is the following:Problem 3.1 (The Coverage Problem). Given a set S of disjoint retangles, whih are alledseeds, does it exist or not a set C, alled overage, of retangles suh that:� eah retangle in S is ontained in exatly one di�erent retangle of C,� retangles in C are pairwise disjoint,� the union of retangles is C is the MBR of retangles in S.Example. In �gure 3.2 there are four seeds numbered from 1 to 4. For this ase the Coverage prob-lem admits a solution, shown by the 4 retangles named A to D whih satify the above onstraints.

Fig. 3.2. The Coverage problemTo avoid the deadlok, the approah is to solve the Coverage problem for the node of the distributedR+-tree suh that the point has to be inserted into one of its hildren.Infat, given the solution to the Coverage problem, the point will be assigned for the insertionto the hild node that is ontained in the retangle of the overage that inludes the point itself.This guarantees that suh a hild node an inlude the point without ausing any deadlok in thefuture.4. Solving the deadlok problem. To takle the Coverage problem we �rst onsider a sim-pler version of it, namely the Coverage Problem for Iso-Polygonal Zones. In suh a simpler version:



ALGORITHMIC ISSUES IN DISTRIBUTED R+-TREES 5� the set of seeds de�nes a polygonal zone whose sides are parallel to the orthogonal axes,� no seed is present internally to the de�ned zone,� all seeds have one of their sides aligned along the perimeter of the de�ned zone.An example of an iso-polygonal zone is shown in �gure 4.1.

Fig. 4.1. An example of iso-polygonal zoneA basi onept for an iso-polygonal zone is the ut. A ut is a isotheti line utting in two thepolygonal zone without utting any seed. Note that a ut an go along a side of a seed, but annottraverse the internal of a seed. In �gure 4.1 the iso-polygonal zone admits no ut, sine all isothetilines that do not ut seeds are not able to partition in two the iso-polygonal zone.A partiular ase of iso-polygonal zone is when the zone is simply a retangle. In suh a asewe have the following result.Theorem 4.1. A retangular zone admits a overage if and only if it admits at least one ut.Proof. We �rst prove the ondition is suÆient, namely if a ut exists then the zone admits aoverage.In �gure 4.2 a horizontal ut is shown for the retangular zone. The ase of a vertial ut isanalogous. The ut, see the leftmost drawing, evidentiates two zones, named zone 1 and zone 2.
Fig. 4.2. A retangular zone and its utLet us onsider zone 1. The on�guration of seeds along the borders of zone 1 an only be one ofthe two shown in the enter or to the right (or the symmetri version of the on�guration to theright). If we have the on�guration in the enter, then we over zone 1 with expansion of retanglesoming from above. If we have the on�guration to the right, then we over zone 1 with expansionof retangles oming from the left.To show that the ondition is neessary we have to introdue the onept of visible partition. Avisible partition for an iso-polygonal zone is a partition of it into retangles so that eah retangleshare at least one of its sides with the perimeter of the zone. In �gure 4.3 on the left is shown a



6 A. COCCHI AND E. NARDELLIvisible partition and on the right a non-visible partition, sine the shaded retangle in the middlehas no side in ommon with the perimeter of the zone.
Fig. 4.3. A visible partition (left) and a non-visible partition (right)A onsequene of the existene of a visible partition is the following result.Lemma 4.2. If a retangular zone admits a visible partition then it admits a ut.Proof. (Sketh) If we start from one side of the retangular zone along one side of a retangle,due to the fat that annot exist retangles with no side in ommon with the perimeter, sooner orlater we enounter an alignment of sides of retangles, that is a ut. Now, it is esay to prove theneessity of the ondition. Infat, if a retangular zone admits a overage then suh a overage is avisible partition, hene, by the previous lemma, it admits a ut.In general we have the following result.Theorem 4.3. The Coverage problem is solvable for an iso-polygonal zone if and only it admitsa ut dividing it into two zones suh that for eah of them the Coverage problem is solvable.Proof. (Sketh) In �gure 4.4 you an see that it is possible to expand eah of the seed witha little arrow, eah until it reahes the ontinuous lines. Suh an expansion does not respet the

Fig. 4.4. An example for the Coverage problemut indiated by the dashed line, that is some seed are traversed by the dashed ut. Instead, suhan expansion respets the ut indiated by the ontinuous line on the right. But we an modifyexpansions of seed so that the dashed ut is respeted. For example we an expand the two seeds atthe right not just until the ontinuous line but until the dashed line, expand the bottom small seed



ALGORITHMIC ISSUES IN DISTRIBUTED R+-TREES 7just on the left of the dashed line all the way through to the upper border of the retangular zone,and then omplete the overage with the expansion of the seed with the oblique arrow on the leftand the expansion of the seed with the horizontal arrow on the top.The meaning of this theorem is that the Coverage problem for iso-polygonal zones an be reursivelysolved, by �rst �nding a ut and then solving in the problem in eah of the two obtained parts. Theimportane of the theorem is that any ut that one �nds will work, that is, it is not required to �nda partiular ut.On the basis of the previous theorem we an de�ne a polynomial algorithm to solve the Coverageproblem for an iso-polygonal zone. Infat, it is suÆient to start from an arbitrary ut and proeedreursively into the obtained zones. If one arrives at retangular zones ontaining eah one seed theCoverage problem is solvable for the iso-polygonal zone, otherwise is not solvable.5. The Coverage problem for arbitrary polygonal zones. For an arbitrary polygonalzone we have no de�nitive result. We have instead the following onjeture.Conjeture 5.1. The Coverage problem is NP-omplete for an arbitrary iso-polygonal zone.To support the onjeture we show two formulations of the problem leading to NP-omplete prob-lems. But we have not yet been able to �nd a redution.We �rst have to introdue the onept of base grid of a set of seeds. A base grid of a set S ofseeds is built by strething the sides of the seeds until they enounter the side of the MBR of S.The result is a partition in retangles of the MBR itself.In �gure 5.1 you an see four retangles, shown in bold, and the base grid resulting from thestrething of their sides up to the perimeter of the MBR of the set of seeds.

Fig. 5.1. An example of base gridThen we introdue the onept of feasible expansion of a seed (with respet to the MBR of theset of seeds). A feasible expasion of a seed s of a set S, is any retangle whih ontains s and ismade up by the elements of the partition of the base grid of S.The �rst formulation transform the Coverage problem in a Max Weight Independent Set problem.The idea is to derive from the Coverage problem a graph, with weights assoiated to nodes. Lookingfor an independent set of node with maximum weight and hehing that it is equal to some valuedepending on the base grid allows us to solve the problem.More formally, given an instane of the Coverage problem we obtain an instane of the Max WeightIndependent Set problem by applying the following steps:1. From the set S of seeds derive the set ES℄ of all feasible expansions of all seeds in S withrespet to their base grid.



8 A. COCCHI AND E. NARDELLI2. Build a node-weighted graph G = (V;E;w) where V = ES℄ and edge (x; y) exists if andonly if the retangle represented by x intersets the retangle represented by y. The weigthw(x) of node x is the number of retangles of the partition of the base grid of S that areontained in x.Now, we �rst �nd a set W of independent nodes in G with maximum weight. Then we hek if thisweigth is equal to the area of MBR of S measured in terms of the retangles of the partition of thebase grid of S.If the weight is equal then W identi�es a solution to the Coverage problem. If it is not theCoverage problem has no solution.But unfortunately the Max Weight Independent Set is in general an NP-omplete problem [2℄,and is also NP-omplete when restrited to this kind of graphs [4, 5, 6℄, alled Boxiity-2 graphssine they derive from the intersetion of retangles [11℄.Example. In �gure 5.2 an example of suh a formulation is shown. There are two seeds, named

Fig. 5.2. An example of the transformation to Max Weight Independent SetA and B and shown in bold. The base grid is shown with �ner lines. Retangle A has a weight of6. For retangle A only one expansion, using the lines de�ned by the base grid, is possible. It isindiated by A'. Expansion A' has a weight of 9. Retangle B has a weight of 4. Also for retangle Bonly one expansion is possible using the base grid. Suh an expansion, named B', has a weight of 6.The resulting graph is shown below. The independent set in suh a graph that has maximum weightis formed by A' and B'. Its total weight is 15 that is equal to the area of the base grid. Thereforethe Coverage problem has solution.In the seond formulation we transform the Coverage problem in Exat Cover on a bipartite graph.The idea is to over nodes in the lower layer of the bipartite with nodes in the upper layer.More formally, given an instane of the Coverage problem we obtain an instane of the Exat Coverproblem by applying the following steps:1. From the set S of seeds derive the set ES℄ of all feasible expansions of all seeds in S withrespet to their base grid.2. Build a bipartite graph G = (N; V;E) where N = ES℄ and V is the set of elements of thepartition of the base grid of S, and an edge (x; y) exists if and only if the feasible expansionrepresented by x ontains the element of the partition represented by y.



ALGORITHMIC ISSUES IN DISTRIBUTED R+-TREES 9Now we �nd a set W of nodes of N suh that(8v; w 2W 69u 2 V j (v; u); (w; u) 2 E)^ (8u 2 V 9v 2W j (u; v) 2 E)If suh a set exists then it identi�es a solution to the Coverage problem. If it does not exist thenthe Coverage problem has no solution.Unfortunately, the Exat Cover is an NP-omplete problem [2℄.Example. In �gure 5.3 an example of the formulation as an Exat Cover problem on bipartitegraph is shown. The instane of the Coverage problem is the same as before with two seeds, A and

Fig. 5.3. An example of the transformation to Exat CoverB. But now both the seeds and their expansions with respet to the base grid are represented asnodes in the upper layer of a bipartite, labeled A, A' B and B', while on the lower layer we representall the elementary ells de�ned in the base grid. In the �gure eah ell is numbered from 1 to 6.By �nding a set of nodes in the upper layer suh that (1) no two nodes in the found set have aommon adjaent in the lower layer and (2) all nodes in the lower layer are adjaent to some nodein the found set, we solve the Exat Cover problem. In the example, by hoosing nodes A and B'we have that node 5 is not adjaent to a node in the set, if we take node A and A' we violate theonstraint of not having ommon adjaent nodes, while taking nodes A' and B' we solve the ExatCover problem and hene the Coverage problem.We remark that while instanes for both formulations an be built in polynomial time, one givenan instane of the Coverage problem, we have not been able to �nd a general redution from theirinstanes to the Coverage problem. This means that we are not able, given an instane I of MaxWeight Independent Set or of Exat Cover, to build a set I 0 of retangles suh that from the solutionto the Coverage problem for I 0 we an derive a solution for I .Aknowledgments. This researh was partially supported by the European Union TMRprojet \Chorohronos".
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